• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of ZnTe film with high copper doping efficiency for solar cells

    2022-10-26 09:54:06XinLuLin林新璐WenXiongZhao趙文雄QiuChenWu吳秋晨YuFengZhang張玉峰HasithaMahabadugeandXiangXinLiu劉向鑫
    Chinese Physics B 2022年10期

    Xin-Lu Lin(林新璐) Wen-Xiong Zhao(趙文雄) Qiu-Chen Wu(吳秋晨)Yu-Feng Zhang(張玉峰) Hasitha Mahabaduge and Xiang-Xin Liu(劉向鑫)

    1Institute of Electrical Engineering,Chinese Academy of Sciences,Beijing 100190,China

    2University of Chinese Academy of Sciences,Beijing 100049,China

    3Georgia College and State University,Milledgeville,GA 31061,USA

    4Institute of Qilu Zhongke Electrical Advanced Electromagnetic Drive Technology,Jinan 250101,China

    Keywords: solar cell,radio frequency sputtering,doping efficiency,post-deposition heat treatment

    1. Introduction

    Now,the technology of making cadmium telluride(CdTe)solar cells is one of the key technologies in the field of thin film solar cells.[1–3]CdTe back contact material for cadmium telluride (CdTe) cell has always been a significant research direction.[4]For a solar cell with traditional structure(Fig.1(a)),a hole barrier is formed in back contact due to mismatch of work function.[5,6]Many researchers have proved that copper-doped zinc telluride (ZnTe:Cu) is an ideal back contact material(Fig.1(b)).[7,8]The ZnTe:Cu is a hole transport material that is inserted between electrode layer and absorber, which can reduce the valence band discontinuity(0.05 eV–0.30 eV)caused by the contact barrier.[9]Owing to the slight mismatch of lattice between ZnTe:Cu and CdTe,the ZnTe:Cu film can be used as an electron back reflection layer(1.00 eV–1.08 eV)to inhibit interface recombination.[10]After the activation of post-deposition heat treatment(PDHT),high level carrier concentration can be easily achieved.[11]

    Fig.1. Schematic diagram of energy band structure for CdTe solar cell(a)metallic contact,and(b)modified cell with ZnTe:Cu layer.

    Although there are few reports on RF coupled DC sputtering of ZnTe:Cu film,there may exist an effect on film properties as demonstrated on ZnO:Al and Cd2SnO4.[12,13]In this work, we investigate the influence of target bias and PDHT for ZnTe:Cu. Furthermore,a systematic study is conducted on the devices with different contact materials,which proves that ZnTe:Cu back contact layer may reduce hole barrier. Through effective activation process, the efficiency of solar cell is improved by the modified band alignment.

    2. Experiment

    2.1. Preparation of ZnTe:Cu and devices

    ZnTe:Cu films were prepared on Corning 7059 glass substrates through RF-coupled DC sputtering followed by rapid thermal processing (RTP) at different temperatures.[14]Optimized ZnTe:Cu films were then used to complete CdTe solar cell devices. Both CdS:O and CdTe polycrystalline films were sputtered on the commercial TEC15 substrate by using standard process. Afterwards, the CdS:O/CdTe devices were activated by chloride treatment, which was conducted in mixed atmosphere with 5% oxygen and 95% nitrogen.[15]After the chloride treatment,different back contacts were used(Fig.2).

    For reference, the Au electrode (30-nm thick) or Cu/Au bilayer structure with an optimal Cu thickness (4 nm) was evaporated on an activated absorber surface by electron beam evaporation (Figs. 2(a) and 2(b)). As shown in Fig. 2(c),ZnTe:Cu/Au stacked structure was sputtered on an absorber layer. The ZnTe target with three inches in diameter was used,which has a purity of 99.99%with 5%atomic concentration of copper. The devices with different thickness ZnTe:Cu buffer layers(40 nm–200 nm)were annealed on the RTP furnace at 200°C–320°C for 20 s–120 s.

    Fig.2. Schematic diagram of devices with different contact layers: (a)Au,(b)Cu/Au,(c)ZnTe:Cu/Au(nonscaled).

    2.2. Characterization methods

    The morphology of film surface and device cross section were observed by using scanning electron microscope(SEM,Zeiss Sigma). The film electrical property was measured by Hall effect(Nanometric Hall 5500). The atomic ratio was investigated by energy dispersive spectrometer (EDS, Bruker).For the device, the current density–voltage (J–V) curve was measured on a source meter (Keithley 2400) and solar simulator (Newport Oriel 91159A, USA). External quantum efficiency (EQE) was investigated in PV measurement (QEX7 system,USA).The capacitance–voltage(C–V)was measured in a semiconductor characterization system (SCS, Keithley 4200).

    3. Results and discussion

    3.1. Improvement of doping efficiency

    Deposition rate, optical and electrical properties of ZnTe:Cu film are affected by target bias voltage as demonstrated in previous work.[14]The influence of PDHT and target bias are investigated to understand benefits obtained from RF-coupled DC sputtering and heating process separately.The combined process of PDHT (300°C) and target bias voltage(-122 V)is dramatically improved,which makes the resistivity decrease from 243.58 Ω·cm to 0.04 Ω·cm(Fig.3(a)). The carrier mobility is enhanced to 0.214 cm2/(V·s) (Fig. 3(b)).As shown in Fig. 3(c), the carrier concentration is improved from 5.0×1017cm-3to 9.2×1020cm-3at a-122 V bias voltage and RTP at 270°C for 60 s. Nevertheless,the carrier concentration decreases with excessive annealing temperature increasing. The doping efficiency is computed as the ratio of free hole density to copper concentration,showing an upward trend from 0.03% to 60.9% (Fig. 3(d)).[16]The copper concentration in ZnTe:Cu film is derived from the relative ratio of Zn to Te to Cu from EDS data taken from the same film.The doping efficiency can be correlated with the performance for CdTe-based solar cell.The higher doping efficiency means that more copper atoms substitute for Zn sites in ZnTe lattices and there remain less mobilized copper atoms which can enter into the CdTe absorber layer. Copper is suspected as a dominant element for CdTe-based cell degradation.[17]Possible degradation mechanisms include the decline in window layer transmission (decreasedJsc) and change in the space charge region(decreasedVoc).[18]

    As shown in Table 1, in National Renewable Energy Laboratory, Gessertet al.noted that carrier concentration of ZnTe:Cu(0.45 at.%)film is 1.9×1018cm-3at annealing temperature of 375°C in flowing N2for 30 min.[19]And the asdeposited ZnTe:Cu (6 at.%) film reaches a maximum carrier concentration of 3×1020cm-3at a substrate temperature of 300°C.[20]In the University of Toledo,Bohnet al. noted that the ZnTe:Cu(8.86 at.%)film with a high carrier concentration of 1×1021cm-3is grown at 400°C.[21]In our laboratory,the doping efficiency of ZnTe:Cu(5 at.%)film (200 nm thick) is improved to 60.9%.

    Fig.3. ZnTe:Cu properties with different target bias of-82 V(black line),-102 V(red line),and-122 V(blue line):(a)resistivity,(b)carrier mobility,(c)carrier concentration,(d)doping efficiency.

    Table 1. Summary of electrical performance of ZnTe:Cu films deposited by different groups.

    3.2. Fabrication of CdTe solar cells

    To understand the changes of back contact materials,it is significant to review the fabrication of device with fundamental structure.All solar cells are deposited on NSG TEC15 glass which is coated by SnO2:F(FTO)(Fig.4(a)). The CdS:O film is sputtered through RF deposition process and used as a window layer on the TEC15 glass for solar cell(Fig.4(b)). Then polycrystalline CdTe film is deposited on CdS:O film in the same sputtering system with a substrate temperature of 301°C(Fig. 4(c)). With the achievement of chlorine activation process,the study of the CdTe grain boundary surface by SEM reveals that the CdCl2treatment results in the enlargement of the grain size(Fig.4(d)). As for back contact,the interface issue of the mismatch of work function can be solved by inserting a buffer layer of ZnTe:Cu which is prepared by the RF coupled DC sputtering, and device performance is significantly enhanced after being annealed additionally. Figure 4(e)shows that the surface of CdTe film is homogenously covered with uniform ZnTe:Cu film. Figure 4(f) shows the surface morphology of ZnTe:Cu with optimal RTP. After the PDHT, the grain boundaries become blurred where the small grains are“swallowed”by large grains.

    The superstrate structure is used for CdTe solar cells as shown in Fig.5(a). Figures 5(b)–5(d)show the box plots obtained from 36 cell efficiencies for each condition. The active area of each cell is approximately 0.07 cm2. Figure 5(b)shows the effect of ZnTe:Cu thickness with RTP at temperature 300°C in 100 s.The cell with 80-nm-thick ZnTe:Cu layer reaches a best performance (10.55%, in average), which is mainly due to the enough copper atoms needed to enhance the p-type doping concentration of the absorber layer. Figure 5(c)shows the efficiency(Eff)valuesversusthe annealing temperature for devices with 80-nm-thick ZnTe:Cu layer and annealing time of 100 s. “No RTP”samples refer to the devices that are unannealed. When the annealing temperature is 280°C,the maximum solar cell efficiency is obtained(11.63%,in average). Figure 5(d) displays the statistical results of the performance for devices with 80-nm-thick ZnTe:Cu film and the same annealing temperature (280°C). TheEffvalue first increases from 8.78%(20 s)to 12.89%(60 s)and then decreased(9.53%,120 s).

    Fig. 4. SEM image of (a) FTO, (b) FTO/CdS:O, (c) FTO/CdS:O/CdTe (as-deposited), (d) FTO/CdS:O/CdTe (with Cl treatment), (e)FTO/CdS:O/CdTe/ZnTe:Cu(as-deposited),and(f)FTO/CdS:O/CdTe/ZnTe:Cu(with optimized PDHT treatment).

    Fig.5.(a)Cross section of device,(b)effect of ZnTe:Cu thickness on device efficiency,(c)effect of annealing temperature on device efficiency,and(d)effect of annealing time on device efficiency.

    Figure 6(a) displays the typicalJ–Vcurves for devices with respective contact materials of Au, Cu/Au, ZnTe:Cu/Au with No RTP treatment,ZnTe:Cu/Au with optimal RTP treatment at 280°C for 60 s,and ZnTe:Cu/Au with excessive RTP treatment at 320°C for 100 s.We collect the highest efficiency of CdTe-based film solar cell under different preparation conditions. The corresponding photovoltaic measurements of devices are summarized in Table 2.

    The typical CdTe soalr cell with Au contact material shows the behavior of“roll-over”,which causesFFof 51.51%andVocof 606 mV. The efficiency value of this device is 7.27%, withJsc= 23.21 mA/cm2,Rs= 9.69 Ω·cm2, andRsh=350 Ω·cm2. The behavior of“roll-over”implies the existence of contact barrier,which results from the mismatch of work function between electrode layer and absorber layer.[22]With the incorporation of a copper film,FFandVocexhibit a limited improvement of 65.36% and 736 mV, withRs=5.40 Ω·cm2andRsh=1675 Ω·cm2. TheJscvalue remains essentially unchanged (23.68 mA/cm2), and thus the overall efficiency increases to 11.48%. As for ZnTe:Cu contact material, as-deposited solar cell with no RTP treatment shows bad current collection(18.41 mA/cm2). The device efficiency is 2.87%, leading to lowVoc(508 mV), the high series resistanceRs(21.26 Ω·cm2),the low shunt resistanceRsh(86 Ω·cm2), and fill factor (30.65%). After the optimal RTP treatment,the performance of device is significantly enhanced.TheRsdecreases from 21.26 Ω·cm2to 4.23 Ω·cm2because of the barrier reduction.[23]The leakage of electricity is prohibited andRshimproves from 86 Ω·cm2to 1109 Ω·cm2. At the same time, theJ–Vcurves exhibit no “roll-over” behavior, withEff=13.48%,Jsc=26.76 mA/cm2,Voc=756 mV,andFF=66.60%. Once the devices are over treated with excessive annealing temperature or annealing time, all the photovoltaic parameters obviously decline. For example, the efficiency of cell declines from 13.48% to 9.55% (29.15% in decrement), withVoc= 730 mV,Jsc= 25.59 mA/cm2, andFF=51.10%. The degradation is assumed to be mainly because of copper diffusion to CdS:O film, which degrades the PN junction and leads to shunting.

    Fig.6. (a)The J–V curves and(b)EQE–wavelength curves.

    Table 2. Photovoltaic parameters of different devices.

    As shown in Fig. 6(b), the values of EQE decrease at wavelengths above 600 nm for the device without Cu(with Au electrode only).Similarly,EQE spectrum shape of device with Cu/Au contact material shows a downward trend in a wavelength range of 600 nm–800 nm. Specific to the ZnTe:Cu/Au back contact device with optimized RTP treatment, the EQE spectral keeps relatively stable over the same wavelength range of 600 nm–800 nm without decreasing. In general, because of free carrier recombination near the back contact,the EQE response decreases at long wavelengths.[24]In contrast,the conduction band barrier of device with ZnTe:Cu/Au contact material has an effect on the EQE response,which works as free electron barrier and reduces the recombination rate of free carrier.

    To obtain higher conversion efficiency, we prepare CdTe-based solar cells with a novel structure of Cd2SnO4(CTO)/MgZnO (MZO)/CdTe/ZnTe:Cu/Ni. The CTO film(200 nm)is used as the conductive layer instead of FTO film to improve the electrical properties and transmission of TCO layer.[13]The MZO film (80-nm thick) is used as the window layer instead of CdS film to enhance the response of solar cell at short wavelengths.[25]The CdTe absorber prepared by closed space sublimation (CSS) at high temperature replaces the method of magnetron sputtering at low temperatures. In addition,the use of Ni as the back electrode instead of Au can reduce the production cost of solar cells.

    Figure 7(a) displays theJ–Vcurve for the best device with contact materials of ZnTe:Cu/Ni. TheJ–Vcurves exhibit no “roll-over” behavior, withEff=15.94%,Voc=834 mV,Jsc=27.98 mA/cm2,FF=68.30%,Rs=3.44 Ω·cm2, andRsh=1244 Ω·cm2. Figures 7(b)–7(d)show the box plots obtained from 36 cell efficiencies under the different conditions of ZnTe:Cu film. Figure 7(b) shows the effect of ZnTe:Cu thickness with RTP at 260°C for 40 s. The cell with 90-nmthick ZnTe:Cu layer reaches the best performance (13.09%,average). Figure 7(c)shows the comparison of annealing temperature among devices with 90-nm ZnTe:Cu layer and annealing time of 40 s. When the annealing temperature is 290°C, the maximum solar cell efficiency is obtained to be an average of 14.00%. Figure 7(d) displays the results of performance for devices with 90-nm-thick ZnTe:Cu film and the same annealing temperature(290°C).Therefore,ZnTe:Cu back contact layer with a thickness of 90 nm annealed at 290°C for 40 s can achieve the best conversion efficiency for the devices with novel structure.

    Fig.7. (a)The J–V curve, (b)effect of ZnTe:Cu thickness on device efficiency, (c)effect of annealing temperature on device efficiency, and(d)effect of annealing time on device efficiency.

    3.3. Analysis of J–V and C–V for solar cell

    With regard to the characteristic ofJ–Vbehavior, the most important thing is the prevalence of parasitic losses,which can be commonly described by the following diode equations:[24,26]

    whereJandJLare the reverse saturation current and photogenerated current,respectively.

    The CurVA 2.0 software is used for the numerical analysis ofJ–Vplot. Figure 8(a) shows theJ–Vplots for device with efficiency of 15.94%. This includes sufficient data in the first quadrant and third quadrant where non-ideal effects are not described by Eq.(1), such as current blocking behavior, which are commonly observed in solar cells. Figure 8(b)shows the derivativeg(V) with respect toVin a reverse bias voltage region where derivative of diode term in Eq. (2) becomes negligible. In this case, theg(V) curves reveal thatG(dark)=0 mS/cm2andG(light)=0.9 mS/cm2. In addition,the slope of realisticJ–Vcurve is very small in the range of reverse bias, so there will be some noise in calculating the derivative under illumination condition. Figure 8(c)shows the dV/dJ versus(J+JscGV)-1plot, which will yield a line ifJLis independent of voltage. From the dark data or the linear region of light data, an intercept is obtained for the series resistance(Rs=3.44 Ω·cm2)and a slope is calculated for diode ideality factor (A=1.53). Figure 8(d) shows semilogarithmic plot of (J+JscGV)versus(V-RsJ). According to dark data or the linear region of light data, the current indicates that the intercept gives the diode reverse saturation current(J=9.7×10-8mA/cm2). The slope is equal toq/AkT,so the diode ideality factor(A)can be calculated to be 1.53(A=1.53)which is consistent with the value indicated in Fig. 8(c). In addition, the values ofAandJfor all devices with different preparation conditions are summarized in Table 2 for comparison. When Cu/Au layers, ZnTe:Cu/Au layers with optimal RTP and ZnTe:Cu/Ni with optimal RTP are used for the back contact of solar cells, the corresponding diode quality factors are 1.70, 1.64, and 1.53, respectively. The results of ideality factor between 1 and 2 indicate that the device operated with dominant trap states is the recombination in space charge region. When Au monolayer, ZnTe:Cu/Au layers without RTP and ZnTe:Cu/Au with excessive RTP are used for the back contact of solar cell, the corresponding diode quality factors are 2.39,3.15,and 2.18,respectively. When the value of diode ideality factor exceeds 2, the interface and tunneling recombination additionally contribute to the total recombination.[26]This suggests that the better quality absorber layer is necessary for high performance.

    To obtain free carrier densities and depletion widths from the PN junction of device,C–Vprofiling is carried out at room temperature(Fig.9(a)).The carrier concentration is calculated from the following equations:[27]

    whereC(V) is the capacitance per area, ΔQthe incremental depletion charge with an applied voltage ΔV,εthe permittivity of the CdTe,Wthe depletion width,qthe electron charge,N(W)the space charge density,andVDthe diffusion voltage.

    Fig.8. (a)The J–V plots,(b) dJ/dV versus voltage,(c) dV/dJ versus(J+Jsc-GV)-1,and(d)(J+Jsc-GV)versus(V-RsJ),for light(red line)and dark(black line)case.

    Fig.9. (a)The C–V plots,(b)1/C2–V plots,and(c)space charge distribution,for different frequencies: 10 kHz(black line),50 kHz(red line),and 100 kHz(blue line).

    Figure 9(b) shows the plot ofC-2againstV. Under the 10-kHz measurement condition,the data for CdTe device have a line from which the slope and intercept are used to calculate the space charge density(6×1014cm-3)and diffusion voltage(VD=0.4 V). Under the 50-kHz and 100-kHz measurement conditions,the device has a varying slope,implying a spatially varyingN. The relatively low free carrier value identifies one of the key issues in CdTe solar cell technology, namely, the inability to dope CdTe absorbers to a sufficiently high carrier density. Figure 9(c)indicates the depletion width of device is estimated to be about 900 nm. In addition, the depth profile is U-shaped, presenting a trapped electron density and defect vacancy density, which serve as the leakage paths to reduce the shunt resistance.[9]

    4. Conclusions and perspectives

    In this work, ZnTe:Cu film (200-nm thick) is sputtered by RF-coupled DC bias voltage system and PDHT, to have the carrier concentration of 9.2×1020cm-3and the doping efficiency of 60.9%. After optimizing ZnTe:Cu films, a systematic study is carried out to incorporate ZnTe:Cu film into CdTe solar cell. Optimized band alignment is supposed to enhance the device performance. However, the device with as-deposited ZnTe:Cu contact material shows low current collection and efficiency. The best efficiency of novel device with optimal PDHT for ZnTe:Cu contact material is 15.94%,with correspondingVoc=834 mV,Jsc=27.98 mA/cm2, andFF=68.30%. In general,the improvement of device performance can be attributed to barrier reduction and the suppressed leakage of electricity. The further analysis ofJ–Vbehavior shows that the results of diode ideality factor (A=1.53) between 1 and 2 indicate that the device operates by dominant recombination of trap states in space charge region. TheC–Vprofiling shows that the space charge density remains at 1014level in a frequency range of 10 kHz–100 kHz. Furthermore,the depletion width can be estimated at 900 nm. With all the analysis considered,it is recommended that CdTe-based solar cells be constructed with a ZnTe:Cu back contact layer with optimizing RTP treatment, thereby improving the device performance.

    Acknowledgements

    The authors are grateful to the Photovoltaic Laboratory at Colorado State University for the CurVA 2.0 software.

    Project supported by the Research Foundation of Institute of Electrical Engineering,Chinese Academy of Sciences,(Grant No. Y710411CSB), the Lujiaxi International Team Project of Chinese Academy of Sciences (Grant No. GJTD-2018-05),the Chinese Academy of Sciences President’s International Fellowship Initiative(Grant No.2020VEC0008),and the Fund from the Institute of Electrical Engineering and Advanced Electromagnetic Drive Technology,Qilu Zhongke.

    国产av在哪里看| 亚洲熟女毛片儿| 欧美色视频一区免费| videosex国产| 国产伦在线观看视频一区| 亚洲专区中文字幕在线| 欧美日韩亚洲国产一区二区在线观看| 免费观看人在逋| 久久 成人 亚洲| 亚洲av熟女| ponron亚洲| videosex国产| 精华霜和精华液先用哪个| 久久精品91蜜桃| 亚洲国产中文字幕在线视频| 欧美色视频一区免费| av有码第一页| 97人妻精品一区二区三区麻豆 | 一区二区三区精品91| 久久精品91蜜桃| 亚洲av片天天在线观看| xxx96com| 精品久久久久久久毛片微露脸| 91成人精品电影| 免费无遮挡裸体视频| 又大又爽又粗| 亚洲国产欧洲综合997久久, | 在线观看午夜福利视频| 国产免费av片在线观看野外av| 在线观看www视频免费| 成熟少妇高潮喷水视频| 母亲3免费完整高清在线观看| 亚洲成av片中文字幕在线观看| 在线观看一区二区三区| 成年女人毛片免费观看观看9| 丰满的人妻完整版| 午夜免费成人在线视频| 一边摸一边做爽爽视频免费| 精品久久蜜臀av无| 亚洲国产精品成人综合色| 美女高潮到喷水免费观看| 国产又爽黄色视频| 亚洲全国av大片| 久久久久国产精品人妻aⅴ院| 亚洲成a人片在线一区二区| 国产精品精品国产色婷婷| 午夜两性在线视频| 观看免费一级毛片| 日韩有码中文字幕| 精品免费久久久久久久清纯| 久久精品夜夜夜夜夜久久蜜豆 | 操出白浆在线播放| 丝袜美腿诱惑在线| 国产主播在线观看一区二区| 国产精品1区2区在线观看.| 人妻丰满熟妇av一区二区三区| 最近最新免费中文字幕在线| 久久人人精品亚洲av| 男人舔女人的私密视频| 久久午夜综合久久蜜桃| 大型av网站在线播放| 久久久久久大精品| 天堂√8在线中文| 久久香蕉精品热| 精品久久久久久成人av| 一级作爱视频免费观看| 久久精品91无色码中文字幕| 亚洲激情在线av| 欧美日韩精品网址| 欧美黄色淫秽网站| 国产成人精品无人区| 天天添夜夜摸| 一个人免费在线观看的高清视频| 老汉色∧v一级毛片| 久久久久免费精品人妻一区二区 | 亚洲一区高清亚洲精品| 国产精品久久视频播放| 精品久久久久久久毛片微露脸| 黄色视频不卡| 精品久久久久久,| 一二三四在线观看免费中文在| 99热只有精品国产| 夜夜看夜夜爽夜夜摸| 日韩精品中文字幕看吧| 看黄色毛片网站| 成人18禁在线播放| 后天国语完整版免费观看| 欧美激情极品国产一区二区三区| 国产精品日韩av在线免费观看| 国内揄拍国产精品人妻在线 | 91在线观看av| 亚洲国产精品成人综合色| 黑丝袜美女国产一区| 国产亚洲欧美在线一区二区| 深夜精品福利| 婷婷六月久久综合丁香| 午夜免费成人在线视频| 亚洲一区中文字幕在线| 日本熟妇午夜| 亚洲国产精品久久男人天堂| 午夜激情福利司机影院| 大香蕉久久成人网| 啪啪无遮挡十八禁网站| 久久中文字幕人妻熟女| 精品乱码久久久久久99久播| 色在线成人网| www.自偷自拍.com| 精品国产亚洲在线| 国产精品99久久99久久久不卡| 又黄又粗又硬又大视频| 麻豆一二三区av精品| 精品第一国产精品| 国产精品永久免费网站| 人妻久久中文字幕网| av片东京热男人的天堂| 亚洲人成电影免费在线| 好男人在线观看高清免费视频 | 两个人看的免费小视频| 日日爽夜夜爽网站| 亚洲自偷自拍图片 自拍| 啦啦啦观看免费观看视频高清| 十分钟在线观看高清视频www| 亚洲国产精品成人综合色| 搡老妇女老女人老熟妇| 久久中文字幕人妻熟女| 俄罗斯特黄特色一大片| 久久精品影院6| 中文字幕人妻丝袜一区二区| 亚洲久久久国产精品| 88av欧美| 国产在线观看jvid| 免费在线观看视频国产中文字幕亚洲| 99精品在免费线老司机午夜| 国产精品久久电影中文字幕| 国产成人啪精品午夜网站| 黄片播放在线免费| 叶爱在线成人免费视频播放| 国产精品九九99| 亚洲男人天堂网一区| 熟妇人妻久久中文字幕3abv| 亚洲国产欧美网| 欧美乱码精品一区二区三区| 女性被躁到高潮视频| 国产亚洲精品综合一区在线观看 | 久久久国产成人免费| 亚洲人成77777在线视频| 久热这里只有精品99| 日本精品一区二区三区蜜桃| 国内揄拍国产精品人妻在线 | 校园春色视频在线观看| 啪啪无遮挡十八禁网站| 国产熟女午夜一区二区三区| 久久精品影院6| 变态另类丝袜制服| 国产三级黄色录像| 国产在线精品亚洲第一网站| 欧美黄色片欧美黄色片| 午夜影院日韩av| 亚洲午夜精品一区,二区,三区| 少妇熟女aⅴ在线视频| 757午夜福利合集在线观看| 一级毛片高清免费大全| 久久 成人 亚洲| 亚洲av片天天在线观看| 好看av亚洲va欧美ⅴa在| 男男h啪啪无遮挡| 日韩欧美国产在线观看| 色av中文字幕| 亚洲国产中文字幕在线视频| 日本三级黄在线观看| 日本三级黄在线观看| 伦理电影免费视频| 最近最新中文字幕大全电影3 | 99久久99久久久精品蜜桃| 国产精品亚洲美女久久久| 亚洲美女黄片视频| 亚洲国产看品久久| 国产精品久久久久久亚洲av鲁大| 欧美精品亚洲一区二区| 一进一出抽搐gif免费好疼| 亚洲最大成人中文| 色综合婷婷激情| 日本在线视频免费播放| 久久久久国产一级毛片高清牌| 午夜精品在线福利| 91av网站免费观看| 亚洲片人在线观看| 一进一出好大好爽视频| 美女免费视频网站| 国产成人系列免费观看| 色综合亚洲欧美另类图片| 91成年电影在线观看| 12—13女人毛片做爰片一| 91在线观看av| 国产亚洲欧美98| 日韩三级视频一区二区三区| 搡老妇女老女人老熟妇| 日本 欧美在线| 男女下面进入的视频免费午夜 | 丰满的人妻完整版| 不卡一级毛片| 一级毛片高清免费大全| 国产精品1区2区在线观看.| 久久精品人妻少妇| 悠悠久久av| 老汉色∧v一级毛片| 一进一出抽搐gif免费好疼| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩瑟瑟在线播放| 欧美+亚洲+日韩+国产| 亚洲精品色激情综合| 精品国产乱码久久久久久男人| 一边摸一边抽搐一进一小说| 天天添夜夜摸| 91麻豆精品激情在线观看国产| 久久久水蜜桃国产精品网| cao死你这个sao货| 欧美日韩乱码在线| 欧美黑人巨大hd| 午夜亚洲福利在线播放| 久久精品91无色码中文字幕| 国产亚洲欧美98| 亚洲av五月六月丁香网| 天堂影院成人在线观看| 99在线视频只有这里精品首页| 国产精品永久免费网站| 色老头精品视频在线观看| 好男人电影高清在线观看| 男女床上黄色一级片免费看| 久久久国产欧美日韩av| 国产精品二区激情视频| 色在线成人网| 国产不卡一卡二| 老汉色av国产亚洲站长工具| 久久久国产精品麻豆| 免费高清视频大片| 久久久久久久久久黄片| 又黄又粗又硬又大视频| 18美女黄网站色大片免费观看| 亚洲 欧美 日韩 在线 免费| 婷婷精品国产亚洲av| 久久精品人妻少妇| 欧美在线黄色| 国产91精品成人一区二区三区| 黄色视频不卡| tocl精华| 成人18禁高潮啪啪吃奶动态图| 日日摸夜夜添夜夜添小说| 99精品在免费线老司机午夜| 久久久久久久久中文| 色播在线永久视频| 国产一级毛片七仙女欲春2 | 999精品在线视频| 国产成人欧美| 亚洲中文字幕一区二区三区有码在线看 | 国产又黄又爽又无遮挡在线| 1024手机看黄色片| 亚洲人成电影免费在线| 成人18禁高潮啪啪吃奶动态图| aaaaa片日本免费| aaaaa片日本免费| 最新美女视频免费是黄的| 国产成人精品久久二区二区免费| 国产黄片美女视频| 色哟哟哟哟哟哟| www日本黄色视频网| 岛国视频午夜一区免费看| 亚洲无线在线观看| 久久香蕉国产精品| 国产精品精品国产色婷婷| 这个男人来自地球电影免费观看| 最新在线观看一区二区三区| 老司机午夜十八禁免费视频| 国产成人啪精品午夜网站| 国产视频内射| 伦理电影免费视频| 国产免费男女视频| 少妇粗大呻吟视频| 亚洲午夜理论影院| 女性被躁到高潮视频| 国产精品久久久av美女十八| 免费观看人在逋| 在线看三级毛片| 99久久99久久久精品蜜桃| 欧洲精品卡2卡3卡4卡5卡区| 无人区码免费观看不卡| 成年人黄色毛片网站| 欧美中文日本在线观看视频| 91在线观看av| 久久久久久人人人人人| 亚洲国产欧洲综合997久久, | 欧美黄色片欧美黄色片| 免费高清视频大片| 一本久久中文字幕| 性欧美人与动物交配| 成年人黄色毛片网站| 成人三级做爰电影| 又黄又爽又免费观看的视频| 在线观看66精品国产| 亚洲国产精品久久男人天堂| 亚洲自偷自拍图片 自拍| 在线观看免费视频日本深夜| 午夜福利高清视频| 在线永久观看黄色视频| cao死你这个sao货| 亚洲国产中文字幕在线视频| 免费无遮挡裸体视频| 日韩精品青青久久久久久| 一a级毛片在线观看| 在线观看一区二区三区| 哪里可以看免费的av片| 好男人在线观看高清免费视频 | 欧美三级亚洲精品| 亚洲精品一区av在线观看| 国产av一区二区精品久久| 91av网站免费观看| 久久亚洲真实| tocl精华| 三级毛片av免费| 午夜福利视频1000在线观看| 国产亚洲av嫩草精品影院| www.精华液| 久久精品亚洲精品国产色婷小说| 国产精品综合久久久久久久免费| 我的女老师完整版在线观看| 国产黄色小视频在线观看| 中文字幕精品亚洲无线码一区| 久久久精品大字幕| 国产精品亚洲一级av第二区| 亚洲熟妇中文字幕五十中出| 老司机影院成人| 一级黄片播放器| 观看免费一级毛片| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 欧美3d第一页| 欧美最黄视频在线播放免费| av天堂中文字幕网| 久久精品久久久久久噜噜老黄 | 成人美女网站在线观看视频| 黄色配什么色好看| 深夜a级毛片| 又粗又爽又猛毛片免费看| 亚洲欧美精品自产自拍| 村上凉子中文字幕在线| 精品免费久久久久久久清纯| 欧洲精品卡2卡3卡4卡5卡区| 老熟妇乱子伦视频在线观看| 国产男靠女视频免费网站| 九九久久精品国产亚洲av麻豆| 国产一区二区在线av高清观看| 别揉我奶头~嗯~啊~动态视频| 波多野结衣巨乳人妻| 久久国产乱子免费精品| 欧美成人一区二区免费高清观看| 久久精品国产鲁丝片午夜精品| 亚洲欧美日韩东京热| 美女免费视频网站| 国产精品久久视频播放| 乱码一卡2卡4卡精品| 国产女主播在线喷水免费视频网站 | 亚洲av电影不卡..在线观看| 国产视频内射| 亚洲成av人片在线播放无| 麻豆久久精品国产亚洲av| 国产一区二区在线av高清观看| 久久久久国内视频| 色视频www国产| 欧美日韩国产亚洲二区| 亚洲真实伦在线观看| 黑人高潮一二区| 美女xxoo啪啪120秒动态图| а√天堂www在线а√下载| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 国产91av在线免费观看| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 日韩强制内射视频| 97超级碰碰碰精品色视频在线观看| 欧美高清成人免费视频www| 欧美又色又爽又黄视频| 校园人妻丝袜中文字幕| 蜜桃久久精品国产亚洲av| 午夜福利在线观看免费完整高清在 | 乱系列少妇在线播放| 国产av一区在线观看免费| 久久久久免费精品人妻一区二区| 最新中文字幕久久久久| 在线免费十八禁| 日韩在线高清观看一区二区三区| 99视频精品全部免费 在线| 日日撸夜夜添| 一级毛片我不卡| av黄色大香蕉| 亚洲电影在线观看av| 日韩制服骚丝袜av| 亚洲av免费高清在线观看| 天堂av国产一区二区熟女人妻| av在线观看视频网站免费| 69人妻影院| 人妻久久中文字幕网| 亚洲欧美日韩东京热| 一进一出好大好爽视频| 亚洲欧美日韩高清专用| 欧美潮喷喷水| 波多野结衣高清无吗| 成人漫画全彩无遮挡| 老司机福利观看| 人人妻人人澡人人爽人人夜夜 | 天天一区二区日本电影三级| 国产高清激情床上av| 午夜免费激情av| 免费人成在线观看视频色| 此物有八面人人有两片| 欧美日韩乱码在线| 欧美高清性xxxxhd video| 国产熟女欧美一区二区| 亚洲av成人av| 国产中年淑女户外野战色| 精品少妇黑人巨大在线播放 | 中出人妻视频一区二区| 亚洲色图av天堂| 亚洲av免费在线观看| 最近2019中文字幕mv第一页| 亚洲成av人片在线播放无| 久久热精品热| 99九九线精品视频在线观看视频| 久久精品国产亚洲网站| 女同久久另类99精品国产91| 嫩草影院精品99| 免费看日本二区| 国产探花极品一区二区| 美女xxoo啪啪120秒动态图| a级毛色黄片| 伦精品一区二区三区| 日韩欧美三级三区| 久久久国产成人精品二区| 在线a可以看的网站| 日韩强制内射视频| 国产av一区在线观看免费| 你懂的网址亚洲精品在线观看 | 美女被艹到高潮喷水动态| 久久国产乱子免费精品| 午夜精品在线福利| 白带黄色成豆腐渣| 日韩制服骚丝袜av| 国产视频内射| 亚洲av二区三区四区| 亚洲av.av天堂| 亚洲高清免费不卡视频| 高清毛片免费看| 日本成人三级电影网站| 女的被弄到高潮叫床怎么办| 亚洲一区高清亚洲精品| 波野结衣二区三区在线| 噜噜噜噜噜久久久久久91| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 亚洲婷婷狠狠爱综合网| 久久亚洲国产成人精品v| 国产男人的电影天堂91| 一级av片app| 成人毛片a级毛片在线播放| 精品免费久久久久久久清纯| 淫妇啪啪啪对白视频| 国产三级在线视频| 亚洲最大成人手机在线| 亚洲国产精品合色在线| 久久久久久国产a免费观看| 麻豆av噜噜一区二区三区| 欧美日韩综合久久久久久| 国产精品爽爽va在线观看网站| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 欧美xxxx黑人xx丫x性爽| 日韩成人伦理影院| 国产精品国产三级国产av玫瑰| 欧美色欧美亚洲另类二区| av.在线天堂| 日本爱情动作片www.在线观看 | 国产精品一区二区性色av| 黄色视频,在线免费观看| 中文在线观看免费www的网站| 在线观看av片永久免费下载| 观看美女的网站| 99久久成人亚洲精品观看| 日本五十路高清| 毛片一级片免费看久久久久| 成人精品一区二区免费| 丰满的人妻完整版| 久久99热6这里只有精品| 女同久久另类99精品国产91| 国产精品女同一区二区软件| 国产高清三级在线| 一级a爱片免费观看的视频| 国产人妻一区二区三区在| 亚洲av二区三区四区| 国产精品爽爽va在线观看网站| 级片在线观看| 国产 一区精品| 熟女人妻精品中文字幕| 免费av不卡在线播放| av在线天堂中文字幕| 久久久a久久爽久久v久久| 18禁黄网站禁片免费观看直播| 午夜爱爱视频在线播放| 亚洲成人av在线免费| 超碰av人人做人人爽久久| 国产探花在线观看一区二区| 国内揄拍国产精品人妻在线| 美女高潮的动态| 日本黄色视频三级网站网址| 成人午夜高清在线视频| 伊人久久精品亚洲午夜| 色综合站精品国产| 日韩大尺度精品在线看网址| 国产成人91sexporn| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 欧美激情在线99| 亚洲成av人片在线播放无| 长腿黑丝高跟| 老师上课跳d突然被开到最大视频| 一级a爱片免费观看的视频| 成年免费大片在线观看| 一进一出抽搐gif免费好疼| 久久国内精品自在自线图片| 精品不卡国产一区二区三区| 日日摸夜夜添夜夜爱| 久久久久久久久久成人| 国产精品日韩av在线免费观看| av在线老鸭窝| 国产高清激情床上av| 亚洲av不卡在线观看| 91av网一区二区| 国产单亲对白刺激| 日产精品乱码卡一卡2卡三| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 18禁在线无遮挡免费观看视频 | 亚洲美女视频黄频| 如何舔出高潮| 亚洲美女黄片视频| 一级黄片播放器| 97碰自拍视频| 亚洲人与动物交配视频| 国产高清视频在线播放一区| 男人和女人高潮做爰伦理| 成人特级黄色片久久久久久久| 午夜老司机福利剧场| 亚洲精品一卡2卡三卡4卡5卡| 女人十人毛片免费观看3o分钟| 内射极品少妇av片p| 一级毛片久久久久久久久女| 中国美白少妇内射xxxbb| 久久精品综合一区二区三区| 免费一级毛片在线播放高清视频| 99久久中文字幕三级久久日本| 日本在线视频免费播放| 一a级毛片在线观看| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类| 午夜福利高清视频| 午夜爱爱视频在线播放| 老熟妇仑乱视频hdxx| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 久99久视频精品免费| 国产乱人视频| 国产亚洲精品久久久com| 国产白丝娇喘喷水9色精品| 日韩欧美免费精品| 久久精品国产亚洲av涩爱 | 噜噜噜噜噜久久久久久91| 国产亚洲精品综合一区在线观看| 久久久久久大精品| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 日韩欧美在线乱码| a级毛片a级免费在线| 日韩欧美在线乱码| 综合色av麻豆| 尾随美女入室| 免费观看人在逋| 久久鲁丝午夜福利片| 超碰av人人做人人爽久久| 久久精品国产亚洲av涩爱 | 热99在线观看视频| 亚洲图色成人| 国产精品久久久久久精品电影| 亚洲第一电影网av| 菩萨蛮人人尽说江南好唐韦庄 | h日本视频在线播放| 性插视频无遮挡在线免费观看| 亚洲专区国产一区二区| 久久久久九九精品影院| 寂寞人妻少妇视频99o| 在线免费十八禁| 91午夜精品亚洲一区二区三区| 最后的刺客免费高清国语| 亚洲中文字幕日韩| 禁无遮挡网站| 国产亚洲精品久久久久久毛片| 久久九九热精品免费| 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 村上凉子中文字幕在线| 欧美中文日本在线观看视频| 精华霜和精华液先用哪个| 中文字幕免费在线视频6| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频|