• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multiple modes of perpendicular magnetization switching scheme in single spin–orbit torque device

    2022-10-26 09:54:42TongXiLiu劉桐汐ZhaoHaoWang王昭昊MinWang王旻ChaoWang王朝BiWu吳比WeiQiangLiu劉偉強(qiáng)andWeiShengZhao趙巍勝
    Chinese Physics B 2022年10期
    關(guān)鍵詞:王朝

    Tong-Xi Liu(劉桐汐) Zhao-Hao Wang(王昭昊) Min Wang(王旻) Chao Wang(王朝)Bi Wu(吳比) Wei-Qiang Liu(劉偉強(qiáng)) and Wei-Sheng Zhao(趙巍勝)

    1Fert Beijing Institute,MIIT Key Laboratory of Spintronics,School of Integrated Circuit Science and Engineering,Beihang University,Beijing 100191,China

    2College of Integrated Circuits,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China

    Keywords: spin–orbit torque(SOT),field-like torque,magnetization switching,perpendicular magnetization

    1. Introduction

    Magnetic random access memory (MRAM) has become a promising candidate for both embedded and standalone applications[1]due to its non-volatility, low power, high speed, and nearly unlimited endurance. The write technology of the MRAM, which is reflected by the mechanism of magnetization switching, has long been attracting numerous research interests as it significantly determines the performance of the MRAM. To date, MRAM written by spintransfer torque (STT) has made great progress of both academic research and industrial applications.Nevertheless,newgeneration MRAM has been explored by researchers to outperform the STT-MRAM.Typically, spin–orbit torque(SOT)MRAM shows great potential in non-volatile memory and inmemory computing.[2–5]Comparing with the STT-MRAM,the read and write paths are separated in the SOT-MRAM,resulting in higher reliability. Furthermore, the SOT-driven magnetization switching is as fast as several hundreds of picoseconds,[6,7]which qualifies the SOT-MRAM to be used in high-level caches.

    Actually, the SOT-driven magnetization switching is achieved under the joint effects of multiple factors, such as magnetic anisotropy field, Gilbert damping torque, dampinglike torque, field-like torque,etc. Most notably, by changing the relative proportions of these factors,the behavior of magnetization switching varies dramatically. Overall,both unipolar and bipolar switching have been proposed with different SOT mechanisms.[8–14]As shown in Table 1, for the unipolar switching,the magnetization is switched into the opposite state once an SOT current larger than the threshold is applied,regardless of the current polarity. For the bipolar switching,the final magnetization state is dependent on the polarity of the applied SOT current. The combination of unipolar and bipolar switching could benefit the function extension of the SOT-based memories or circuits. However, up to now these two modes of magnetization switching are implemented with different devices separately, which degrades the design flexibility of the related memories or circuits.

    Table 1. Unipolar and bipolar switching behaviors. In this table,J is the applied SOT current density with a magnitude larger than the threshold. mz=-1 and mz=+1 represent the two states for storing binary data.

    In this work,we propose a novel scheme that implements both unipolar and bipolar switching of the perpendicular magnetization within a single SOT device. The mode of switching is only dependent on the amplitude of the applied current. The change of switching mode is mainly attributed to the modulation of the field-like torque. Our proposal makes it possible to design the SOT-based memories or circuits with good reconfigurability.

    2. Device model

    In this study, the magnetization switching occurs in a common SOT magnetic tunnel junction (MTJ) with perpendicular anisotropy as illustrated in Fig.1. No special structure is required in this device. A charge current passing through the heavy metal induces the SOT which switches the perpendicular magnetization of the free layer(FL).Generally,an additional bias field is used to break the symmetry so that the switching process becomes deterministic.This bias field could be generated inside the device by using antiferromagnet[15–18]or magnetic hard mask.[19]The magnetization dynamics of the FL can be described by a modified Landau–Lifshitz–Gilbert(LLG)equation as follows:

    Here,mandσare the unit vectors of the FL magnetization and SOT-induced spin polarization,respectively.Jis the SOT current density. The effective field includes the contribution of the magnetic anisotropy field,the demagnetization field and the external field.ξ=γˉh/(2etFMs)is a device-dependent parameter, withγbeing the gyromagnetic ratio, ˉhthe reduced Planck constant,ethe electron charge,tFthe free layer thickness,Msthe saturation magnetization. The default values of some magnetic parameters are configured as follows, unless otherwise stated. The damping constant (α) is 0.05. The effective anisotropy constant is 1.5×105J/m3.tF= 1 nm,Ms=1×106A/m,λDLandλFLrepresent the strength of the damping-like and field-like torques,respectively,λDLis equivalent to the spin Hall angle whose default value is 0.3. More details are described elsewhere.[11]

    Fig.1. Device structure and coordinate system in this study.

    3. Results and discussion

    In our proposal, the field-like torque must be strong enough to implement multiple modes of switching within the above magnetic device. Strong field-like torque has been reported in previous researches.[20–22]Moreover, a number of researches have demonstrated that both the strength and sign ofλFL/λDLcan be adjusted by tuning the material types or fabrication processes.[20,23,24]The strength of field-like torque is related to multiple factors such as layer thickness, material system, interfacial intermixing,etc. This is a complicated issue and still under exploration. Recent researches have reported several methods of enhancing the field-like torque.[22,24]In this workλFL/λDL=4 is chosen for a preliminary study. Accordingly,macrospin simulation results under the various current densities are shown in Fig. 2. For all the cases, the device is subjected to a bias field of 20 mT,and the pulse width of SOT current is set to be 0.5 ns. Both unipolar and bipolar switchings can be clearly observed from the simulation results. First, no switching occurs when the current density is insufficient, since the torque is too weak to overcome the energy barrier. Second, unipolar switching is achieved if the current density is set to be an intermediate value(see Figs.2(b)and 2(e)). Finally,the switching process becomes bipolar while the current density is further increased(see Figs. 2(c) and 2(f)). Therefore, the mode of switching can be easily changed by adjusting the current density. The detailed mechanisms are analyzed below.

    The large field-like torque plays a dominant role in the unipolar switching process. According to Eq. (1), the fieldlike torque is equivalently induced by an in-plane magnetic field (HFL). ForλFL/λDL=4 andJ=6×1011A/m2, this equivalent magnetic field is aroundλFLξJ/γ ≈237 mT,which is much higher than the bias field (20 mT). In this case, the magnetization vector almost precesses around theHFLwith a speed ofγμ0|HFL|,[13]as shown in Figs.3(a)and 3(b). Thus,the magnetization vector will turn to the in-plane direction(i.e.mz=0) after a delay of aboutπ/(2γμ0|HFL|), which is in agreement with the results of Figs.2(b)and 2(e). Finally,the magnetization vector is stabilized at an equilibrium position under the action of various torques.

    The bipolar switching occurs if a larger current density is applied. In this case, the field-like torque is enhanced so that the magnetization vector is driven closer to the axis ofσ.Then the torque induced by the bias field (Hbias) is nearly aligned to±σ×Hbias. Note thatσandHbiasare parallel toxaxis andyaxis,respectively(see Fig.1),thus this torque is almost oriented towards?zaxes. Depending on the direction of the applied current,the magnetization vector is switched to the+zaxis or-zaxis,as shown in Fig.3(c)or Fig.3(d). Overall,the joint effects of the bias field and huge field-like torque lead to the bipolar switching.

    Fig. 2. Macrospin simulation results of z-component magnetization (mz), indicating that ((a), (d)) no switching occurs while J=2×1011 A/m2,((b),(e))unipolar switching occurs while J=6×1011 A/m2,((c),(f))bipolar switching occurs while J=7×1011 A/m2,((a)–(c))current is applied along+y axis,and((d)–(f))current is applied along-y axis. The SOT pulse is withdrawn at 0.5 ns(as marked by the vertical dotted line).

    Fig. 3. Trajectories of magnetization vector and key torques in switching process: ((a), (b))unipolar switching for J=6×1011 A/m2 and((c), (d))bipolar switching for J = 7.5×1011 A/m2. Here other torques are not shown for the clarity. It is seen from panels(c)and(d)that the Heff torque has+z component and-z component,respectively,which are mainly contributed by the bias field(Hbias). Here we only show the trajectories for the case of starting point mz =1, which are highly symmetric with respect to those for the case of starting point mz=-1.

    It is important to mention that the role of the bias field becomes significant only when the current density is sufficiently large. This conclusion can be explained by Fig. 4(a), where a non-zero bias field induces an effective torque to pull the magnetization vector back, leading to bipolar switching. In contrast,the effect of the bias field is negligible in the case of unipolar switching as shown in Fig. 4(b). The difference between Fig.4(a)and Fig.4(b)is attributed to the various values ofxcomponent magnetization(mx). Specifically,sinceHbiasis aligned to the +yaxis, thezcomponent effective torque is contributed by±γμ0mx×Hbias. Stronger current density leads to largermx(see Fig.4(a)),and hence more easily drives the magnetization vector towards thezaxis.

    Fig. 4. Influence of the bias field on the magnetization switching for (a)bipolar switching and(b)unipolar switching.

    The influence of key parameters on the switching mode is further discussed. Figure 5 shows the phase diagram of the final-statemzas a function ofλFL/λDLandJ. Overall, the bipolar switching occurs when both the current density and the field-like torque are large enough. In this case, the combination of stronger field-like torque and larger current density causes magnetization vector to approach in-plane direction, favoring the bias-field-induced torque, as illustrated by Figs. 3(c) and 3(d). On the other hand, the unipolar switching is obtained in a relatively narrow range of parameters,where the field-like torque suppresses the other factors and leads to the precession of the magnetization vector as shown in Figs.3(a)and 3(b).

    The proposed mechanism of the magnetization switching is also validated through micromagnetic simulation. Here the Dzyaloshinskii–Moriya interaction (DMI) is further considered, since it is widely reported to exist in SOT devices.Micromagnetic simulations are performed by the OOMMF package. The MTJ diameter is changed to 100 nm for constructing the multi-domain scenario as distinguished from the macrospin model. Other magnetic parameters are in consistence with those used in macrospin simulation. Both the unipolar and bipolar switching are implemented with the appropriate parameter settings, no matter whether the DMI strength is zero or non-zero. Typical results for non-zero DMI(with a DMI magnitude of 0.3 mJ/m2and an exchange stiffness of 5×10-11J/m) are shown in Fig. 6, where the magnetization switching is completed through magnetic domain dynamics. However,the DMI has a dramatic influence on the characteristic of the magnetization switching. The unipolar switching disappears in the case of strong DMI (not shown here). Nevertheless, we find that the unipolar switching can be recovered by increasing the exchange stiffness(e.g.it is increased to 5×10-11J/m in Fig.6)or reducing the bias field.The reason may be that the uniformity of the magnetization is enhanced.

    Fig.5. Phase diagram of mz as a function of λFL/λDL and J. Regions I,II,and III indicate,respectively,no switching,unipolar switching,and bipolar switching.

    Fig. 6. Typical simulation results of micromagnetic configuration for the proposed switching mechanism, with the applied SOT current densities for unipolar switching and bipolar switching being J=4.5×1011 A/m2 and J=5.8×1011 A/m2,respectively,and SOT current withdrawn at 0.5 ns.

    Fig. 7. Reconfigurable logic circuit using the proposed mechanism of magnetization switching. Here inputs are transistor gate voltage level(AN)and MTJ state in current cycle(Bi),and output is MTJ state in the next cycle(Bi+1).

    Benefiting from the proposed switching scheme, the reconfigurable logic circuits can be flexibly designed. A typical example is shown in Fig. 7. Three transistors with different sizes are used as the selection switches for various logic functions. One of three transistors is activated by MUX for generating a write current whose amplitude is in the range of unipolar or bipolar switching.As a result,the specific logic function can be implemented and reconfigured as indicated in the truth table of Fig.7.

    4. Conclusions

    In summary,we have proposed a novel switching scheme for the perpendicular-anisotropy SOT device. The switching mode of the device can be transformed between the unipolar type and bipolar type,only by tuning the amplitude of the current density. For the unipolar switching, the strong field-like torque mainly governs the magnetization dynamics. For the bipolar switching, the bias field and field-like torque jointly determine the polarity of the magnetization switching. Our proposal can breed a multifunction SOT device, especially is suitable for the design of the reconfigurable memories and circuits.Furthermore,the presented theoretical work can provide guidance and reference for the future experiments.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. 62171013 and 61704005),the National Key Research and Development Program of China(Grant Nos.2021YFB3601303,2021YFB3601304,and 2021YFB3601300),the Beijing Municipal Science and Technology Project, China (Grant No. Z201100004220002), and the Fundamental Research Funds for the Central Universities,China(Grant No.YWF-21-BJ-J-1043).

    猜你喜歡
    王朝
    正確看待輸和贏
    為了班級的榮譽(yù)
    進(jìn)球了
    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*
    一個(gè)愛打人屁股的王朝
    公民與法治(2020年3期)2020-05-30 12:30:00
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    中國自行車(2018年8期)2018-09-26 06:53:08
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    楊貴妃 王朝的女人
    電影(2015年7期)2015-12-24 01:36:04
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    人人澡人人妻人| 变态另类丝袜制服| 欧美另类亚洲清纯唯美| 十八禁网站免费在线| 婷婷亚洲欧美| 18禁黄网站禁片午夜丰满| 久热这里只有精品99| 搡老熟女国产l中国老女人| 国产精华一区二区三区| 搡老岳熟女国产| 少妇粗大呻吟视频| 国产黄片美女视频| 在线观看舔阴道视频| 国产亚洲欧美98| 亚洲一卡2卡3卡4卡5卡精品中文| 18禁裸乳无遮挡免费网站照片 | 国产蜜桃级精品一区二区三区| 久久人人精品亚洲av| 欧美日本亚洲视频在线播放| 精品电影一区二区在线| 久热爱精品视频在线9| 757午夜福利合集在线观看| 国产熟女xx| 国产精品电影一区二区三区| 久久久久精品国产欧美久久久| 午夜福利成人在线免费观看| 日本一区二区免费在线视频| 别揉我奶头~嗯~啊~动态视频| 这个男人来自地球电影免费观看| 又大又爽又粗| 亚洲黑人精品在线| 亚洲欧美一区二区三区黑人| 制服丝袜大香蕉在线| 国产av不卡久久| 国产av不卡久久| 久久久水蜜桃国产精品网| 国产高清激情床上av| 国产精品香港三级国产av潘金莲| 美女大奶头视频| 午夜福利18| 精品一区二区三区视频在线观看免费| 夜夜看夜夜爽夜夜摸| 日韩国内少妇激情av| 欧美日韩瑟瑟在线播放| 搞女人的毛片| 精品久久久久久久久久免费视频| 中国美女看黄片| 国产高清激情床上av| 国语自产精品视频在线第100页| 国产成人欧美在线观看| 国产午夜精品久久久久久| 欧美日韩黄片免| 精品一区二区三区av网在线观看| 亚洲精华国产精华精| 国产精品久久久久久精品电影 | 欧美在线黄色| 亚洲av片天天在线观看| 日韩一卡2卡3卡4卡2021年| 国产精品日韩av在线免费观看| 午夜福利一区二区在线看| 久久国产亚洲av麻豆专区| 午夜福利在线观看吧| 久久国产精品男人的天堂亚洲| 悠悠久久av| 一二三四在线观看免费中文在| 在线十欧美十亚洲十日本专区| 一级毛片精品| 91老司机精品| 欧美久久黑人一区二区| 国产激情久久老熟女| 国产亚洲欧美98| 性欧美人与动物交配| 精品无人区乱码1区二区| xxxwww97欧美| 最新在线观看一区二区三区| 夜夜夜夜夜久久久久| 校园春色视频在线观看| 色av中文字幕| 午夜久久久在线观看| 午夜成年电影在线免费观看| 法律面前人人平等表现在哪些方面| 亚洲avbb在线观看| 午夜久久久在线观看| 日韩欧美在线二视频| 中文在线观看免费www的网站 | 国产精品电影一区二区三区| 搡老熟女国产l中国老女人| 欧美国产精品va在线观看不卡| 久久久久久九九精品二区国产 | 波多野结衣高清无吗| 国产av在哪里看| 18禁观看日本| 亚洲欧美日韩无卡精品| 搡老岳熟女国产| 久久天堂一区二区三区四区| 亚洲第一青青草原| 免费在线观看完整版高清| 天堂动漫精品| 久久久水蜜桃国产精品网| 亚洲av日韩精品久久久久久密| 黄色视频,在线免费观看| 免费搜索国产男女视频| 亚洲色图 男人天堂 中文字幕| 中亚洲国语对白在线视频| 日本a在线网址| 18美女黄网站色大片免费观看| 99久久国产精品久久久| 欧美丝袜亚洲另类 | 99热6这里只有精品| 嫁个100分男人电影在线观看| 久久精品91无色码中文字幕| 日韩高清综合在线| 欧美色视频一区免费| 成人手机av| av福利片在线| x7x7x7水蜜桃| 国产v大片淫在线免费观看| 午夜福利成人在线免费观看| 亚洲男人的天堂狠狠| 91老司机精品| 色播在线永久视频| 国产精品一区二区精品视频观看| 午夜两性在线视频| 91字幕亚洲| 97碰自拍视频| avwww免费| 国产精品免费一区二区三区在线| av有码第一页| 国产伦人伦偷精品视频| 18美女黄网站色大片免费观看| 在线观看免费午夜福利视频| 欧美一级毛片孕妇| 级片在线观看| 亚洲人成网站高清观看| 亚洲国产日韩欧美精品在线观看 | 欧美乱码精品一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一区二区精品小视频在线| 99国产极品粉嫩在线观看| 午夜a级毛片| 长腿黑丝高跟| 欧美激情高清一区二区三区| 1024视频免费在线观看| 欧美人与性动交α欧美精品济南到| 国产成人av教育| 一进一出抽搐动态| e午夜精品久久久久久久| 级片在线观看| 国产1区2区3区精品| 成年版毛片免费区| 自线自在国产av| 人人妻,人人澡人人爽秒播| 免费在线观看日本一区| 韩国av一区二区三区四区| 在线观看66精品国产| 在线观看66精品国产| 亚洲av成人不卡在线观看播放网| 少妇被粗大的猛进出69影院| 亚洲无线在线观看| 成人午夜高清在线视频 | 熟女电影av网| 日韩精品青青久久久久久| 国产真人三级小视频在线观看| 日韩欧美三级三区| 成人亚洲精品一区在线观看| 母亲3免费完整高清在线观看| 99精品久久久久人妻精品| 国产单亲对白刺激| 国产人伦9x9x在线观看| 一本大道久久a久久精品| 香蕉久久夜色| 国产午夜福利久久久久久| 一区福利在线观看| 精品免费久久久久久久清纯| 1024手机看黄色片| 午夜久久久久精精品| 亚洲av五月六月丁香网| 男人舔女人的私密视频| 日韩欧美一区视频在线观看| 久久中文看片网| 99国产综合亚洲精品| 18禁裸乳无遮挡免费网站照片 | 欧洲精品卡2卡3卡4卡5卡区| 天堂影院成人在线观看| 男男h啪啪无遮挡| 在线观看免费视频日本深夜| 久久精品人妻少妇| 国产免费av片在线观看野外av| 国产一区二区在线av高清观看| 国产成人精品无人区| 中文字幕人妻熟女乱码| 欧美色欧美亚洲另类二区| 欧美丝袜亚洲另类 | 黄片播放在线免费| 在线十欧美十亚洲十日本专区| 久久久久久人人人人人| 国产精品香港三级国产av潘金莲| 淫秽高清视频在线观看| a在线观看视频网站| 成人亚洲精品av一区二区| 级片在线观看| 亚洲午夜精品一区,二区,三区| 好男人电影高清在线观看| 国产av一区二区精品久久| 国内毛片毛片毛片毛片毛片| 免费在线观看黄色视频的| 国产又黄又爽又无遮挡在线| 久久精品亚洲精品国产色婷小说| 大型黄色视频在线免费观看| 亚洲熟妇中文字幕五十中出| 视频在线观看一区二区三区| 人妻久久中文字幕网| 日日摸夜夜添夜夜添小说| 一级a爱视频在线免费观看| 搡老岳熟女国产| 成人免费观看视频高清| 高清毛片免费观看视频网站| 婷婷丁香在线五月| 中文字幕av电影在线播放| 国产亚洲精品久久久久久毛片| 巨乳人妻的诱惑在线观看| a级毛片a级免费在线| 高清毛片免费观看视频网站| 国产v大片淫在线免费观看| 好看av亚洲va欧美ⅴa在| 久久久久久人人人人人| 99热只有精品国产| 中亚洲国语对白在线视频| 国产精品亚洲av一区麻豆| 久久国产亚洲av麻豆专区| 夜夜看夜夜爽夜夜摸| 欧美午夜高清在线| 啪啪无遮挡十八禁网站| 欧美黄色淫秽网站| 国产亚洲精品综合一区在线观看 | 手机成人av网站| 亚洲全国av大片| 日韩欧美三级三区| 久久性视频一级片| 国产亚洲欧美精品永久| 日韩国内少妇激情av| 久久欧美精品欧美久久欧美| 国产精品九九99| 欧美日韩福利视频一区二区| 一级毛片女人18水好多| 日本成人三级电影网站| 国产精品,欧美在线| 久久精品91无色码中文字幕| xxxwww97欧美| 成人18禁在线播放| 日本成人三级电影网站| 日韩欧美一区视频在线观看| 亚洲无线在线观看| 久久中文字幕人妻熟女| 可以在线观看的亚洲视频| 国产极品粉嫩免费观看在线| 久久热在线av| 国产亚洲av高清不卡| 日韩欧美三级三区| 给我免费播放毛片高清在线观看| 国产av一区在线观看免费| 亚洲专区国产一区二区| 亚洲片人在线观看| 亚洲av熟女| 两个人看的免费小视频| 欧美大码av| 欧美日韩精品网址| 国产又爽黄色视频| 91av网站免费观看| 成人国语在线视频| 久久久久免费精品人妻一区二区 | 欧美性猛交黑人性爽| 三级毛片av免费| 免费在线观看日本一区| 欧美亚洲日本最大视频资源| 岛国视频午夜一区免费看| 一本久久中文字幕| 午夜久久久久精精品| 999久久久精品免费观看国产| 久久99热这里只有精品18| 男女视频在线观看网站免费 | 精品久久久久久成人av| 亚洲一区中文字幕在线| 一区福利在线观看| 国产精品久久视频播放| 正在播放国产对白刺激| 精品福利观看| 国产精品久久久人人做人人爽| 人成视频在线观看免费观看| 亚洲国产中文字幕在线视频| 国产精品一区二区精品视频观看| 丰满的人妻完整版| 国产亚洲av嫩草精品影院| 50天的宝宝边吃奶边哭怎么回事| 12—13女人毛片做爰片一| 19禁男女啪啪无遮挡网站| 久99久视频精品免费| 免费观看精品视频网站| 悠悠久久av| 国产一区二区在线av高清观看| 免费在线观看亚洲国产| 亚洲一区二区三区不卡视频| 99re在线观看精品视频| 亚洲国产欧美一区二区综合| 高清在线国产一区| 一边摸一边做爽爽视频免费| 男女床上黄色一级片免费看| 久久香蕉激情| 国产亚洲精品av在线| 亚洲第一av免费看| 欧美黑人巨大hd| 最新美女视频免费是黄的| 999精品在线视频| 天堂√8在线中文| 亚洲人成伊人成综合网2020| 女人爽到高潮嗷嗷叫在线视频| 国产精品久久久av美女十八| 大型av网站在线播放| 日本在线视频免费播放| 亚洲电影在线观看av| 变态另类丝袜制服| 久久这里只有精品19| 日本熟妇午夜| 日韩欧美一区视频在线观看| 麻豆av在线久日| 国产精品野战在线观看| 成人特级黄色片久久久久久久| 99精品欧美一区二区三区四区| 国产熟女午夜一区二区三区| 看黄色毛片网站| 一级a爱片免费观看的视频| 国产精品久久视频播放| 精品一区二区三区av网在线观看| 欧美+亚洲+日韩+国产| 久久人妻福利社区极品人妻图片| 亚洲男人的天堂狠狠| 在线观看www视频免费| 国产三级黄色录像| 亚洲免费av在线视频| 曰老女人黄片| 久久天堂一区二区三区四区| 真人一进一出gif抽搐免费| 亚洲午夜理论影院| 国产高清激情床上av| 黄片大片在线免费观看| 一级毛片高清免费大全| 18禁黄网站禁片免费观看直播| 这个男人来自地球电影免费观看| 一级毛片精品| 日韩成人在线观看一区二区三区| 老鸭窝网址在线观看| www.精华液| 欧美三级亚洲精品| 亚洲中文av在线| 久久精品国产99精品国产亚洲性色| 色婷婷久久久亚洲欧美| 国产精品久久久人人做人人爽| 嫁个100分男人电影在线观看| 看黄色毛片网站| 国产高清激情床上av| 午夜精品久久久久久毛片777| 国产亚洲精品av在线| 久久国产精品男人的天堂亚洲| 亚洲精华国产精华精| 在线av久久热| 在线十欧美十亚洲十日本专区| 欧美激情 高清一区二区三区| 午夜精品久久久久久毛片777| 欧美性长视频在线观看| 美女高潮喷水抽搐中文字幕| 日本一区二区免费在线视频| 又黄又粗又硬又大视频| 久久99热这里只有精品18| 欧美色视频一区免费| 国产熟女xx| 午夜福利一区二区在线看| 18禁黄网站禁片午夜丰满| 亚洲一区中文字幕在线| 国产免费av片在线观看野外av| 亚洲一卡2卡3卡4卡5卡精品中文| www日本在线高清视频| 亚洲激情在线av| 可以在线观看的亚洲视频| 搞女人的毛片| 天堂动漫精品| 亚洲一区高清亚洲精品| 欧美三级亚洲精品| 制服丝袜大香蕉在线| 欧美一级a爱片免费观看看 | 美女大奶头视频| 国产亚洲av嫩草精品影院| 久久精品国产综合久久久| 国产一卡二卡三卡精品| 亚洲成a人片在线一区二区| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 国产国语露脸激情在线看| 亚洲一区中文字幕在线| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 亚洲中文字幕一区二区三区有码在线看 | 免费看十八禁软件| 欧美绝顶高潮抽搐喷水| 日本五十路高清| 这个男人来自地球电影免费观看| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 好男人在线观看高清免费视频 | 国内毛片毛片毛片毛片毛片| 在线播放国产精品三级| av天堂在线播放| 男人的好看免费观看在线视频 | 美国免费a级毛片| 久久人人精品亚洲av| 91麻豆精品激情在线观看国产| 国产精品美女特级片免费视频播放器 | 国产精品电影一区二区三区| 亚洲国产精品sss在线观看| 香蕉国产在线看| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看www视频免费| 亚洲激情在线av| 夜夜爽天天搞| 欧美性猛交╳xxx乱大交人| 黄片小视频在线播放| 97碰自拍视频| 手机成人av网站| 超碰成人久久| 天天一区二区日本电影三级| 日本免费一区二区三区高清不卡| 黄频高清免费视频| 在线播放国产精品三级| 2021天堂中文幕一二区在线观 | 国产精品亚洲一级av第二区| 美女高潮到喷水免费观看| 成人18禁在线播放| 婷婷精品国产亚洲av在线| 搡老岳熟女国产| 亚洲第一青青草原| 日本撒尿小便嘘嘘汇集6| 亚洲成人免费电影在线观看| 欧美激情高清一区二区三区| 午夜免费鲁丝| 一区福利在线观看| bbb黄色大片| 熟女电影av网| 嫩草影院精品99| 50天的宝宝边吃奶边哭怎么回事| 男人舔女人下体高潮全视频| 免费在线观看成人毛片| 中文亚洲av片在线观看爽| 亚洲av第一区精品v没综合| 国产1区2区3区精品| 午夜免费观看网址| 在线av久久热| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费 | 香蕉久久夜色| 变态另类丝袜制服| 高清在线国产一区| 18禁黄网站禁片免费观看直播| 一进一出抽搐动态| 侵犯人妻中文字幕一二三四区| 叶爱在线成人免费视频播放| 两个人看的免费小视频| 97人妻精品一区二区三区麻豆 | 国产aⅴ精品一区二区三区波| 97碰自拍视频| 久久香蕉激情| 成人特级黄色片久久久久久久| cao死你这个sao货| 久久精品亚洲精品国产色婷小说| 变态另类丝袜制服| 成人18禁高潮啪啪吃奶动态图| 亚洲国产看品久久| 中文字幕精品亚洲无线码一区 | 亚洲成人国产一区在线观看| 欧美一级毛片孕妇| 国产高清视频在线播放一区| 两性夫妻黄色片| 日韩中文字幕欧美一区二区| 国产精品 国内视频| 亚洲午夜理论影院| 亚洲中文av在线| 午夜免费鲁丝| 欧美午夜高清在线| 成人亚洲精品av一区二区| 国产三级在线视频| 午夜激情福利司机影院| 欧美三级亚洲精品| 18美女黄网站色大片免费观看| 免费在线观看视频国产中文字幕亚洲| or卡值多少钱| 日日爽夜夜爽网站| 国产精品久久久久久精品电影 | 此物有八面人人有两片| 操出白浆在线播放| 亚洲国产高清在线一区二区三 | 99热这里只有精品一区 | 国产精华一区二区三区| 成年版毛片免费区| 91av网站免费观看| 99久久99久久久精品蜜桃| 国产三级黄色录像| 中文字幕久久专区| 免费高清视频大片| 国产精品一区二区免费欧美| 国产av一区二区精品久久| 婷婷丁香在线五月| 国产av在哪里看| 国产真实乱freesex| 精品一区二区三区视频在线观看免费| 亚洲一码二码三码区别大吗| 好看av亚洲va欧美ⅴa在| 亚洲精品国产精品久久久不卡| 久久国产精品人妻蜜桃| 欧美黑人精品巨大| 国产日本99.免费观看| 亚洲全国av大片| av福利片在线| 99久久久亚洲精品蜜臀av| 国产亚洲av嫩草精品影院| 国产亚洲av高清不卡| 久久天躁狠狠躁夜夜2o2o| 国产黄片美女视频| 一个人观看的视频www高清免费观看 | 国产成+人综合+亚洲专区| 19禁男女啪啪无遮挡网站| 精品一区二区三区av网在线观看| 免费电影在线观看免费观看| 亚洲天堂国产精品一区在线| 少妇被粗大的猛进出69影院| 欧美国产日韩亚洲一区| 日韩 欧美 亚洲 中文字幕| 欧美中文日本在线观看视频| 欧美日本亚洲视频在线播放| 日韩一卡2卡3卡4卡2021年| 亚洲成人久久性| 欧美日韩福利视频一区二区| 国产亚洲精品久久久久久毛片| 1024视频免费在线观看| 国语自产精品视频在线第100页| 欧美成人性av电影在线观看| 日韩国内少妇激情av| 亚洲av熟女| 亚洲自偷自拍图片 自拍| 免费观看人在逋| 超碰成人久久| 亚洲精品中文字幕一二三四区| 一本大道久久a久久精品| 少妇裸体淫交视频免费看高清 | 十分钟在线观看高清视频www| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 一区二区三区激情视频| 午夜免费激情av| 久久香蕉精品热| 香蕉国产在线看| 亚洲中文字幕一区二区三区有码在线看 | 日本一本二区三区精品| 国产成年人精品一区二区| 怎么达到女性高潮| 中文字幕人妻丝袜一区二区| 精品一区二区三区av网在线观看| 国产av不卡久久| 亚洲av中文字字幕乱码综合 | 免费一级毛片在线播放高清视频| 欧美日韩中文字幕国产精品一区二区三区| 久久 成人 亚洲| 90打野战视频偷拍视频| 精品国产国语对白av| 欧美日韩亚洲综合一区二区三区_| 日韩国内少妇激情av| 男女之事视频高清在线观看| 亚洲午夜精品一区,二区,三区| 午夜福利在线观看吧| 日韩中文字幕欧美一区二区| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 好男人在线观看高清免费视频 | 国产亚洲欧美98| 波多野结衣高清无吗| 国产区一区二久久| 日韩 欧美 亚洲 中文字幕| 国产精品永久免费网站| 午夜免费观看网址| 欧美大码av| 天堂动漫精品| 中文字幕av电影在线播放| 露出奶头的视频| 亚洲一区二区三区不卡视频| 99国产精品一区二区蜜桃av| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 国产99白浆流出| 人人妻人人澡人人看| 99国产极品粉嫩在线观看| 免费看日本二区| 久久精品国产亚洲av香蕉五月| 精品第一国产精品| 女生性感内裤真人,穿戴方法视频| 亚洲av片天天在线观看| 精品国产乱码久久久久久男人| 亚洲最大成人中文| 视频在线观看一区二区三区| 国产成人欧美| 97超级碰碰碰精品色视频在线观看| 亚洲国产看品久久| 两个人看的免费小视频| 久久久久久国产a免费观看| 亚洲国产日韩欧美精品在线观看 | 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 亚洲免费av在线视频| 男女做爰动态图高潮gif福利片|