• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    THE EXTENSION OPERATORS ON Bn+1 AND BOUNDED COMPLETE REINHARDT DOMAINS*

    2020-11-14 09:40:48YanyanCUI崔艷艷ChaojunWANG王朝君
    關(guān)鍵詞:劉浩王朝

    Yanyan CUI (崔艷艷)? Chaojun WANG (王朝君)

    College of Mathematics and Statistics, Zhoukou Normal University, Zhoukou 466001, China

    E-mail : cui9907081@163.com; wang9907081@163.com

    Hao LIU (劉浩)

    Institute of Contemporary Mathematics, Henan University, Kaifeng 475001, China

    E-mail : haoliu@henu.edu.cn

    was introduced in [1], where z =(z1,z0)∈ Bn,z1∈ D,z0=(z2,···,zn)∈ Cn?1,f(z1)∈ H(D)and the branch of the square root is chosen such thatThe operator gives a way of extending a univalent analytic function on the unit disc D in C to a biholomorphic mapping on Bn? Cn. Roper and Suffridge [1]proved that Φn(K) ? K(Bn). Graham and Kohr [2]proved that the Roper-Suffridge operator preserves the properties of Bloch mappings on Bnand Φn(S?)? S?(Bn), and generalized the Roper-Suffridge operator to be

    The above conclusions illustrate that the Roper-Suffridge operator and its extensions are the links between starlike (respectively convex) functions on D and starlike (respectively convex)mappings on Bn. Starlike mappings and convex mappings are important research objects in the geometric function theory of several complex variables. It is easy to find the concrete starlike or convex functions on D, while it is difficult in Cn. By using the Roper-Suffridge operator and its extensions we can construct lots of concrete starlike or convex mappings in Cnfrom the corresponding functions on D. Therefore the Roper-Suffridge operator is useful and important for studying biholomorphic mappings with particular geometric properties in Cn.

    Pfaltzgraff and Suffridge [3]introduced the operator

    on the Euclidean unit ball of Cn, where λj≥ 0 and

    Gong,Liu[4]and Liu,and Liu[5]generalized the Roper-Suffridge operator on more general Reinhardt domains and researched the behaviours of the extension operators. Liu [6]extended the operator (1.1) on bounded starlike circular domains to be

    and proved that the operator(1.2)preserves(almost)starlikeness of order α on bounded starlike circular domains.

    Duan [7]obtained that the generalized operator

    preserves starlikeness on the unit ball Bnin Cn, where Λ = (λij) and Λ is invertible, λij≥ 0,In recent years, there have appeared many results about generalized Roper-Suffridge operators (see [8–11]).

    The above operators all construct locally biholomorphic mappings on different domains in Cnfrom one locally biholomorphic function or n functions f1,··· ,fnin C, while the operator

    introduced by Pfaltzgraff and Suffridge [12], constructs F ∈H(Bn+1) from a locally biholomorphic function f ∈ H(Bn), where n ≥ 1, z′= (z1,··· ,zn) ∈ CnandLetting f(z′)=(f1(z1),··· ,fn(zn)), the operator(1.4)constructs F ∈ H(Bn+1)from n locally biholomorphic functions fi∈ H(D)(i = 1,··· ,n). This stimulates us to extend the Roper-Suffridge operator to be

    where z = (z1,··· ,zn+1) ∈ Bn+1, n ≥ 1, fj(zj) (j = 1,··· ,n) is a normalized locally biholomorphic function on D withfor zj∈ D{0}. For n=1 the operator(1.5)reduces to Φ2,β,as introduced by Graham and Kohr in [2]. The operator (1.5) is not the special form of (1.1) and (1.3); we will shortly investigate the behaviours of (1.5) on Bn+1.

    On the bounded complete Reinhardt domain ? ? Cn+1, we introduce the following extension operator:

    where rj=sup{|zj|:(z1,··· ,zj,··· ,zn+1)′∈ ?}is a normalized locally biholomorphic function on D withfor zj∈D{0}. The operator (1.6) is not the special form of (1.2). Applying (1.5) and (1.6),we can construct biholomorphic mappings in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    In this article, we investigate the properties of the generalized operators(1.5)and(1.6). In section 3, we discuss the fact that the mapping defined by (1.5) has parametric representation on Bn+1if fi(i = 1,··· ,n) does on D, and we research the geometric invariance of some subclasses of spirallike mappings preserved by (1.5) on Bn+1. In section 4, from the geometric characteristics and the parametric representation of subclasses of spirallike mappings,we obtain that (1.6) preserves the geometric properties of several subclasses of spirallike mappings on bounded complete Reinhardt domains in Cn+1.

    2 Definitions and Lemmas

    In what follows, let D denote the unit disk in C, Bndenote the unit ball in Cn, and H(?)denote the holomorphic mappings on ?. Let DF(z) denote the Fréchet derivative of F at z.

    To obtain the main results, we need the following definitions and lemmas:

    Definition 2.1([13]) A mapping f : Bn× [0,∞) → Cnis called a Loewner chain if it satisfies the following conditions:

    (1) f(·,t) is biholomorphic on Bn, f(0,t)=0, Df(0,t)=etIn(t ≥ 0);

    (2) f(z,s)? f(z,t) whenever ? 0 ≤ s ≤ t< ∞ and z ∈ Bn; that is, there exists a Schwarz mapping v =v(z,s,t) such that

    Definition 2.2([13]) Let f(z) be a normalized biholomorphic mapping on Bn. We say that f(z) has parametric representation on Bnif there is a Loewner chain f(z,t) such that{e?tf(·,t)}t≥0is a normal family on Bnand f(z)=f(z,0)(z ∈ Bn).

    Definition 2.3([14]) Let F(z) be a normalized locally biholomorphic mapping on Bn,and α ∈ [0,1), β ∈c ∈ (0,1). Then F(z) is called a strong and almost spirallikemapping of type β and of order α on Bnprovided that

    If we define strong and almost spirallike mappings of type β and of order α on bounded complete Reinhardt domains, the corresponding condition is

    Setting α = 0, β = 0 and α = β = 0, Definition 2.3 reduces to the definition of strong spirallike mappings of type β, strong and almost starlike mappings of order α, and strong starlike mappings, respectively.

    Definition 2.4([15]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then we say thatprovided that

    where ?1 ≤ A

    Setting A = ?1 = ?B ? 2α, A = ?B = ?α, B → 1?in Definition 2.4, we obtain the corresponding definitions of spirallike mappings of type β and order α [16], strongly spirallike mappings of type β and order α [17], and almost spirallike mappings of type β and order α [18]on ?, respectively.

    Definition 2.5([19]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ?. Then F(z)is called an almost starlike mapping of complex order λ on ? provided that

    where λ ∈ C,?λ ≤ 0.

    Setting∈ [0,1) in Definition 2.5, we obtain the definition of almost starlikemappings of order α on ?.

    Definition 2.6([20]) Let ? ? Cnbe a bounded starlike circular domain whose Minkowski functional ρ(z)is C1except for a lower-dimensional manifold. Let F(z)be a normalized locally biholomorphic mapping on ? and let ρ ∈ [0,1), β ∈Then F(z) is called a parabolic and spirallike mapping of type β and of order ρ on B provided that

    Suffridge [21]introduced the definition of spirallike mappings with respect to a normal linear operator A whose eigenvalues have a positive real part in complex Banach spaces. Now we extend the definition on bounded complete Reinhardt domains.

    Definition 2.7Let A ∈L(Cn+1,Cn+1) be a continuous complex-linear operator with

    Let ? ? Cn+1be a bounded complete Reinhardt domain and let f :? → Cn+1be a normalized locally biholomorphic mapping. Then f is spirallike relative to A if

    Lemma 2.8([22]) Let f(z) be a normalized locally biholomorphic mapping on B withand a = tan β. Then f(z) is an almost spirallike mapping of order α and of type β on B if and only if g(z,t)=is a Loewner chain.

    Lemma 2.9([13]) Let f(z,t) be a Loewner chain. Then

    Lemma 2.10([23]) Let ? ? Cn+1be a bounded complete Reinhardt domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. Then we have

    Lemma 2.11([24]) Let ? ? Cnbe a bounded complete Reinhardt domain and let h ∈M, where

    Then the initial value problem

    has a unique solution v(t) = v(z,t) (t ≥ 0). Furthermore, v(z,t)→ 0 (t → +∞) and v(z,t) is a Schwarz mapping on ? for fixed t.

    Lemma 2.12([25]) Let ? ? Cnbe a bounded starlike circular domain and let h ∈M, Jh(0) = A, v(z,t) be a solution of the initial value problem (2.1). Then for ?z ∈ ?,must be existing and converge to a spirallike mapping relative to A on ?. If,instead, f(z) is a spirallike mapping relative to A on ? and Jf(z)h(z)= Af(z), f(z) must be expressed as

    3 Extension Operators on the Unit Ball Bn+1

    In this section we will investigate the properties of mappings constructed by (1.5) on the unit ball Bn+1in Cn+1(not in Cn) from biholomorphic functions f1,··· ,fnin C.

    Theorem 3.1Suppose that the normalized biholomorphic function fk(zk) can be embedded in Loewner chain {gk(zk,t)}t≥0(k = 1,··· ,n) on D. Then the mapping F(z) defined by (1.5) can be embedded in a Loewner chain on Bn+1.

    ProofAs fk(zk)is the normalized biholomorphic function on D,then F(z)is normalized biholomorphic on Bn+1obviously. Because fk(zk) can be embedded in the Loewner chain{gk(zk,t)}t≥0, there exists a Schwarz mapping vk=vk(zk,s,t) such that

    (i) As {gk(zk,t)}t≥0is a Loewner chain, gk(·,t) is biholomorphic on D and gk(0,t) = 0,Therefore F(z,t) is biholomorphic on Bn+1. By a simple calculation we obtain that F(0,t)=0,DF(0,t)=etIn+1where In+1is the identity operator in Cn+1.

    (ii) Let

    Thus W(z,s,t) is a Schwarz mapping on Bn+1.

    (iii) In view of (3.1) and (3.2), we obtain

    From(i)–(iii)and Definition 2.1 we obtain that F(z,t)is a Loewner chain. As fk(zk)can be embedded in the Loewner chain{gk(zk,t)}t≥0,gk(zk,0)=fk(zk),and therefore F(z,0)=F(z).Hence F(z) can be embedded in the Loewner chain F(z,t) on Bn+1.

    Theorem 3.2Suppose that fk(zk)(k =1,··· ,n) is an almost spirallike function of type β and of order α on D with α ∈ [0,1), β ∈Then F(z) defined by (1.5) is an almost spirallike mapping of type β and of order α on Bn+1.

    ProofFrom (1.5) we obtain

    As fk(zk)is an almost spirallike function of type β and of order α on D,gk(zk,t)is the Loewner chain in which fk(zk) is embedded. By (3.3) and (3.4), we obtain

    where F(z,t)is the mapping defined by(3.2)in Theorem 3.1,and thereforeis a Loewner chain. By Lemma 2.8 we obtain that F(z)is an almost spirallike mapping of type β and of order α on Bn+1.

    Theorem 3.3If fk(zk) (k = 1,··· ,n) has parametric representation on D, then F(z)defined by (1.5) has parametric representation on Bn+1.

    ProofAs fk(zk) has parametric representation on D, there exists a Loewner chain gk(zk,t) such that gk(zk,0) = fk(zk), and {e?tgk(·,t)}t≥0is a normal family. By Lemma 2.9 we obtain

    Therefore, for |zk|

    By Theorem 3.1 we obtain that F(z,t)defined by(3.1)is a Loewner chain,that F(z,0)=F(z)and

    Therefore {e?tF(·,t)}t≥0is locally uniformly bounded on Bn+1, and thus is a normal family.By Definition 2.2 we obtain that F(z) has parametric representation on Bn+1.

    Theorem 3.4Suppose that fk(zk) (k =1,··· ,n) is a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) and β ∈Then F(z) defined by(1.5) is a strong and almost spirallike mapping of type β and of order α on Bn+1.

    ProofBy (1.5) we obtain

    As fj(zj) (j =1,··· ,n) is normalized locally biholomorphic on D withandis normalized locally biholomorphic on Bn+1and

    By Definition 2.3, we need only to prove that

    Then |qk(zk)|<1. In view of c ∈(0,1) and (3.5), we obtain

    Therefore F(z) is a strong and almost spirallike mapping of type β and of order α on Bn+1by Definition 2.3.

    Similarly to Theorem 3.4 we can obtain the following conclusion:

    Theorem 3.5Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLetting F(z)be the mapping defined by(1.5),we get that F(z)∈

    Remark 3.6Setting β = 0 (respectively α = 0) in Theorem 3.4, we obtain the corresponding results for strong and almost starlike mappings of order α (and, respectively,the strongly spirallike mappings of type β). Setting A = ?1 = ?B ? 2α (respectively,A = ?B = ?α) in Theorem 3.5, we obtain the corresponding results for spirallike mappings of type β and of order α (and, respectively, the strongly spirallike mappings of type β and of order α).

    Theorem 3.7Let fk(zk) (k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.5) is an almost starlike mapping of complex order λ on Bn+1.

    ProofBy Definition 2.5, we need only to prove that

    As fk(zk) is an almost starlike function of complex order λ on D, by Definition 2.5, we have that

    Then ?pk(zk)≥ 0. By (3.5) we obtain that

    In addition, ?pk(zk) ≥0 implies thatTherefore F(w,z) is an almost starlike mapping of complex order λ on Bn+1.

    Remark 3.8Settingin Theorem 3.7, we obtain the corresponding results for almost starlike mappings of order α.

    4 Extension Operators on Bounded Complete Reinhardt Domains

    Let ? ? Cn+1be a bounded starlike circular domain whose Minkowski functional ρ(z) is C1except for a lower-dimensional manifold. In this section we will study the properties of(1.6), preserving several subclasses of spirallike mappings on ?.

    Theorem 4.1Let(k = 1,··· ,n) with ?1 ≤A < B < 1 andLet F(z) be the mapping defined by (1.6). Then

    ProofBy Definition 2.4, we need only to prove that

    Then |qk(ξk)|<1. By (4.2) we obtain that

    which follows (4.1). By Definition 2.4 we obtain that

    Similarly, we can obtain that F(z) defined by (1.6) preserves the strongth and almost spirallikeness of type β and of order α on ?.

    Theorem 4.2Let(k = 1,··· ,n) be a strong and almost spirallike function of type β and of order α on D with α ∈ [0,1) andThen F(z) defined by (1.6) is a strong and almost spirallike mapping of type β and of order α on ?.

    Remark 4.3Setting A= ?1= ?B ?2α (respectively, A= ?B = ?α) in Theorem 4.1,we obtain the corresponding results for spirallike mappings of type β and of order α (respectively,the strongly spirallike mappings of type β and of order α). Setting β =0 (respectively, α =0)in Theorem 4.2, we obtain the corresponding results for strong and almost starlike mappings of order α (and respectively, the strongly spirallike mappings of type β).

    Theorem 4.4Let(k =1,··· ,n) be a parabolic and spirallike function of type β and of order ρ on D with ρ ∈ [0,1), β ∈and ρ ≤ cos β. Then F(z) defined by (1.6) is a parabolic and spirallike mapping of type β and of order ρ on ?.

    ProofBy Definition 2.6, we need only to prove that

    As fk(ξk) is a parabolic and spirallike function of type β and of order ρ on D, we have that

    By (4.2) we obtain that

    In view of ρ ≤ cos β, by (4.4) we obtain that

    which follows(4.3). Therefore F(z)is a parabolic and spirallike mapping of type β and of order ρ on ?.

    Remark 4.5Setting ρ = 0 (respectively, β = 0) in Theorem 4.4, we obtain the corresponding results for parabolic and spirallike mappings of type β (respectively, the parabolic and starlike mappings of order ρ).

    Similarly to Theorem 4.4, we can obtain the following conclusion:

    Theorem 4.6Let(k =1,··· ,n) be an almost starlike function of complex order λ on D with λ ∈ C,?λ ≤ 0. Then F(z) defined by (1.6) is an almost starlike mapping of complex order λ on ?.

    For rj=1 (j =1,··· ,n), (1.6)reduces to(1.5). Therefore,from the above conclusions,we can obtain that (1.5) preserves the properties of the following biholomorphic mappings on the Reinhardt domain:

    Corollary 4.7Let fk(zk)be a strong and almost spirallike function of type β and of order α on D (respectively,a parabolic and spirallike function of type β and of order ρ,and an almost starlike function of complex order λ). Then F(z)defined by(1.5)is a strong and almost spirallike mapping of type β and of order α on ?n+1,p(respectively,a parabolic and spirallike mapping of type β and of order ρ, and an almost starlike mapping of complex order λ).

    Remark 4.8For pn+1= 2, ?n+1,preduces to Bn+1. Therefore, by corollary 4.7 we obtain the corresponding results for (1.5) on Bn+1.

    In what follows we will research the properties of the operator(1.6)on the bounded complete Reinhardt domain ? from the parametric representation of spirallike mappings.

    Theorem 4.9Let(k =1,··· ,n)be a spirallike function relative to A on D with A being a continuous complex-linear operator. Then F(z)defined by(1.6)is a spirallike mapping relative to A on ?, where

    Proof(i) Asis a spirallike function relative to A on D, there existssuch that

    Let F(z)=(F1(z),··· ,Fn+1(z)). For z ∈ ? we have that

    By (4.7) and (4.9), we obtain that?H(u(z,t)), where

    Furthermore,

    that is,u(z,0)=z. Therefore u(z,t)is the solution of the initial value problem(2.1)in Lemma 2.11.

    (iii) In view of hj∈M and (4.8), we have that

    Applying Lemma 2.10, we obtain that

    so H ∈M.

    By (4.5) we have that

    By simple calculation, we obtain that

    For H(u(z,t))=(u1q1(u),··· ,un+1qn+1(u))′, let Hj(u)=ujqj(u) (j =1,··· ,n+1). By (4.8)we get thatfor j =1,··· ,n, therefore

    By (4.9) we get that

    By (4.11)–(4.13) we obtain that JH(0)=A.

    From (i)–(iii) and lemma 2.12 we obtain that F(z) is a spirallike mapping relative to A on?.

    Corollary 4.10Let(k = 1,··· ,n) be a spirallike function relative to A on D.Then

    is a spirallike mapping relative to A on ?, where

    Remark 4.11Setting A=e?iβIinto Theorem 4.9 and Corollary 4.10, we obtain the corresponding results for spirallike mappings of type β.

    猜你喜歡
    劉浩王朝
    正確看待輸和贏
    多重映射芽的Gq,k一決定性
    進(jìn)球了
    Negative compressibility property in hinging open-cell Kelvin structure*
    養(yǎng)心殿,帶你走進(jìn)大清王朝的興衰沉浮
    金橋(2018年10期)2018-10-09 07:27:44
    奇波利尼的王朝Saeco
    PROPERTIES OF THE MODIFIED ROPER-SUFFRIDGE EXTENSION OPERATORS ON REINHARDT DOMAINS?
    劉浩藝術(shù)作品欣賞
    消除“鈍”感肌就是這樣滑!
    Coco薇(2015年3期)2015-12-24 03:06:17
    THE INVARIANCE OF STRONG AND ALMOSTSPIRALLIKE MAPPINGS OF TYPE β AND ORDER α?
    久久九九热精品免费| 亚洲精品久久国产高清桃花| 久99久视频精品免费| 欧美性感艳星| 日本黄色片子视频| 久久中文看片网| 在线播放无遮挡| 高清在线视频一区二区三区 | 国内精品美女久久久久久| 国产av在哪里看| 91午夜精品亚洲一区二区三区| 欧美bdsm另类| 亚洲av第一区精品v没综合| 秋霞在线观看毛片| 国产成人午夜福利电影在线观看| 老熟妇乱子伦视频在线观看| 日日摸夜夜添夜夜添av毛片| 日本与韩国留学比较| 久久久欧美国产精品| 在线播放国产精品三级| 观看免费一级毛片| 看黄色毛片网站| 国产午夜福利久久久久久| 久久精品国产清高在天天线| 日韩高清综合在线| av在线老鸭窝| 在线天堂最新版资源| 少妇人妻精品综合一区二区 | 国产精品一区二区在线观看99 | 国产成人一区二区在线| 国产真实伦视频高清在线观看| 精品久久国产蜜桃| 麻豆成人午夜福利视频| av在线老鸭窝| 欧美激情国产日韩精品一区| 日韩大尺度精品在线看网址| 晚上一个人看的免费电影| 男人狂女人下面高潮的视频| 久久精品国产亚洲av天美| 久久精品久久久久久久性| 国产中年淑女户外野战色| 韩国av在线不卡| 一进一出抽搐动态| 亚洲人成网站高清观看| 国产高潮美女av| 亚洲熟妇中文字幕五十中出| 51国产日韩欧美| 免费人成在线观看视频色| 久久精品91蜜桃| av免费在线看不卡| 久久久久网色| 国产激情偷乱视频一区二区| 亚洲乱码一区二区免费版| 99九九线精品视频在线观看视频| 晚上一个人看的免费电影| 人妻制服诱惑在线中文字幕| 99久久精品热视频| 日本一二三区视频观看| 免费一级毛片在线播放高清视频| 欧美日本亚洲视频在线播放| 日日摸夜夜添夜夜爱| 亚洲欧美精品综合久久99| 精品少妇黑人巨大在线播放 | 淫秽高清视频在线观看| 亚洲精品456在线播放app| 免费看光身美女| 成人三级黄色视频| 天天躁日日操中文字幕| 99久久人妻综合| 夫妻性生交免费视频一级片| 亚洲av免费在线观看| 久久九九热精品免费| 国产色婷婷99| 亚洲欧美精品专区久久| 性插视频无遮挡在线免费观看| 午夜福利成人在线免费观看| 九草在线视频观看| 久久精品国产清高在天天线| 国产成人aa在线观看| 久久这里有精品视频免费| 精品人妻偷拍中文字幕| 久久综合国产亚洲精品| 成年av动漫网址| 婷婷亚洲欧美| 亚洲精品色激情综合| 国内精品宾馆在线| 日韩在线高清观看一区二区三区| 18禁黄网站禁片免费观看直播| av在线播放精品| 成人亚洲精品av一区二区| 人妻制服诱惑在线中文字幕| 久久久成人免费电影| 欧美成人一区二区免费高清观看| 又黄又爽又刺激的免费视频.| 日本-黄色视频高清免费观看| 国产精品一区二区三区四区久久| 99热全是精品| 99久久九九国产精品国产免费| 亚洲乱码一区二区免费版| 日产精品乱码卡一卡2卡三| 最新中文字幕久久久久| avwww免费| 久久久成人免费电影| 成人国产麻豆网| 日日撸夜夜添| a级毛片免费高清观看在线播放| 国产成年人精品一区二区| 中国国产av一级| 岛国在线免费视频观看| 可以在线观看的亚洲视频| 成人美女网站在线观看视频| 只有这里有精品99| 日韩精品有码人妻一区| 国产精品一区二区三区四区久久| 欧美性猛交黑人性爽| 黄色视频,在线免费观看| 国产黄色小视频在线观看| 一本久久精品| 婷婷色av中文字幕| 亚洲国产精品国产精品| 97超碰精品成人国产| 高清午夜精品一区二区三区 | a级一级毛片免费在线观看| 久久久午夜欧美精品| 美女黄网站色视频| 岛国在线免费视频观看| 久久九九热精品免费| 久久久午夜欧美精品| 欧美bdsm另类| 色播亚洲综合网| 一级av片app| 熟妇人妻久久中文字幕3abv| 蜜臀久久99精品久久宅男| 综合色av麻豆| 国产精华一区二区三区| 蜜桃久久精品国产亚洲av| 男女那种视频在线观看| h日本视频在线播放| 少妇丰满av| 国产成人a∨麻豆精品| 老司机福利观看| 免费看光身美女| 热99在线观看视频| 成人漫画全彩无遮挡| 99riav亚洲国产免费| 午夜精品国产一区二区电影 | 欧美日本视频| 日韩一本色道免费dvd| 神马国产精品三级电影在线观看| 床上黄色一级片| av女优亚洲男人天堂| 亚洲在线自拍视频| 国产毛片a区久久久久| 欧美一区二区精品小视频在线| 亚州av有码| 毛片一级片免费看久久久久| 一卡2卡三卡四卡精品乱码亚洲| 黄色一级大片看看| 亚洲国产精品sss在线观看| 日日撸夜夜添| 久久久久久久午夜电影| 成人av在线播放网站| 国产成人精品一,二区 | 91在线精品国自产拍蜜月| 美女高潮的动态| 天堂av国产一区二区熟女人妻| 亚洲激情五月婷婷啪啪| 国产亚洲91精品色在线| 毛片一级片免费看久久久久| 色尼玛亚洲综合影院| 国内精品一区二区在线观看| 久久久午夜欧美精品| 欧美一区二区国产精品久久精品| 成年免费大片在线观看| 国产成人午夜福利电影在线观看| 波多野结衣高清无吗| 色综合站精品国产| 亚洲五月天丁香| 午夜老司机福利剧场| 国产单亲对白刺激| 亚洲丝袜综合中文字幕| 日本-黄色视频高清免费观看| avwww免费| 亚洲欧美日韩卡通动漫| av在线老鸭窝| 在线观看一区二区三区| 久久精品夜色国产| 一级黄色大片毛片| 综合色丁香网| 免费人成在线观看视频色| 成人三级黄色视频| 国产亚洲精品久久久com| 色5月婷婷丁香| 免费av毛片视频| 日韩 亚洲 欧美在线| 少妇高潮的动态图| 国产黄a三级三级三级人| 性欧美人与动物交配| 欧美激情国产日韩精品一区| 国产黄片美女视频| 亚洲av成人精品一区久久| 精品国内亚洲2022精品成人| 中文字幕久久专区| 欧美日韩一区二区视频在线观看视频在线 | 一个人看视频在线观看www免费| 国产在线男女| 一级黄色大片毛片| 哪个播放器可以免费观看大片| 又粗又爽又猛毛片免费看| www.色视频.com| 91在线精品国自产拍蜜月| 久久九九热精品免费| 国产色爽女视频免费观看| 亚洲国产高清在线一区二区三| 九色成人免费人妻av| 春色校园在线视频观看| 嘟嘟电影网在线观看| 国产欧美日韩精品一区二区| 少妇高潮的动态图| 亚洲精品日韩在线中文字幕 | 在线播放无遮挡| 亚洲精品久久久久久婷婷小说 | 天天躁日日操中文字幕| 国模一区二区三区四区视频| 亚洲久久久久久中文字幕| av专区在线播放| av在线天堂中文字幕| 97超视频在线观看视频| 在线观看美女被高潮喷水网站| 99热6这里只有精品| 国产av麻豆久久久久久久| 日本-黄色视频高清免费观看| 日韩精品有码人妻一区| av在线播放精品| 一级毛片aaaaaa免费看小| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 精品熟女少妇av免费看| 国产成人a∨麻豆精品| 日韩欧美在线乱码| 久久精品影院6| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区av在线 | 国产精品国产高清国产av| 麻豆国产97在线/欧美| 亚洲久久久久久中文字幕| 男人舔奶头视频| 97热精品久久久久久| 尾随美女入室| 久久久久久久午夜电影| 久久久久久久亚洲中文字幕| 国产高清激情床上av| 久久人人爽人人片av| 国产熟女欧美一区二区| 69av精品久久久久久| 99久久精品一区二区三区| 久久婷婷人人爽人人干人人爱| 少妇熟女欧美另类| 一进一出抽搐gif免费好疼| videossex国产| 天堂av国产一区二区熟女人妻| 国内精品美女久久久久久| 国产精品久久久久久精品电影| 亚洲av熟女| 又爽又黄无遮挡网站| 国产在视频线在精品| 我的老师免费观看完整版| 国产精品一区二区性色av| 久久人人爽人人爽人人片va| 99热全是精品| 国产高清不卡午夜福利| 综合色av麻豆| 国产在视频线在精品| 久久久久久九九精品二区国产| 日韩欧美一区二区三区在线观看| videossex国产| 国产伦精品一区二区三区四那| 男人舔奶头视频| 免费av毛片视频| 欧美在线一区亚洲| 免费黄网站久久成人精品| 国产三级中文精品| av女优亚洲男人天堂| 精品不卡国产一区二区三区| 六月丁香七月| 伦精品一区二区三区| 97在线视频观看| 国产在线精品亚洲第一网站| 久久久久久久久大av| 国产单亲对白刺激| 人人妻人人澡欧美一区二区| 少妇人妻精品综合一区二区 | 国产私拍福利视频在线观看| 校园春色视频在线观看| 少妇被粗大猛烈的视频| 女的被弄到高潮叫床怎么办| 最好的美女福利视频网| 一进一出抽搐动态| 日韩人妻高清精品专区| 亚洲欧美中文字幕日韩二区| 国产免费一级a男人的天堂| 日韩高清综合在线| 99视频精品全部免费 在线| 成人午夜高清在线视频| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| a级一级毛片免费在线观看| 国产精品人妻久久久影院| 久久精品国产鲁丝片午夜精品| 国产一区二区在线观看日韩| 亚洲av电影不卡..在线观看| 欧美bdsm另类| 亚洲人成网站在线播| 少妇人妻一区二区三区视频| 亚洲成a人片在线一区二区| 91久久精品电影网| 亚洲欧美中文字幕日韩二区| 欧美精品一区二区大全| 麻豆成人午夜福利视频| 你懂的网址亚洲精品在线观看 | 日本在线视频免费播放| 男女做爰动态图高潮gif福利片| 免费看日本二区| 国产精品福利在线免费观看| 秋霞在线观看毛片| 日韩一本色道免费dvd| 精品一区二区三区视频在线| 日韩欧美 国产精品| 国产亚洲精品久久久com| 美女脱内裤让男人舔精品视频 | 伊人久久精品亚洲午夜| 日韩成人av中文字幕在线观看| 小蜜桃在线观看免费完整版高清| 综合色av麻豆| 免费一级毛片在线播放高清视频| 色综合站精品国产| 97超碰精品成人国产| 欧美一区二区国产精品久久精品| 国产探花在线观看一区二区| 国产成人福利小说| 国产午夜精品一二区理论片| 亚洲无线在线观看| 中文资源天堂在线| 综合色丁香网| 91狼人影院| 久久久精品欧美日韩精品| 99久久精品一区二区三区| 少妇的逼好多水| 精品久久久久久久久久免费视频| 爱豆传媒免费全集在线观看| 国产高清三级在线| 又粗又硬又长又爽又黄的视频 | 午夜a级毛片| 午夜福利成人在线免费观看| 热99在线观看视频| 天堂影院成人在线观看| 国产私拍福利视频在线观看| 久久久久久久亚洲中文字幕| 哪里可以看免费的av片| 波多野结衣巨乳人妻| 有码 亚洲区| 国产av麻豆久久久久久久| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 麻豆国产97在线/欧美| 可以在线观看毛片的网站| 久久人人爽人人爽人人片va| 亚洲av中文字字幕乱码综合| 一级二级三级毛片免费看| 免费观看精品视频网站| 成人国产麻豆网| 亚洲精品久久国产高清桃花| 成人特级av手机在线观看| 少妇熟女欧美另类| 在线播放无遮挡| 久久精品国产亚洲av香蕉五月| 国产精品一区www在线观看| 一级黄片播放器| 欧美一级a爱片免费观看看| www日本黄色视频网| 少妇猛男粗大的猛烈进出视频 | 国产探花在线观看一区二区| 亚洲美女视频黄频| 韩国av在线不卡| 亚洲国产精品合色在线| 亚洲无线在线观看| 国产av一区在线观看免费| 又粗又爽又猛毛片免费看| 天天躁日日操中文字幕| 国产午夜精品一二区理论片| 日本色播在线视频| 老司机影院成人| 两性午夜刺激爽爽歪歪视频在线观看| 深夜精品福利| 精品久久久久久成人av| 国产精品无大码| 国产一级毛片在线| 男女做爰动态图高潮gif福利片| 99久久人妻综合| 久久精品国产清高在天天线| 亚洲三级黄色毛片| 久久久精品欧美日韩精品| 91狼人影院| а√天堂www在线а√下载| 伦理电影大哥的女人| 亚洲婷婷狠狠爱综合网| 不卡一级毛片| 精品无人区乱码1区二区| 亚洲欧美精品专区久久| 国产精品久久电影中文字幕| 免费不卡的大黄色大毛片视频在线观看 | a级毛片a级免费在线| 一级毛片aaaaaa免费看小| a级毛片免费高清观看在线播放| 91精品一卡2卡3卡4卡| 深爱激情五月婷婷| 久久久久久久久久久免费av| 男插女下体视频免费在线播放| 欧美三级亚洲精品| 久久精品夜色国产| 免费观看a级毛片全部| 精品日产1卡2卡| 久久99热这里只有精品18| 久久人妻av系列| 亚洲国产欧美在线一区| 国产伦精品一区二区三区四那| 我要看日韩黄色一级片| 99久久九九国产精品国产免费| 成人无遮挡网站| 日本黄大片高清| 三级毛片av免费| 亚洲乱码一区二区免费版| 人妻久久中文字幕网| www.色视频.com| 欧美一级a爱片免费观看看| 国产一区二区亚洲精品在线观看| 国产免费男女视频| 能在线免费看毛片的网站| 身体一侧抽搐| 麻豆乱淫一区二区| 一个人观看的视频www高清免费观看| www.av在线官网国产| 成人无遮挡网站| 亚洲国产高清在线一区二区三| 亚洲欧美中文字幕日韩二区| 国产午夜精品久久久久久一区二区三区| 中出人妻视频一区二区| 我的女老师完整版在线观看| 成人一区二区视频在线观看| 免费观看人在逋| 一个人看的www免费观看视频| 一本久久精品| 亚洲精品亚洲一区二区| 中出人妻视频一区二区| 国产精品国产三级国产av玫瑰| 欧美最新免费一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 最后的刺客免费高清国语| 久久鲁丝午夜福利片| or卡值多少钱| 天堂网av新在线| 日韩制服骚丝袜av| 精品日产1卡2卡| 日产精品乱码卡一卡2卡三| 毛片女人毛片| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 久久这里有精品视频免费| 亚洲18禁久久av| 久久人妻av系列| www.色视频.com| 老司机福利观看| 免费观看a级毛片全部| 蜜桃亚洲精品一区二区三区| 精品一区二区免费观看| 99热精品在线国产| 一夜夜www| 插逼视频在线观看| 久久人人爽人人片av| 久久精品久久久久久噜噜老黄 | 熟女电影av网| 热99re8久久精品国产| 精品久久久久久久久亚洲| 久久久a久久爽久久v久久| 久久久久久大精品| 亚洲经典国产精华液单| 好男人在线观看高清免费视频| 最好的美女福利视频网| 精品久久久久久久久久久久久| 亚洲精品粉嫩美女一区| 九草在线视频观看| 久久久久网色| av免费观看日本| 国产色爽女视频免费观看| a级毛片a级免费在线| 老熟妇乱子伦视频在线观看| av女优亚洲男人天堂| 91av网一区二区| 老师上课跳d突然被开到最大视频| 国产国拍精品亚洲av在线观看| 亚洲,欧美,日韩| 亚洲五月天丁香| 成人毛片60女人毛片免费| 婷婷色av中文字幕| 黑人高潮一二区| 久久久久免费精品人妻一区二区| 中国美女看黄片| 亚洲激情五月婷婷啪啪| 亚洲国产精品久久男人天堂| 一边亲一边摸免费视频| 黄色配什么色好看| 精品欧美国产一区二区三| 久久99精品国语久久久| 老师上课跳d突然被开到最大视频| 淫秽高清视频在线观看| 三级男女做爰猛烈吃奶摸视频| 国产麻豆成人av免费视频| 色噜噜av男人的天堂激情| 青春草视频在线免费观看| 日本av手机在线免费观看| 亚洲第一区二区三区不卡| 久久精品久久久久久久性| av免费在线看不卡| 国产成人一区二区在线| 久久九九热精品免费| 亚洲成人精品中文字幕电影| 国产在线精品亚洲第一网站| 一个人免费在线观看电影| 天堂中文最新版在线下载 | 亚洲精品乱码久久久久久按摩| 亚洲欧美精品综合久久99| 波多野结衣高清作品| 一个人看视频在线观看www免费| 99久久精品国产国产毛片| 黄片无遮挡物在线观看| 精品久久久久久久久久免费视频| 天美传媒精品一区二区| 我的老师免费观看完整版| 精品日产1卡2卡| 床上黄色一级片| 白带黄色成豆腐渣| 久99久视频精品免费| 色噜噜av男人的天堂激情| 久久这里有精品视频免费| 男女视频在线观看网站免费| 亚洲av中文av极速乱| 亚洲国产精品国产精品| 乱人视频在线观看| 夜夜看夜夜爽夜夜摸| 女人被狂操c到高潮| 亚洲精品色激情综合| 两性午夜刺激爽爽歪歪视频在线观看| 久久久久网色| 久久亚洲精品不卡| kizo精华| 国产亚洲精品久久久com| 91av网一区二区| 99精品在免费线老司机午夜| 国产成人a∨麻豆精品| 国产三级中文精品| 国产亚洲av片在线观看秒播厂 | av国产免费在线观看| 午夜精品一区二区三区免费看| 狠狠狠狠99中文字幕| 两个人的视频大全免费| 亚洲精品乱码久久久v下载方式| 国产视频首页在线观看| av天堂中文字幕网| 非洲黑人性xxxx精品又粗又长| 高清日韩中文字幕在线| 搞女人的毛片| 简卡轻食公司| 久久久成人免费电影| 久久久久免费精品人妻一区二区| 日本欧美国产在线视频| 少妇丰满av| 欧美高清成人免费视频www| 男插女下体视频免费在线播放| 哪个播放器可以免费观看大片| 99精品在免费线老司机午夜| 亚洲高清免费不卡视频| 国产精品福利在线免费观看| 黄色欧美视频在线观看| 国产成人a∨麻豆精品| 日产精品乱码卡一卡2卡三| 亚洲av成人精品一区久久| 欧美zozozo另类| 久久久午夜欧美精品| 亚洲av成人精品一区久久| 69av精品久久久久久| 神马国产精品三级电影在线观看| 男女那种视频在线观看| 丝袜美腿在线中文| 日产精品乱码卡一卡2卡三| 国产日韩欧美在线精品| 99久久无色码亚洲精品果冻| 只有这里有精品99| 亚洲三级黄色毛片| 亚洲婷婷狠狠爱综合网| 91aial.com中文字幕在线观看| 日韩大尺度精品在线看网址| 性插视频无遮挡在线免费观看| 2021天堂中文幕一二区在线观| 国产成人精品一,二区 | 欧美一区二区精品小视频在线| 精品人妻一区二区三区麻豆| 一夜夜www| 日韩精品青青久久久久久| 亚洲av成人精品一区久久| 国产成人a∨麻豆精品| 久久99蜜桃精品久久| 国产av麻豆久久久久久久| 高清毛片免费观看视频网站| 少妇被粗大猛烈的视频| 国产亚洲精品av在线|