• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*

    2020-11-14 09:40:48YanyanCUI崔艷艷ChaojunWANG王朝君
    關(guān)鍵詞:劉浩王朝

    Yanyan CUI (崔艷艷)? Chaojun WANG (王朝君)

    College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China

    E-mail : cui9907081@163.com; wang9907081@163.com

    Hao LIU (劉浩)

    Institute of Contemporary Mathematics, Henan University, Kaifeng 475001, China

    E-mail : haoliu@henu.edu.cn

    was introduced in [1], where z =(z1,z0)∈ Bn,z1∈ D,z0=(z2,···,zn)∈ Cn?1,f(z1)∈ H(D)and the branch of the square root is chosen such thatThe operator gives a way of extending a univalent analytic function on the unit disc D in C to a biholomorphic mapping on Bn? Cn. Roper and Suffridge [1]proved that Φn(K) ? K(Bn). Graham and Kohr [2]proved that the Roper-Suffridge operator preserves the properties of Bloch mappings on Bnand Φn(S?)? S?(Bn), and generalized the Roper-Suffridge operator to be

    The above conclusions illustrate that the Roper-Suffridge operator and its extensions are the links between starlike (respectively convex) functions on D and starlike (respectively convex)mappings on Bn. Starlike mappings and convex mappings are important research objects in the geometric function theory of several complex variables. It is easy to find the concrete starlike or convex functions on D, while it is difficult in Cn. By using the Roper-Suffridge operator and its extensions we can construct lots of concrete starlike or convex mappings in Cnfrom the corresponding functions on D. Therefore the Roper-Suffridge operator is useful and important for studying biholomorphic mappings with particular geometric properties in Cn.

    Pfaltzgraff and Suffridge [3]introduced the operator

    on the Euclidean unit ball of Cn, where λj≥ 0 and

    Gong,Liu[4]and Liu,and Liu[5]generalized the Roper-Suffridge operator on more general Reinhardt domains and researched the behaviours of the extension operators. Liu [6]extended the operator (1.1) on bounded starlike circular domains to be

    and proved that the operator(1.2)preserves(almost)starlikeness of order α on bounded starlike circular domains.

    Duan [7]obtained that the generalized operator

    preserves starlikeness on the unit ball Bnin Cn, where Λ = (λij) and Λ is invertible, λij≥ 0,In recent years, there have appeared many results about generalized Roper-Suffridge operators (see [8–11]).

    The above operators all construct locally biholomorphic mappings on different domains in Cnfrom one locally biholomorphic function or n functions f1,··· ,fnin C, while the operator

    introduced by Pfaltzgraff and Suffridge [12], constructs F ∈H(Bn+1) from a locally biholomorphic function f ∈ H(Bn), where n ≥ 1, z′= (z1,··· ,zn) ∈ CnandLetting f(z′)=(f1(z1),··· ,fn(zn)), the operator(1.4)constructs F ∈ H(Bn+1)from n locally biholomorphic functions fi∈ H(D)(i = 1,··· ,n). This stimulates us to extend the Roper-Suffridge operator to be

    where z = (z1,··· ,zn+1) ∈ Bn+1, n ≥ 1, fj(zj) (j = 1,··· ,n) is a normalized locally biholomorphic function on D withfor zj∈ D{0}. For n=1 the operator(1.5)reduces to Φ2,β,as introduced by Graham and Kohr in [2]. The operator (1.5) is not the special form of (1.1) and (1.3); we will shortly investigate the behaviours of (1.5) on Bn+1.

    On the bounded complete Reinhardt domain ? ? Cn+1, we introduce the following extension operator:

    where rj=sup{|zj|:(z1,··· ,zj,··· ,zn+1)′∈ ?}is a normalized locally biholomorphic function on D withfor zj∈D{0}. The operator (1.6) is not the special form of (1.2). Applying (1.5) and (1.6),we can construct biholomorphic mappings in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    In this article, we investigate the properties of the generalized operators(1.5)and(1.6). In section 3, we discuss the fact that the mapping defined by (1.5) has parametric representation on Bn+1if fi(i = 1,··· ,n) does on D, and we research the geometric invariance of some subclasses of spirallike mappings preserved by (1.5) on Bn+1. In section 4, from the geometric characteristics and the parametric representation of subclasses of spirallike mappings,we obtain that (1.6) preserves the geometric properties of several subclasses of spirallike mappings on bounded complete Reinhardt domains in Cn+1.

    2 Definitions and Lemmas

    In what follows, let D denote the unit disk in C, Bndenote the unit ball in Cn, and H(?)denote the holomorphic mappings on ?. Let DF(z) denote the Fréchet derivative of F at z.

    To obtain the main results, we need the following definitions and lemmas:

    Definition 2.1([13]) A mapping f : Bn× [0,∞) → Cnis called a Loewner chain if it satisfies the following conditions:

    (1) f(·,t) is biholomorphic on Bn, f(0,t)=0, Df(0,t)=etIn(t ≥ 0);

    (2) f(z,s)? f(z,t) whenever ? 0 ≤ s ≤ t< ∞ and z ∈ Bn; that is, there exists a Schwarz mapping v =v(z,s,t) such that

    Definition 2.2([13]) Let f(z) be a normalized biholomorphic mapping on Bn. We say that f(z) has parametric representation on Bnif there is a Loewner chain f(z,t) such that{e?tf(·,t)}t≥0is a normal family on Bnand f(z)=f(z,0)(z ∈ Bn).

    Definition 2.3([14]) Let F(z) be a normalized locally biholomorphic mapping on Bn,and α ∈ [0,1), β ∈c ∈ (0,1). Then F(z) is called a strong and almost spirallikemapping of type β and of order α on Bnprovided that

    If we define strong and almost spirallike mappings of type β and of order α on bounded complete Reinhardt domains, the corresponding condition is

    Setting α = 0, β = 0 and α = β = 0, Definition 2.3 reduces to the definition of strong spirallike mappings of type β, strong and almost starlike mappings of order α, and strong starlike mappings, respectively.

    Definition 2.4([15]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then we say thatprovided that

    where ?1 ≤ A

    Setting A = ?1 = ?B ? 2α, A = ?B = ?α, B → 1?in Definition 2.4, we obtain the corresponding definitions of spirallike mappings of type β and order α [16], strongly spirallike mappings of type β and order α [17], and almost spirallike mappings of type β and order α [18]on ?, respectively.

    Definition 2.5([19]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then F(z)is called an almost starlike mapping of complex order λ on ? provided that

    where λ ∈ C,?λ ≤ 0.

    Setting∈ [0,1) in Definition 2.5, we obtain the definition of almost starlikemappings of order α on ?.

    Definition 2.6([20]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ? and let ρ ∈ [0,1), β ∈Then F(z) is called a parabolic and spirallike mapping of type β and of order ρ on B provided that

    Suffridge [21]introduced the definition of spirallike mappings with respect to a normal linear operator A whose eigenvalues have a positive real part in complex Banach spaces. Now we extend the definition on bounded complete Reinhardt domains.

    Definition 2.7Let A ∈L(Cn+1,Cn+1) be a continuous complex-linear operator with

    Let ? ? Cn+1be a bounded complete Reinhardt domain and let f :? → Cn+1be a normalized locally biholomorphic mapping. Then f is spirallike relative to A if

    Lemma 2.8([22]) Let f(z) be a normalized locally biholomorphic mapping on B withand a = tan β. Then f(z) is an almost spirallike mapping of order α and of type β on B if and only if g(z,t)=is a Loewner chain.

    Lemma 2.9([13]) Let f(z,t) be a Loewner chain. Then

    Lemma 2.10([23]) Let ? ? Cn+1be a bounded complete Reinhardt domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. Then we have

    Lemma 2.11([24]) Let ? ? Cnbe a bounded complete Reinhardt domain and let h ∈M, where

    Then the initial value problem

    has a unique solution v(t) = v(z,t) (t ≥ 0). Furthermore, v(z,t)→ 0 (t → +∞) and v(z,t) is a Schwarz mapping on ? for fixed t.

    Lemma 2.12([25]) Let ? ? Cnbe a bounded starlike circular domain and let h ∈M, Jh(0) = A, v(z,t) be a solution of the initial value problem (2.1). Then for ?z ∈ ?,must be existing and converge to a spirallike mapping relative to A on ?. If,instead, f(z) is a spirallike mapping relative to A on ? and Jf(z)h(z)= Af(z), f(z) must be expressed as

    3 Extension Operators on the Unit Ball Bn+1

    In this section we will investigate the properties of mappings constructed by (1.5) on the unit ball Bn+1in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    Theorem 3.1Suppose that the normalized biholomorphic function fk(zk) can be embedded in Loewner chain {gk(zk,t)}t≥0(k = 1,··· ,n) on D. Then the mapping F(z) defined by (1.5) can be embedded in a Loewner chain on Bn+1.

    ProofAs fk(zk)is the normalized biholomorphic function on D,then F(z)is normalized biholomorphic on Bn+1obviously. Because fk(zk) can be embedded in the Loewner chain{gk(zk,t)}t≥0, there exists a Schwarz mapping vk=vk(zk,s,t) such that

    (i) As {gk(zk,t)}t≥0is a Loewner chain, gk(·,t) is biholomorphic on D and gk(0,t) = 0,Therefore F(z,t) is biholomorphic on Bn+1. By a simple calculation we obtain that F(0,t)=0,DF(0,t)=etIn+1where In+1is the identity operator in Cn+1.

    (ii) Let

    Thus W(z,s,t) is a Schwarz mapping on Bn+1.

    (iii) In view of (3.1) and (3.2), we obtain

    From(i)–(iii)and Definition 2.1 we obtain that F(z,t)is a Loewner chain. As fk(zk)can be embedded in the Loewner chain{gk(zk,t)}t≥0,gk(zk,0)=fk(zk),and therefore F(z,0)=F(z).Hence F(z) can be embedded in the Loewner chain F(z,t) on Bn+1.

    Theorem 3.2Suppose that fk(zk)(k =1,··· ,n) is an almost spirallike function of type β and of order α on D with α ∈ [0,1), β ∈Then F(z) defined by (1.5) is an almost spirallike mapping of type β and of order α on Bn+1.

    ProofFrom (1.5) we obtain

    As fk(zk)is an almost spirallike function of type β and of order α on D,gk(zk,t)is the Loewner chain in which fk(zk) is embedded. By (3.3) and (3.4), we obtain

    where F(z,t)is the mapping defined by(3.2)in Theorem 3.1,and thereforeis a Loewner chain. By Lemma 2.8 we obtain that F(z)is an almost spirallike mapping of type β and of order α on Bn+1.

    Theorem 3.3If fk(zk) (k = 1,··· ,n) has parametric representation on D, then F(z)defined by (1.5) has parametric representation on Bn+1.

    ProofAs fk(zk) has parametric representation on D, there exists a Loewner chain gk(zk,t) such that gk(zk,0) = fk(zk), and {e?tgk(·,t)}t≥0is a normal family. By Lemma 2.9 we obtain

    Therefore, for |zk|

    By Theorem 3.1 we obtain that F(z,t)defined by(3.1)is a Loewner chain,that F(z,0)=F(z)and

    Therefore {e?tF(·,t)}t≥0is locally uniformly bounded on Bn+1, and thus is a normal family.By Definition 2.2 we obtain that F(z) has parametric representation on Bn+1.

    Theorem 3.4Suppose that fk(zk) (k =1,··· ,n) is a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) and β ∈Then F(z) defined by(1.5) is a strong and almost spirallike mapping of type β and of order α on Bn+1.

    ProofBy (1.5) we obtain

    As fj(zj) (j =1,··· ,n) is normalized locally biholomorphic on D withandis normalized locally biholomorphic on Bn+1and

    By Definition 2.3, we need only to prove that

    Then |qk(zk)|<1. In view of c ∈(0,1) and (3.5), we obtain

    Therefore F(z) is a strong and almost spirallike mapping of type β and of order α on Bn+1by Definition 2.3.

    Similarly to Theorem 3.4 we can obtain the following conclusion:

    Theorem 3.5Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLetting F(z)be the mapping defined by(1.5),we get that F(z)∈

    Remark 3.6Setting β = 0 (respectively α = 0) in Theorem 3.4, we obtain the corresponding results for strong and almost starlike mappings of order α (and, respectively,the strongly spirallike mappings of type β). Setting A = ?1 = ?B ? 2α (respectively,A = ?B = ?α) in Theorem 3.5, we obtain the corresponding results for spirallike mappings of type β and of order α (and, respectively, the strongly spirallike mappings of type β and of order α).

    Theorem 3.7Let fk(zk) (k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.5) is an almost starlike mapping of complex order λ on Bn+1.

    ProofBy Definition 2.5, we need only to prove that

    As fk(zk) is an almost starlike function of complex order λ on D, by Definition 2.5, we have that

    Then ?pk(zk)≥ 0. By (3.5) we obtain that

    In addition, ?pk(zk) ≥0 implies thatTherefore F(w,z) is an almost starlike mapping of complex order λ on Bn+1.

    Remark 3.8Settingin Theorem 3.7, we obtain the corresponding results for almost starlike mappings of order α.

    4 Extension Operators on Bounded Complete Reinhardt Domains

    Let ? ? Cn+1be a bounded starlike circular domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. In this section we will study the properties of(1.6), preserving several subclasses of spirallike mappings on ?.

    Theorem 4.1Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLet F(z) be the mapping defined by (1.6). Then

    ProofBy Definition 2.4, we need only to prove that

    Then |qk(ξk)|<1. By (4.2) we obtain that

    which follows (4.1). By Definition 2.4 we obtain that

    Similarly, we can obtain that F(z) defined by (1.6) preserves the strongth and almost spirallikeness of type β and of order α on ?.

    Theorem 4.2Let(k = 1,··· ,n) be a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) andThen F(z) defined by (1.6) is a strong and almost spirallike mapping of type β and of order α on ?.

    Remark 4.3Setting A= ?1= ?B ?2α (respectively, A= ?B = ?α) in Theorem 4.1,we obtain the corresponding results for spirallike mappings of type β and of order α (respectively,the strongly spirallike mappings of type β and of order α). Setting β =0 (respectively, α =0)in Theorem 4.2, we obtain the corresponding results for strong and almost starlike mappings of order α (and respectively, the strongly spirallike mappings of type β).

    Theorem 4.4Let(k =1,··· ,n) be a parabolic and spirallike function of type β and of order ρ on D with ρ ∈ [0,1), β ∈and ρ ≤ cos β. Then F(z) defined by (1.6) is a parabolic and spirallike mapping of type β and of order ρ on ?.

    ProofBy Definition 2.6, we need only to prove that

    As fk(ξk) is a parabolic and spirallike function of type β and of order ρ on D, we have that

    By (4.2) we obtain that

    In view of ρ ≤ cos β, by (4.4) we obtain that

    which follows(4.3). Therefore F(z)is a parabolic and spirallike mapping of type β and of order ρ on ?.

    Remark 4.5Setting ρ = 0 (respectively, β = 0) in Theorem 4.4, we obtain the corresponding results for parabolic and spirallike mappings of type β (respectively, the parabolic and starlike mappings of order ρ).

    Similarly to Theorem 4.4, we can obtain the following conclusion:

    Theorem 4.6Let(k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.6) is an almost starlike mapping of complex order λ on ?.

    For rj=1 (j =1,··· ,n), (1.6)reduces to(1.5). Therefore,from the above conclusions,we can obtain that (1.5) preserves the properties of the following biholomorphic mappings on the Reinhardt domain:

    Corollary 4.7Let fk(zk)be a strong and almost spirallike function of type β and of order α on D (respectively,a parabolic and spirallike function of type β and of order ρ,and an almost starlike function of complex order λ). Then F(z)defined by(1.5)is a strong and almost spirallike mapping of type β and of order α on ?n+1,p(respectively,a parabolic and spirallike mapping of type β and of order ρ, and an almost starlike mapping of complex order λ).

    Remark 4.8For pn+1= 2, ?n+1,preduces to Bn+1. Therefore, by corollary 4.7 we obtain the corresponding results for (1.5) on Bn+1.

    In what follows we will research the properties of the operator(1.6)on the bounded complete Reinhardt domain ? from the parametric representation of spirallike mappings.

    Theorem 4.9Let(k =1,··· ,n)be a spirallike function relative to A on D with A being a continuous complex-linear operator. Then F(z)defined by(1.6)is a spirallike mapping relative to A on ?, where

    Proof(i) Asis a spirallike function relative to A on D, there existssuch that

    Let F(z)=(F1(z),··· ,Fn+1(z)). For z ∈ ? we have that

    By (4.7) and (4.9), we obtain that?H(u(z,t)), where

    Furthermore,

    that is,u(z,0)=z. Therefore u(z,t)is the solution of the initial value problem(2.1)in Lemma 2.11.

    (iii) In view of hj∈M and (4.8), we have that

    Applying Lemma 2.10, we obtain that

    so H ∈M.

    By (4.5) we have that

    By simple calculation, we obtain that

    For H(u(z,t))=(u1q1(u),··· ,un+1qn+1(u))′, let Hj(u)=ujqj(u) (j =1,··· ,n+1). By (4.8)we get thatfor j =1,··· ,n, therefore

    By (4.9) we get that

    By (4.11)–(4.13) we obtain that JH(0)=A.

    From (i)–(iii) and lemma 2.12 we obtain that F(z) is a spirallike mapping relative to A on?.

    Corollary 4.10Let(k = 1,··· ,n) be a spirallike function relative to A on D.Then

    is a spirallike mapping relative to A on ?, where

    Remark 4.11Setting A=e?iβIinto Theorem 4.9 and Corollary 4.10, we obtain the corresponding results for spirallike mappings of type β.

    猜你喜歡
    劉浩王朝
    正確看待輸和贏
    多重映射芽的Gq,k一決定性
    進(jìn)球了
    Negative compressibility property in hinging open-cell Kelvin structure*
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    劉浩藝術(shù)作品欣賞
    消除“鈍”感肌就是這樣滑!
    Coco薇(2015年3期)2015-12-24 03:06:17
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    国产成人欧美在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 亚洲不卡免费看| 9191精品国产免费久久| 悠悠久久av| 丰满人妻一区二区三区视频av| 日本a在线网址| x7x7x7水蜜桃| 99久久99久久久精品蜜桃| 1000部很黄的大片| 久久人人爽人人爽人人片va | 国产成+人综合+亚洲专区| 日韩免费av在线播放| 亚洲美女视频黄频| а√天堂www在线а√下载| 精品无人区乱码1区二区| 可以在线观看毛片的网站| 一区二区三区激情视频| 美女高潮喷水抽搐中文字幕| 美女cb高潮喷水在线观看| 如何舔出高潮| 99国产精品一区二区三区| 人人妻人人澡欧美一区二区| 一级毛片久久久久久久久女| 欧美3d第一页| 欧美激情久久久久久爽电影| 一a级毛片在线观看| 观看美女的网站| 免费在线观看成人毛片| 国产精品99久久久久久久久| 欧美在线黄色| 亚洲五月天丁香| 亚洲久久久久久中文字幕| 757午夜福利合集在线观看| 日韩成人在线观看一区二区三区| 日本a在线网址| 性欧美人与动物交配| 欧美日本视频| 成人三级黄色视频| 久久亚洲真实| 十八禁国产超污无遮挡网站| 1000部很黄的大片| 听说在线观看完整版免费高清| 能在线免费观看的黄片| 国产亚洲精品综合一区在线观看| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 女人被狂操c到高潮| 欧美日本视频| 国产不卡一卡二| 91在线精品国自产拍蜜月| 性欧美人与动物交配| 内射极品少妇av片p| 亚洲美女黄片视频| 亚洲七黄色美女视频| 国产单亲对白刺激| 精品福利观看| 美女黄网站色视频| 亚洲av免费高清在线观看| 99热这里只有是精品50| 夜夜看夜夜爽夜夜摸| 国产私拍福利视频在线观看| 国产淫片久久久久久久久 | 久久亚洲精品不卡| 99国产精品一区二区蜜桃av| www.熟女人妻精品国产| 不卡一级毛片| 九九热线精品视视频播放| 国产麻豆成人av免费视频| 国产精品野战在线观看| 91久久精品电影网| 舔av片在线| 在线看三级毛片| 小蜜桃在线观看免费完整版高清| h日本视频在线播放| 成人国产一区最新在线观看| 女人十人毛片免费观看3o分钟| 欧美成狂野欧美在线观看| 91麻豆av在线| 国产色婷婷99| 日韩精品中文字幕看吧| av在线观看视频网站免费| 88av欧美| 国产黄色小视频在线观看| 亚洲欧美激情综合另类| 精品久久久久久久人妻蜜臀av| 动漫黄色视频在线观看| 精品一区二区免费观看| 一个人免费在线观看电影| 亚洲国产色片| 国产成人av教育| 日韩有码中文字幕| 夜夜夜夜夜久久久久| 欧美xxxx性猛交bbbb| 精品午夜福利视频在线观看一区| 亚洲av成人精品一区久久| 中文字幕av在线有码专区| 国产亚洲精品久久久久久毛片| 欧美+亚洲+日韩+国产| 色噜噜av男人的天堂激情| 精品午夜福利在线看| 18禁在线播放成人免费| 天天躁日日操中文字幕| 欧美色欧美亚洲另类二区| 观看免费一级毛片| 日韩人妻高清精品专区| 久久久久久久精品吃奶| 久久久久久久亚洲中文字幕 | 免费在线观看亚洲国产| 天天一区二区日本电影三级| 他把我摸到了高潮在线观看| bbb黄色大片| 国产亚洲精品av在线| 亚洲国产精品999在线| 日本a在线网址| 欧美国产日韩亚洲一区| 成人av一区二区三区在线看| 我要搜黄色片| 十八禁国产超污无遮挡网站| 亚洲成人精品中文字幕电影| 在线观看午夜福利视频| 精品久久久久久久人妻蜜臀av| 日本与韩国留学比较| 亚洲七黄色美女视频| 国产av一区在线观看免费| 欧美日韩黄片免| 精品久久久久久久久av| 成熟少妇高潮喷水视频| 精品一区二区三区人妻视频| 制服丝袜大香蕉在线| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 国产黄a三级三级三级人| 亚洲人成伊人成综合网2020| 免费av不卡在线播放| www.999成人在线观看| 热99re8久久精品国产| 国产精品亚洲美女久久久| 五月伊人婷婷丁香| 一级作爱视频免费观看| 日韩精品中文字幕看吧| 国产精品三级大全| 免费看日本二区| 网址你懂的国产日韩在线| 国产成年人精品一区二区| 午夜激情福利司机影院| av福利片在线观看| 90打野战视频偷拍视频| 国产精品久久久久久久久免 | 男女之事视频高清在线观看| 欧美高清性xxxxhd video| 国产一级毛片七仙女欲春2| 露出奶头的视频| 如何舔出高潮| 日本免费一区二区三区高清不卡| 一个人观看的视频www高清免费观看| 最近最新中文字幕大全电影3| 91久久精品电影网| 亚洲七黄色美女视频| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 在线观看午夜福利视频| 真人做人爱边吃奶动态| 精品一区二区免费观看| 麻豆av噜噜一区二区三区| 国产黄片美女视频| 国内揄拍国产精品人妻在线| 我要搜黄色片| 一级作爱视频免费观看| 亚洲欧美日韩高清在线视频| 亚洲成人久久性| 精品久久久久久久久av| 亚洲精华国产精华精| 国产成人欧美在线观看| 一个人看视频在线观看www免费| 亚洲精品亚洲一区二区| 精品久久久久久久久av| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 日韩欧美国产一区二区入口| 国产精品爽爽va在线观看网站| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 久久精品久久久久久噜噜老黄 | 最新中文字幕久久久久| 亚洲aⅴ乱码一区二区在线播放| 国内精品久久久久久久电影| 国产在线男女| 国内精品美女久久久久久| 久久久成人免费电影| 日本 欧美在线| 国产高清三级在线| 一进一出抽搐gif免费好疼| 国产精品爽爽va在线观看网站| 国产精品伦人一区二区| 亚洲av五月六月丁香网| 深夜a级毛片| 欧美在线一区亚洲| 国产精品永久免费网站| 精品福利观看| 国产欧美日韩一区二区三| 18美女黄网站色大片免费观看| 亚洲不卡免费看| 久久久久国产精品人妻aⅴ院| 精品国产三级普通话版| 免费观看的影片在线观看| 久久国产精品人妻蜜桃| 人妻制服诱惑在线中文字幕| 久久精品人妻少妇| 3wmmmm亚洲av在线观看| 亚洲性夜色夜夜综合| 少妇人妻精品综合一区二区 | 毛片女人毛片| 精品久久久久久成人av| 国产精品不卡视频一区二区 | 俺也久久电影网| 老司机午夜福利在线观看视频| 亚洲中文日韩欧美视频| 成人特级黄色片久久久久久久| 久久精品久久久久久噜噜老黄 | 两个人的视频大全免费| 久久精品国产清高在天天线| av视频在线观看入口| 少妇人妻精品综合一区二区 | 午夜老司机福利剧场| 美女cb高潮喷水在线观看| 真实男女啪啪啪动态图| 熟女电影av网| 日韩欧美一区二区三区在线观看| 国产精品久久视频播放| 真实男女啪啪啪动态图| 人妻夜夜爽99麻豆av| av在线观看视频网站免费| 麻豆成人av在线观看| 美女黄网站色视频| 亚洲av免费高清在线观看| 亚洲欧美日韩高清在线视频| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 免费大片18禁| 国产精品久久久久久久久免 | 午夜精品一区二区三区免费看| 国产黄片美女视频| 国产午夜精品久久久久久一区二区三区 | 亚洲av第一区精品v没综合| 成年人黄色毛片网站| 日本一本二区三区精品| 欧美最新免费一区二区三区 | 欧美成人a在线观看| 成人鲁丝片一二三区免费| 国产精品不卡视频一区二区 | 少妇人妻精品综合一区二区 | 欧美成人性av电影在线观看| 午夜日韩欧美国产| 深夜精品福利| 亚洲第一电影网av| 久久精品夜夜夜夜夜久久蜜豆| 国产精品美女特级片免费视频播放器| 国产精品1区2区在线观看.| 噜噜噜噜噜久久久久久91| 国产又黄又爽又无遮挡在线| 午夜影院日韩av| 最近视频中文字幕2019在线8| 在线看三级毛片| 久久久久久久久中文| 五月伊人婷婷丁香| 最后的刺客免费高清国语| 少妇的逼水好多| 精品国产三级普通话版| 国产精品美女特级片免费视频播放器| 天天一区二区日本电影三级| 日本 av在线| 露出奶头的视频| 国产 一区 欧美 日韩| 欧美乱色亚洲激情| 一级a爱片免费观看的视频| 国产高清有码在线观看视频| 99久久成人亚洲精品观看| 中文亚洲av片在线观看爽| 国产一区二区亚洲精品在线观看| 亚洲欧美激情综合另类| 成人国产综合亚洲| 国产精品av视频在线免费观看| 国产精品嫩草影院av在线观看 | 精品久久久久久成人av| 欧美日韩综合久久久久久 | 丰满的人妻完整版| 国产真实乱freesex| 亚洲,欧美,日韩| 亚洲 国产 在线| 国产一区二区在线av高清观看| 国产精品久久视频播放| 久久人妻av系列| 免费av观看视频| 精品不卡国产一区二区三区| 男女床上黄色一级片免费看| 一本一本综合久久| 免费人成在线观看视频色| 日韩欧美国产一区二区入口| 亚洲精品影视一区二区三区av| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | av天堂在线播放| 69av精品久久久久久| 高清在线国产一区| h日本视频在线播放| 国产高清激情床上av| 国产精品嫩草影院av在线观看 | 18禁裸乳无遮挡免费网站照片| 99热这里只有是精品50| 久久国产乱子免费精品| 能在线免费观看的黄片| 亚洲一区二区三区不卡视频| 最新中文字幕久久久久| 欧美xxxx性猛交bbbb| 在线天堂最新版资源| а√天堂www在线а√下载| 国产精品电影一区二区三区| 在线观看一区二区三区| 精品人妻熟女av久视频| 亚洲国产精品合色在线| 尤物成人国产欧美一区二区三区| 精品一区二区三区人妻视频| 99久久无色码亚洲精品果冻| netflix在线观看网站| 国产私拍福利视频在线观看| 国产麻豆成人av免费视频| 看十八女毛片水多多多| 床上黄色一级片| 欧美极品一区二区三区四区| 国产老妇女一区| 嫩草影院新地址| 亚洲男人的天堂狠狠| 精品不卡国产一区二区三区| 国产亚洲欧美在线一区二区| 尤物成人国产欧美一区二区三区| 亚洲国产精品999在线| 亚洲av免费高清在线观看| 成人永久免费在线观看视频| 五月玫瑰六月丁香| 极品教师在线视频| 我的老师免费观看完整版| а√天堂www在线а√下载| 精品人妻一区二区三区麻豆 | 嫁个100分男人电影在线观看| 国产欧美日韩精品一区二区| 欧美午夜高清在线| 成年免费大片在线观看| 小说图片视频综合网站| 深爱激情五月婷婷| 免费在线观看日本一区| 2021天堂中文幕一二区在线观| 性插视频无遮挡在线免费观看| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 日本 欧美在线| 波多野结衣巨乳人妻| 日韩欧美三级三区| 国产精品伦人一区二区| 国产一级毛片七仙女欲春2| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 五月伊人婷婷丁香| a在线观看视频网站| 国产精品国产高清国产av| 国产国拍精品亚洲av在线观看| 99久久精品国产亚洲精品| 国产精品98久久久久久宅男小说| 亚洲内射少妇av| 国产 一区 欧美 日韩| 18禁黄网站禁片免费观看直播| 欧美日韩福利视频一区二区| 日韩精品中文字幕看吧| 我要看日韩黄色一级片| 国产综合懂色| 婷婷精品国产亚洲av在线| 成人午夜高清在线视频| 丁香六月欧美| 日韩欧美 国产精品| 琪琪午夜伦伦电影理论片6080| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看| 亚洲国产精品999在线| 18禁裸乳无遮挡免费网站照片| 国产欧美日韩精品一区二区| 日韩欧美国产一区二区入口| 欧美成人一区二区免费高清观看| 赤兔流量卡办理| 香蕉av资源在线| 欧美丝袜亚洲另类 | 又黄又爽又免费观看的视频| 变态另类丝袜制服| 欧美高清性xxxxhd video| 此物有八面人人有两片| 18禁裸乳无遮挡免费网站照片| 91狼人影院| АⅤ资源中文在线天堂| 精品99又大又爽又粗少妇毛片 | 丁香欧美五月| 日韩有码中文字幕| 精品不卡国产一区二区三区| 69人妻影院| 国产精品野战在线观看| 国产精品一区二区三区四区久久| 精品99又大又爽又粗少妇毛片 | 亚洲av成人不卡在线观看播放网| 舔av片在线| 久久国产精品人妻蜜桃| 免费看a级黄色片| 男人和女人高潮做爰伦理| 国产精品一区二区三区四区免费观看 | 中文字幕免费在线视频6| 91久久精品电影网| 精品久久久久久久末码| 国产探花在线观看一区二区| 欧美在线黄色| 国产精品嫩草影院av在线观看 | 欧美国产日韩亚洲一区| 久久人人精品亚洲av| 成年人黄色毛片网站| 国语自产精品视频在线第100页| 露出奶头的视频| 淫妇啪啪啪对白视频| 九九久久精品国产亚洲av麻豆| 久久99热6这里只有精品| 一进一出抽搐gif免费好疼| 97热精品久久久久久| 757午夜福利合集在线观看| 露出奶头的视频| 国产色婷婷99| 91麻豆精品激情在线观看国产| 精品日产1卡2卡| 神马国产精品三级电影在线观看| 午夜日韩欧美国产| 中文在线观看免费www的网站| 少妇人妻一区二区三区视频| 国产精品美女特级片免费视频播放器| 久久香蕉精品热| 一区二区三区四区激情视频 | 久久久久国内视频| 18+在线观看网站| 亚洲av美国av| 国产精品伦人一区二区| 日韩免费av在线播放| 色吧在线观看| 嫁个100分男人电影在线观看| 国产精品国产高清国产av| 丰满乱子伦码专区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国内揄拍国产精品人妻在线| 夜夜夜夜夜久久久久| 日韩免费av在线播放| 最近在线观看免费完整版| 精品不卡国产一区二区三区| 色播亚洲综合网| 久久亚洲真实| 免费看光身美女| 亚洲av一区综合| 又爽又黄a免费视频| 亚洲美女搞黄在线观看 | 给我免费播放毛片高清在线观看| 亚洲成av人片在线播放无| 国产精品,欧美在线| 老司机福利观看| 国产真实伦视频高清在线观看 | 国产精品久久久久久久久免 | 亚洲av熟女| 人妻制服诱惑在线中文字幕| 舔av片在线| 久久久久久久久中文| 久久99热这里只有精品18| 一个人免费在线观看的高清视频| 久久6这里有精品| h日本视频在线播放| 一边摸一边抽搐一进一小说| 色综合婷婷激情| 久久久久久久久久黄片| 久久人妻av系列| 久久久成人免费电影| 特大巨黑吊av在线直播| 国产精品久久久久久亚洲av鲁大| 在线免费观看不下载黄p国产 | 亚洲人成网站在线播放欧美日韩| 免费人成视频x8x8入口观看| 一本综合久久免费| 舔av片在线| 99久久99久久久精品蜜桃| 琪琪午夜伦伦电影理论片6080| 免费在线观看日本一区| 波多野结衣高清作品| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 午夜久久久久精精品| 亚洲自偷自拍三级| 18+在线观看网站| 啪啪无遮挡十八禁网站| 人妻夜夜爽99麻豆av| 久久久国产成人精品二区| 亚洲激情在线av| 丁香六月欧美| 日韩av在线大香蕉| 一区二区三区高清视频在线| 国产精品久久久久久久久免 | 免费黄网站久久成人精品 | 色5月婷婷丁香| 国模一区二区三区四区视频| 97碰自拍视频| 直男gayav资源| 亚洲熟妇熟女久久| 久久久久国产精品人妻aⅴ院| 欧美成狂野欧美在线观看| 午夜影院日韩av| 亚洲天堂国产精品一区在线| 成人特级av手机在线观看| 亚洲国产精品合色在线| 精品一区二区三区视频在线| www日本黄色视频网| 夜夜躁狠狠躁天天躁| 一级毛片久久久久久久久女| 成人特级黄色片久久久久久久| xxxwww97欧美| 高清日韩中文字幕在线| 搡老熟女国产l中国老女人| 最后的刺客免费高清国语| 好男人电影高清在线观看| 内地一区二区视频在线| 琪琪午夜伦伦电影理论片6080| 伦理电影大哥的女人| 成人性生交大片免费视频hd| av欧美777| 国产在线精品亚洲第一网站| 少妇的逼好多水| 少妇的逼水好多| 久久国产精品影院| 一级毛片久久久久久久久女| 免费av观看视频| 丰满乱子伦码专区| 日日摸夜夜添夜夜添av毛片 | 床上黄色一级片| 啦啦啦观看免费观看视频高清| 天堂√8在线中文| 中文字幕av在线有码专区| 亚洲狠狠婷婷综合久久图片| 国产亚洲精品av在线| 18禁在线播放成人免费| 国产免费男女视频| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 精品一区二区三区视频在线| 91字幕亚洲| 日本撒尿小便嘘嘘汇集6| 精品久久久久久,| 成人亚洲精品av一区二区| 国产蜜桃级精品一区二区三区| 久久久久久久亚洲中文字幕 | 国产综合懂色| 国产精品一及| 人妻丰满熟妇av一区二区三区| 九色成人免费人妻av| 免费av观看视频| a级毛片免费高清观看在线播放| netflix在线观看网站| 国产伦人伦偷精品视频| av福利片在线观看| 美女cb高潮喷水在线观看| 两个人的视频大全免费| 18禁黄网站禁片午夜丰满| 日韩欧美国产一区二区入口| 国产中年淑女户外野战色| 日本五十路高清| 亚洲成a人片在线一区二区| av中文乱码字幕在线| aaaaa片日本免费| 人人妻人人澡欧美一区二区| 美女高潮的动态| 日韩欧美精品v在线| 欧美成人免费av一区二区三区| 日韩中字成人| 日韩欧美在线二视频| 久久99热这里只有精品18| 精品久久久久久久久久久久久| 香蕉av资源在线| 男女那种视频在线观看| 亚洲国产欧洲综合997久久,| 成人一区二区视频在线观看| 国产一区二区激情短视频| 日日摸夜夜添夜夜添av毛片 | 露出奶头的视频| 亚洲无线观看免费| 老鸭窝网址在线观看| 国产午夜福利久久久久久| 99精品久久久久人妻精品| 欧美又色又爽又黄视频| 国产精品久久久久久久久免 | 俺也久久电影网| 精品人妻偷拍中文字幕| 久久久国产成人精品二区| 99久久精品热视频| 日韩大尺度精品在线看网址| 淫秽高清视频在线观看| 亚洲色图av天堂| 97超级碰碰碰精品色视频在线观看| 天堂动漫精品| 黄色日韩在线| 99热这里只有是精品在线观看 | 欧美乱色亚洲激情| 能在线免费观看的黄片| 色吧在线观看| 国产毛片a区久久久久| aaaaa片日本免费| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 观看美女的网站| 亚洲成av人片免费观看| 国产一级毛片七仙女欲春2| 亚洲成人久久爱视频| 亚洲国产精品999在线|