• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*

    2021-11-23 07:29:48ZheWang王喆andWenguangZhu朱文光
    Chinese Physics B 2021年11期
    關(guān)鍵詞:朱文

    Zhe Wang(王喆) and Wenguang Zhu(朱文光)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    3Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,School of Physical Sciences,University of Science and Technology of China,Hefei 230026,China

    Keywords: transition metal dichalcogenides,phase transformation,hydrogen evolution reaction,density functional theory

    1. Introduction

    Transition metal dichalcogenides (TMDs), as a class of representative layered materials,received tremendous research attention in recent years owing to their rich electronic, optical, and catalytic properties.[1-5]In the atomic structures of TMDs,each monolayer contains a transition-metal layer sandwiched between two chalcogenide layers. The variation in the stacking geometry of the three atomic layers may leads to different phases, typically a trigonal prismatic phase (1H) and an octahedral phase(1T).An intriguing feature of monolayer TMDs is their electronic structures critically depending on the atomic-layer stacking geometry. For group-VI-element TMDs MoS2, its trigonal prismatic phase is a good semiconductor with a sizable bandgap,whereas its octahedral phase becomes metallic. This transition can be qualitatively understood as the difference in the splitting and filling of the transitionmetal d-orbital dominated energy bands due to the different crystal symmetries and coordination environments of the two phases.[6]Such distinct electronic structures may in turn lead to disparate physical and chemical properties,such as catalytic activity. Although both 1H- and 1T-MoS2has shown to be catalytic for the hydrogen evolution reaction(HER),the active sites are solely limited at the edges in the 1H phase[7,8]but include the whole basal plane of the 1T phase.[9-14]However,for pristine MoS2,the 1T phase is energetically less stable than the 1H phase. Therefore,to enhance the catalytic performance of MoS2, it is highly desirable to increase the ratio of the 1T phase via tuning the relative stability of the two phases.

    In this effort, there have been extensive attempts to induce structural phase transformation of group-VI elements Mo- and W-based TMDs and stabilize the 1T phase.[15-18]The main strategy of these research is to dope extra electrons into the TMDs via, for example, Re doping[19]and alkali ion intercalation.[20-23]Some other approaches including mechanical stress[24]and metal substrates[25-27]have also been reported. However, the stability of the obtained 1T phase still needs to be improved.[28,29]In addition, for the catalytic purpose, it is also vitally important to leave the active sites open for chemical reaction.

    In this work, we use first-principles density functional theory (DFT) calculations to investigate the effects of three low-work-function metal substrates including Ti, Zr, and Hf on the structural,electronic,and catalytic properties of monolayer MoS2and WS2. A distorted 1T phase,named 1T'phase,is identified to become energetically most stable in the presence of the metal substrates. The electronic structure analysis indicates that the metal substrates donate electrons to the MoS2and WS2monolayers,leading to the phase transformation. Meanwhile, the presence of the substrates also significantly reduces the kinetic barriers of the phase transformation. In addition, Gibbs free energy calculations suggest that the HER catalytic activity on the top surface of the 1T'-MoS2monolayers is still largely preserved as placed on the Zr or Hf substrate.

    2. Computational methods

    The first-principles DFT calculations were performed using the Viennaab initiosimulation package(VASP).[30]Core and valence electrons were described using the projectoraugmented wave (PAW) method.[31,32]The exchange and correlation functional was treated using the Perdew-Burke-Ernzerhof (PBE) parametrization of generalized gradient approximation(GGA)for structural relaxations and total energy calculations.[33]The energy cut-off of the plane wave basis was set to 300 eV. Electronic minimization was performed with a tolerance of 10?4eV, and ionic relaxation was performed with a force tolerance of 0.01 eV/?A on each ion. A vacuum region more than 15 ?A was used to ensure decoupling between neighboring slabs. AΓ-centered 18×18×1 Monkhorst-Pack[34]k-mesh was used fork-point sampling.The climbing image nudged elastic band(CI-NEB)method[35]was used to determine the minimum energy pathways of the various kinetic processes and their transition states with five intermediate geometries(images)interpolated between the initial and the final states, and the transition states were finally achieved by the optimized central image. In addition,the van der Waals corrections was included as parameterized in the semiempirical DFT-D3(BJ)method.[36,37]

    3. Results and discussion

    3.1. Structures and structural stability of TMDs with substrates

    Monolayer 1H-and 1T-MoS2(WS2),as shown in Fig.1,are both composed of three layers of atoms, and each atomic layer contains only one element stacking in a sequence of SMo(W)-S.All the atoms in each atomic layer are arranged into a close-packed triangular lattice. The difference between the two phases is their vertical stacking geometries. As shown in Figs.1(b)and 1(d),respectively,the 1H phase follows an ABA stacking sequence,while the 1T phase forms an ABC stacking sequence. For freestanding MoS2and WS2monolayers, the 1H phase is energetically most stable with total energy differences of approximately 0.8 eV from the DFT calculations. In addition, the freestanding 1T-MoS2and 1T-WS2monolayers are metastable. A more stable phase,named 1T'phase,can be derived from the high-symmetry 1T phase via local structural distortion, ending up with a 2×1 superstructure and a small band gap opening(Figs.1(e)and 1(f)).The calculated total energy of the 1T'phase is 0.25 eV/MoS2(0.32 eV/WS2) lower than that of the 1T phase,whereas it is still higher than that of 1H phase by around 0.6 eV for monolayer MoS2(WS2).

    Threehcpmetals, Ti, Zr, and Hf, are chosen to investigate the effects of low-work-function metal substrates on the structural stability and catalytic activity of monolayer MoS2and WS2. The lattices of the (0001) surface of these metals(Figs. 1(g) and 1(h)) can nicely match with the in-plane lattices of MoS2and WS2. The calculated lattice constants of MoS2and WS2in different phases and the metals along with their lattice mismatches are summarized in Table 1. The lattice mismatches between MoS2(WS2)and Ti,Zr,and Hf are~7.8%,~1.5%,and~0.4%,respectively.In the calculations of the combined systems, the lattices of MoS2and WS2are adjusted to match the optimal lattices of the metal substrates,unless otherwise specified.

    Table 1. Calculated lattice constants of MoS2 and WS2 in different phases and the metal substrates along with their lattice mismatches.

    Fig.1. Atomic structures of monolayer MoS2 (WS2),with Mo(W)atoms in red and S atoms in yellow,and the metal substrates,with the metal atoms in blue. (a)-(b)1H phase. (c)-(d)1T phase. (e)-(f)1T' phase. (g)-(h)Ti,Zr or Hf substrate. The sites of the metal atoms on the surface and second layer,and the hollow site are defined as A,B,and C,respectively.

    To determine the most favorable stacking structures of the monolayer MoS2and WS2on the metal substrates, various possible high-symmetry stacking configurations are considered.For the(0001)surface terminated slabs of hcp metals,the atoms in each layer also form a triangular lattice, and the vertical stacking follows an ABAB sequence. To label different stacking configurations of the TMDs monolayers on the metal substrates,we denote the surface layer of the metal substrates as site A and the second layer as site B. The stacking configurations of the TMDs monolayers, as shown in Fig. 2,can be labeled asXY(X,Y=A,B,C),whereXandYcorrespond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate, respectively.The calculation results of the MoS2/Hf system are summarized in the table of Fig.2, which shows that for the 1H phase, the most favorable stacking configuration is BA, while it is CA for the 1T and 1T'phases. More importantly, in contrast to the freestanding monolayer,the most stable structure of MoS2becomes the 1T'phase in the presence of the Hf substrate.

    To further examine the validity of our calculations, we thoroughly investigated the relative stability of various structural phases of MoS2and WS2on Ti, Zr, and Hf substrates with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H-or 1TTMDs monolayers. The calculated relative energies of different phases of MoS2and WS2in the two most likely configurations CA and BA on the metal substrates are summarized in Table 2. The results clearly confirm the above conclusion.The 1T'/1T phase of MoS2and WS2monolayers are always energetically more favorable than the 1H phase on these metal substrates. In the cases of using Ti as the substrate, the 1T'phase becomes unstable exclusively as the lattice parameter is set to the lattice constant of Ti,because of a large compressive strain imposed on the TMDs monolayers. Instead, the structures were stabilized into the 1T phase,which still have lower energies than the 1H phase. Therefore, the proposed metal substrates can effectively reverse the relative thermaldynamic stability of monolayer MoS2and WS2from the 1H phase for the freestanding case to the 1T'/1T phase.

    Fig.2. Atomic structures of various possible high-symmetry stacking configurations and their relative energies in the MoS2/Hf system. The different stacking configurations are labeled as XY (X,Y =A, B, C), where X and Y correspond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate,respectively. All data are the energies per MoS2.

    Table 2. Relative energies of various structural phases of MoS2 and WS2 with and without the metal substrates. The combined systems with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H- or 1T-TMDs. The energies of each row are relative to the energy of the most stable structure in this row. All data are the energy per MoS2 or WS2.

    Fig.3. Band structures of(a)1H-MoS2 and(b)1T'-MoS2 with and without the metal substrates,where the MoS2 derived energy bands in the combined systems are highlighted in red.

    The underlying mechanism of the metal substrateinduced phase stability reversal can be revealed from electronic structure analysis. Figure 3 shows the calculated band structures of 1H-and 1T'-MoS2monolayers on the three metal substrates,respectively,where the MoS2derived energy bands are highlighted in red. For comparison, the calculated band structures of freestanding MoS2monolayers in the 1H and 1T'phases are also illustrated in Fig.3.Although the energy bands of MoS2are modified to a certain extent in the combined systems due to the hybridization with the metal substrates, the positions of the original band edges of freestanding MoS2can still be identified. From these plots,it can be seen that for both 1H and 1T'phases,the Fermi levels of the combined systems were always moved up into the original conduction bands of MoS2, indicating the existence of effective electron transfer from the metal substrates to the MoS2monolayers. This observation is also consistent with our initial design of taking advantage of a low-work-function metal substrate to donate electrons into TMDs so as to reverse the relative stability from the 1H phase to the 1T'/1T phase.

    3.2. Kinetics of phase transformation

    Kinetics is also a key factor for the feasibility of phase transformation. In this regard,we investigated the kinetic processes and calculated the energy barriers of MoS2and WS2monolayers transforming from the 1H phase to the 1T phase in the presence of the metal substrates. Since the rate-limiting processes for the 1H phase to the 1T and 1T'phases are essentially the same,[39]we use the 1T phase as the final state to simplify the calculation. The difference between 1H and 1T phases is the vertical alignment of the two chalcogen layers. The phase transformation thus can be achieved by simply moving one of the chalcogen layers collectively with respect to the other two atomic layers. However, when the TMDs monolayers placed on the metal substrates, the top and the bottom chalcogen layers become inequivalent, and thus there are two possible phase transformation pathways from the 1H phase to the 1T phase. For the 1H phase, the positions of the top and bottom S layer are both at the site B (defined in Fig. 1) with respect to the underlying metal substrate. The phase transformation from the 1H phase to the 1T phase can be achieved by simply moving the top or the bottom S layer from the site B to the site C. Figures 4(a) and 4(c) show the calculated energy profiles of the kinetic processes involving the moving of the top S layer. Compared with the cases of freestanding monolayers, the energy barriers are effectively reduced from~1.6 eV to~1.2 eV.More interestingly,in the kinetic process involving the moving of the bottom S layer as shown in Figs. 4(b) and 4(d), the energy barriers are further substantially reduced to~0.7 eV. For both cases, the optimized transition states correspond to the moving S atoms located nearly at the bridge sites of the central Mo/W layer.The energy barriers to move the bottom S layer are smaller than the barrier of a freestanding monolayer MoS2transforming from the 1T'phase to the 1H phase (~0.9 eV).[39]Such a 1T'to 1H phase transformation has been demonstrated to be experimentally accessible for MoS2.[28,29]All these results indicate that the proposed metal substrates can effectively facilitate the phase transformation of adsorbed MoS2and WS2monolayers from the 1H phase to the 1T'/1T phase.

    Fig.4. Two possible phase transformation pathways from the 1H phase to the 1T phase. (a)MoS2 with the moving of the top S layer,(b)MoS2 with the moving of the bottom S layer,(c)WS2 with the moving of the top S layer,(d)WS2 with the moving of the bottom S layer. In all plots,the green circles and arrows attached to S atoms indicate the moving atom and the direction of atomic motion during the process of the phase transformation.

    3.3. Substrate effects on the hydrogen evolution reaction

    We next investigate the catalytic activity of the 1T'-MoS2and 1T'-WS2monolayers with the support of the metal substrates. Different from the 1T'phase achieved by ion intercalation, the top surface of the TMDs monolayers is still freely exposed for the chemical reaction. In addition,the metal substrates can be used directly as an electrode. Therefore, such a combined system is an ideal setup for the electrocatalytic HER.

    It has been commonly recognized that the catalytic performance of an HER is essentially dictated by the Gibbs free energy (?GH) of H adsorption on the catalysts with a value around zero being optimal.[40]For this reason and simplicity,we calculated the Gibbs free energies of atomic hydrogen adsorption on the metal substrate supported MoS2and WS2monolayers with 4×4 supercells as a measure. The calculation results are summarized in Table 3. For freestanding MoS2, the basal plane of the 1H phase is catalytically inert,?GH=1.92 eV, while the 1T'phase is active, with a ?GHof 0.19 eV. In the presence of the metal substrates, the ?GHof 1H-MoS2is reduced to~1.5 eV, but still too large for the HER.For 1T'-MoS2,although their ?GHare generally increased by the metal substrates, the ?GHof 1T'-MoS2with Zr and Hf substrates are 0.48 eV and 0.56 eV, respectively,which are still comparable to the ?GHof Au (~0.5 eV).[41]For the case of 1T'-MoS2/Ti, the ?GHincreases to 1.30 eV,which may be related to the large lattice mismatch. For the cases of 1T'-WS2, their ?GHare always larger than those of 1T'-MoS2on the same metal substrate,among which the 1T'-WS2/Zr system has the lowest ?GHas large as 0.75 eV.To sum up,MoS2with Zr or Hf as the substrate may be considered as a promising HER catalyst.

    Table 3. The Gibbs free energy(?GH)of the hydrogen evolution reaction for 4×4 TMDs supercell with and without the metal substrates at 1/16 H coverage.

    Overall, the metal substrates reduced the ?GHof the 1H phase and increased the ?GHof the 1T'phase. According to previous studies on freestanding TMDs,[42,43]the strength of H adsorption on the surface of TMDs is determined by the ability of the surface chalcogen atoms to attract electrons from H, and ?GHclosely correlates to the position of the lowest unoccupied state of the catalyst (the conduction band minimum for semiconductors or the Fermi level for metals) with respect to the vacuum level. To examine its validity in our systems,we plot ?GHversusthe lowest unoccupied state positionεLUS, which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2) or the Fermi level for MoS2(WS2) in the presence of the metal substrates. As shown in Fig. 5, an obvious linear correlation is revealed, which in consistent with the previous work,[42,43]and also indicates thatεLUSis still a significant determinant for the HER of MoS2(WS2)on the metal substrates. In addition,compared with the freestanding monolayer MoS2(WS2), the values ofεLUSincrease for the 1T'phase and decrease for the 1H phase in the presence of the metal substrates,which can be attributed to the interaction and charge transfer between the MoS2(WS2) and the metal substrates.

    Fig.5.Correlation between the Gibbs free energy ?GH and the lowest unoccupied state εLUS,which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2)or the Fermi level for MoS2 (WS2)in the presence of the metal substrates.

    4. Conclusions

    In summary,we have demonstrated from both energetics and kinetics aspects that low-work-function metals Ti,Zr,and Hf can be used as a functional substrate to effectively make monolayer MoS2and WS2undergo structural transformation from the 1H phase to the 1T'/1T phase,based on DFT calculations. In addition,1T'-MoS2with Zr or Hf as a substrate may function as a potential catalyst for the HER.

    Acknowledgment

    Computational support was provided by National Supercomputing Center in Tianjin.

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    走三邊
    秦川好
    唱起號子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 久久人妻熟女aⅴ| 99香蕉大伊视频| 国产在线精品亚洲第一网站| 亚洲中文字幕一区二区三区有码在线看 | 成人手机av| 亚洲欧美精品综合久久99| 黄色毛片三级朝国网站| 一区二区三区高清视频在线| 欧美日韩中文字幕国产精品一区二区三区 | 天堂影院成人在线观看| 免费无遮挡裸体视频| 人人妻,人人澡人人爽秒播| 国产黄a三级三级三级人| 在线观看午夜福利视频| 国产在线精品亚洲第一网站| 少妇粗大呻吟视频| 久久精品人人爽人人爽视色| 夜夜夜夜夜久久久久| 高潮久久久久久久久久久不卡| 国产精品99久久99久久久不卡| 国产欧美日韩一区二区三区在线| 色综合站精品国产| 亚洲专区中文字幕在线| 国产高清激情床上av| 18禁美女被吸乳视频| 日本vs欧美在线观看视频| 国产1区2区3区精品| 国产成人欧美| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美精品济南到| 久久久久精品国产欧美久久久| 在线十欧美十亚洲十日本专区| 国产精品自产拍在线观看55亚洲| 可以免费在线观看a视频的电影网站| 色综合婷婷激情| 国产精品亚洲一级av第二区| 国产私拍福利视频在线观看| 国产精品久久视频播放| 亚洲在线自拍视频| 一级黄色大片毛片| 男女床上黄色一级片免费看| 欧美日韩一级在线毛片| 91在线观看av| 日本欧美视频一区| av超薄肉色丝袜交足视频| 欧美成人免费av一区二区三区| 99久久99久久久精品蜜桃| 伊人久久大香线蕉亚洲五| av有码第一页| 操美女的视频在线观看| 欧美绝顶高潮抽搐喷水| av视频免费观看在线观看| 啪啪无遮挡十八禁网站| 精品第一国产精品| 日韩免费av在线播放| 19禁男女啪啪无遮挡网站| 波多野结衣一区麻豆| 亚洲在线自拍视频| 久久久久亚洲av毛片大全| 91成年电影在线观看| 午夜老司机福利片| 99国产精品一区二区三区| 成人三级黄色视频| 一级片免费观看大全| 熟女少妇亚洲综合色aaa.| 手机成人av网站| 在线观看一区二区三区| 一个人观看的视频www高清免费观看 | 亚洲午夜理论影院| 精品国产一区二区三区四区第35| 桃红色精品国产亚洲av| 精品久久久久久久人妻蜜臀av | 两性夫妻黄色片| 国产成人av激情在线播放| 精品一区二区三区视频在线观看免费| 亚洲中文av在线| 国产国语露脸激情在线看| 麻豆一二三区av精品| 97碰自拍视频| 久久精品国产亚洲av高清一级| 中出人妻视频一区二区| 国产亚洲av高清不卡| 在线免费观看的www视频| 两性夫妻黄色片| 脱女人内裤的视频| 大型黄色视频在线免费观看| 久久中文字幕一级| 多毛熟女@视频| 侵犯人妻中文字幕一二三四区| 国产私拍福利视频在线观看| 欧美日韩福利视频一区二区| 搞女人的毛片| 男人舔女人下体高潮全视频| 久久九九热精品免费| 啦啦啦观看免费观看视频高清 | 色综合欧美亚洲国产小说| 国产成+人综合+亚洲专区| 亚洲国产欧美日韩在线播放| 久久狼人影院| 黄色视频不卡| 国产精品久久久久久人妻精品电影| 高清毛片免费观看视频网站| 最新在线观看一区二区三区| 国产高清videossex| 亚洲一区二区三区不卡视频| 少妇粗大呻吟视频| 他把我摸到了高潮在线观看| 91成年电影在线观看| av超薄肉色丝袜交足视频| 两人在一起打扑克的视频| 国内久久婷婷六月综合欲色啪| 精品国产乱子伦一区二区三区| 免费在线观看日本一区| 午夜福利视频1000在线观看 | 在线av久久热| 国产精品永久免费网站| 成人欧美大片| 久久久久久久久中文| 亚洲国产精品合色在线| 国产精品久久久久久亚洲av鲁大| 两个人免费观看高清视频| 久久中文字幕一级| 一级作爱视频免费观看| 国产精品亚洲av一区麻豆| 欧美一级a爱片免费观看看 | 欧美日韩一级在线毛片| 欧美日韩亚洲国产一区二区在线观看| 一级毛片高清免费大全| 亚洲熟女毛片儿| 国产精品一区二区三区四区久久 | 精品日产1卡2卡| 精品不卡国产一区二区三区| 亚洲中文av在线| 性欧美人与动物交配| 亚洲欧美精品综合一区二区三区| 久久香蕉国产精品| 亚洲男人的天堂狠狠| 精品一区二区三区视频在线观看免费| 性色av乱码一区二区三区2| 免费久久久久久久精品成人欧美视频| 欧美一区二区精品小视频在线| 久久人妻福利社区极品人妻图片| 久久午夜综合久久蜜桃| 国产男靠女视频免费网站| av视频在线观看入口| 国产av一区在线观看免费| 久久婷婷成人综合色麻豆| 亚洲性夜色夜夜综合| 欧美另类亚洲清纯唯美| 一区二区三区高清视频在线| 一个人观看的视频www高清免费观看 | 18禁观看日本| 免费人成视频x8x8入口观看| 国产成人免费无遮挡视频| 亚洲国产毛片av蜜桃av| 国产av又大| 精品国产国语对白av| 欧美黑人精品巨大| 女生性感内裤真人,穿戴方法视频| 波多野结衣一区麻豆| 国产亚洲精品一区二区www| 日本 av在线| 香蕉国产在线看| 搡老熟女国产l中国老女人| 在线观看免费视频网站a站| 男人的好看免费观看在线视频 | 我的亚洲天堂| 国产一区在线观看成人免费| 国产精品美女特级片免费视频播放器 | 国产一区二区激情短视频| 一区在线观看完整版| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲精品不卡| 热99re8久久精品国产| 在线十欧美十亚洲十日本专区| 亚洲av美国av| 亚洲av电影不卡..在线观看| 国产精品久久久久久亚洲av鲁大| 禁无遮挡网站| 99国产精品一区二区三区| 黄片小视频在线播放| 极品人妻少妇av视频| 曰老女人黄片| 国产av精品麻豆| 国产精品永久免费网站| 精品久久久久久,| 一区二区三区精品91| 亚洲国产欧美网| 久热这里只有精品99| 可以在线观看的亚洲视频| 757午夜福利合集在线观看| 亚洲成人国产一区在线观看| 欧美中文日本在线观看视频| 国产一区二区三区视频了| 中文字幕另类日韩欧美亚洲嫩草| 亚洲色图综合在线观看| 午夜福利欧美成人| 亚洲欧美激情综合另类| 国产午夜福利久久久久久| 久久中文字幕一级| 一级毛片精品| 午夜免费观看网址| 自拍欧美九色日韩亚洲蝌蚪91| 999久久久精品免费观看国产| 丝袜美腿诱惑在线| 夜夜躁狠狠躁天天躁| 色在线成人网| bbb黄色大片| 9热在线视频观看99| 日韩三级视频一区二区三区| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 母亲3免费完整高清在线观看| 国产精品电影一区二区三区| 国产91精品成人一区二区三区| 亚洲欧美激情综合另类| 久久精品91蜜桃| 久久中文字幕人妻熟女| 欧美大码av| 国产男靠女视频免费网站| 桃红色精品国产亚洲av| 看黄色毛片网站| 伊人久久大香线蕉亚洲五| 老汉色av国产亚洲站长工具| 欧美成狂野欧美在线观看| 无限看片的www在线观看| 精品乱码久久久久久99久播| 国产亚洲欧美精品永久| 老熟妇仑乱视频hdxx| 电影成人av| 亚洲中文日韩欧美视频| 中文字幕人妻丝袜一区二区| 欧美国产日韩亚洲一区| 色在线成人网| 国内精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 两个人视频免费观看高清| 99精品在免费线老司机午夜| 在线免费观看的www视频| 成年女人毛片免费观看观看9| 欧美日韩黄片免| 亚洲一码二码三码区别大吗| 亚洲国产日韩欧美精品在线观看 | 午夜精品在线福利| 日日夜夜操网爽| www.自偷自拍.com| 亚洲第一青青草原| 日韩av在线大香蕉| 美女 人体艺术 gogo| 99国产精品99久久久久| 97碰自拍视频| 免费高清在线观看日韩| e午夜精品久久久久久久| 香蕉久久夜色| 亚洲国产精品sss在线观看| 午夜亚洲福利在线播放| 中出人妻视频一区二区| 日韩精品中文字幕看吧| 亚洲激情在线av| 99香蕉大伊视频| 国产亚洲精品一区二区www| 欧美午夜高清在线| 国产精品 欧美亚洲| 乱人伦中国视频| 久久性视频一级片| 又紧又爽又黄一区二区| 免费搜索国产男女视频| 久久久久国产精品人妻aⅴ院| 久久香蕉国产精品| 九色国产91popny在线| 免费少妇av软件| 国产欧美日韩综合在线一区二区| 悠悠久久av| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 亚洲精品美女久久av网站| 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 午夜精品在线福利| 在线观看www视频免费| av视频在线观看入口| 国产成人精品久久二区二区免费| 国产精品日韩av在线免费观看 | 国产三级在线视频| 麻豆国产av国片精品| 无限看片的www在线观看| 精品国产一区二区三区四区第35| 国产97色在线日韩免费| 久久欧美精品欧美久久欧美| 黄色片一级片一级黄色片| 亚洲熟女毛片儿| 69av精品久久久久久| 精品国产国语对白av| 99在线人妻在线中文字幕| 91大片在线观看| 国产精品香港三级国产av潘金莲| 精品午夜福利视频在线观看一区| 成人三级黄色视频| 国产单亲对白刺激| 村上凉子中文字幕在线| 亚洲成a人片在线一区二区| 少妇粗大呻吟视频| 久久香蕉激情| 身体一侧抽搐| 如日韩欧美国产精品一区二区三区| 国产乱人伦免费视频| 91av网站免费观看| 欧美绝顶高潮抽搐喷水| 黑丝袜美女国产一区| 久久 成人 亚洲| 美女高潮喷水抽搐中文字幕| 人人澡人人妻人| 一进一出好大好爽视频| √禁漫天堂资源中文www| 久久国产乱子伦精品免费另类| 美女 人体艺术 gogo| 久久久久久久午夜电影| 真人做人爱边吃奶动态| 国产亚洲欧美在线一区二区| 麻豆一二三区av精品| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 黄色视频不卡| 怎么达到女性高潮| 长腿黑丝高跟| 可以在线观看毛片的网站| 国产av一区二区精品久久| 亚洲第一欧美日韩一区二区三区| 免费少妇av软件| 女人被狂操c到高潮| 99国产极品粉嫩在线观看| 日韩有码中文字幕| 日本免费一区二区三区高清不卡 | 成人三级黄色视频| 精品午夜福利视频在线观看一区| 国产一区在线观看成人免费| 可以免费在线观看a视频的电影网站| 涩涩av久久男人的天堂| 午夜精品久久久久久毛片777| 久久久久久免费高清国产稀缺| 十八禁人妻一区二区| 变态另类成人亚洲欧美熟女 | 亚洲国产欧美日韩在线播放| 亚洲人成电影免费在线| www.自偷自拍.com| 免费不卡黄色视频| 天天躁狠狠躁夜夜躁狠狠躁| 成年女人毛片免费观看观看9| 久久人人精品亚洲av| 国内精品久久久久久久电影| 亚洲美女黄片视频| 亚洲欧美精品综合久久99| 在线观看免费视频网站a站| 十分钟在线观看高清视频www| 亚洲精品一区av在线观看| 午夜老司机福利片| 日本五十路高清| 亚洲欧美激情综合另类| 欧美日本亚洲视频在线播放| 国产精品亚洲av一区麻豆| 亚洲自拍偷在线| 国产区一区二久久| 国产一区在线观看成人免费| 日本三级黄在线观看| 两个人免费观看高清视频| 多毛熟女@视频| 国产蜜桃级精品一区二区三区| 午夜成年电影在线免费观看| 久久精品国产清高在天天线| 亚洲情色 制服丝袜| 人人妻人人爽人人添夜夜欢视频| 欧美最黄视频在线播放免费| 国产成人精品在线电影| 99国产精品99久久久久| 久久天堂一区二区三区四区| 成熟少妇高潮喷水视频| 国产精品久久久人人做人人爽| 精品国产一区二区久久| 亚洲精品国产区一区二| 好男人在线观看高清免费视频 | 国产一区二区三区综合在线观看| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 日韩精品中文字幕看吧| 这个男人来自地球电影免费观看| 精品国产超薄肉色丝袜足j| 成年人黄色毛片网站| 老司机靠b影院| 欧美人与性动交α欧美精品济南到| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美激情综合另类| 免费少妇av软件| 成人亚洲精品av一区二区| 亚洲精品久久成人aⅴ小说| www.精华液| 亚洲视频免费观看视频| 免费在线观看日本一区| 免费高清在线观看日韩| 精品国产国语对白av| 亚洲熟妇熟女久久| 亚洲欧洲精品一区二区精品久久久| 波多野结衣av一区二区av| 国产亚洲av嫩草精品影院| 日本黄色视频三级网站网址| 在线观看日韩欧美| 久久人人精品亚洲av| 大码成人一级视频| 男女做爰动态图高潮gif福利片 | 日本 av在线| 正在播放国产对白刺激| 亚洲成av片中文字幕在线观看| 脱女人内裤的视频| 黄色视频,在线免费观看| 国产精品亚洲美女久久久| а√天堂www在线а√下载| 激情在线观看视频在线高清| 久久久久九九精品影院| 少妇粗大呻吟视频| 女人精品久久久久毛片| 日韩精品免费视频一区二区三区| 久久人妻av系列| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 一个人免费在线观看的高清视频| 亚洲 欧美一区二区三区| 亚洲激情在线av| 久久草成人影院| 黑人巨大精品欧美一区二区mp4| 久久久精品欧美日韩精品| 国产aⅴ精品一区二区三区波| 88av欧美| 国产成人精品久久二区二区免费| 日本a在线网址| 777久久人妻少妇嫩草av网站| 久久天躁狠狠躁夜夜2o2o| 搡老妇女老女人老熟妇| 手机成人av网站| 日韩大码丰满熟妇| 国产成人欧美| e午夜精品久久久久久久| 中文字幕人成人乱码亚洲影| 久久午夜综合久久蜜桃| 女性生殖器流出的白浆| 少妇熟女aⅴ在线视频| 中国美女看黄片| 亚洲电影在线观看av| 国产精品美女特级片免费视频播放器 | 日韩大码丰满熟妇| 好男人电影高清在线观看| 首页视频小说图片口味搜索| 久久精品国产亚洲av香蕉五月| 最新美女视频免费是黄的| 久久香蕉国产精品| 天天一区二区日本电影三级 | 97碰自拍视频| 人妻久久中文字幕网| 国产一卡二卡三卡精品| 91精品国产国语对白视频| 国产亚洲精品久久久久5区| 97人妻天天添夜夜摸| 给我免费播放毛片高清在线观看| 亚洲精品在线观看二区| 法律面前人人平等表现在哪些方面| 亚洲男人天堂网一区| 看黄色毛片网站| 国产高清有码在线观看视频 | 精品国产乱子伦一区二区三区| 午夜福利免费观看在线| 激情在线观看视频在线高清| 欧美成狂野欧美在线观看| 亚洲伊人色综图| 成人三级做爰电影| 国产成年人精品一区二区| 亚洲av成人一区二区三| 电影成人av| 每晚都被弄得嗷嗷叫到高潮| 亚洲免费av在线视频| 在线观看免费视频网站a站| 夜夜躁狠狠躁天天躁| 国产av精品麻豆| 亚洲精品一卡2卡三卡4卡5卡| 国产欧美日韩一区二区精品| 波多野结衣av一区二区av| 伦理电影免费视频| 亚洲无线在线观看| 成年版毛片免费区| 精品熟女少妇八av免费久了| 日本欧美视频一区| 50天的宝宝边吃奶边哭怎么回事| 欧美激情高清一区二区三区| 国语自产精品视频在线第100页| 99在线视频只有这里精品首页| 色在线成人网| 久久人妻av系列| 亚洲狠狠婷婷综合久久图片| 777久久人妻少妇嫩草av网站| 久久久国产成人免费| 精品久久久久久,| 制服人妻中文乱码| 国产av精品麻豆| 久久国产精品影院| bbb黄色大片| avwww免费| 99精品在免费线老司机午夜| 满18在线观看网站| 免费在线观看影片大全网站| 精品欧美一区二区三区在线| www.999成人在线观看| 给我免费播放毛片高清在线观看| 亚洲美女黄片视频| xxx96com| 日本免费a在线| 亚洲中文字幕日韩| 日韩一卡2卡3卡4卡2021年| 一区福利在线观看| 国产1区2区3区精品| 色播亚洲综合网| 一进一出抽搐gif免费好疼| 可以免费在线观看a视频的电影网站| 99热只有精品国产| 中文字幕精品免费在线观看视频| 国产亚洲av嫩草精品影院| 午夜影院日韩av| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 亚洲成人免费电影在线观看| 老司机午夜十八禁免费视频| 国产精品久久久人人做人人爽| 男男h啪啪无遮挡| 69av精品久久久久久| 一进一出抽搐gif免费好疼| 色av中文字幕| 国产一区二区激情短视频| 手机成人av网站| 一进一出抽搐动态| 两个人免费观看高清视频| 热re99久久国产66热| 69av精品久久久久久| 纯流量卡能插随身wifi吗| 亚洲精品国产一区二区精华液| 欧美激情极品国产一区二区三区| 欧美性长视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 午夜影院日韩av| 黄片播放在线免费| 免费看美女性在线毛片视频| 黄网站色视频无遮挡免费观看| 欧美丝袜亚洲另类 | 中文字幕高清在线视频| av超薄肉色丝袜交足视频| 日韩精品青青久久久久久| 久久久久精品国产欧美久久久| 国产精品自产拍在线观看55亚洲| 亚洲成人免费电影在线观看| 欧美中文日本在线观看视频| АⅤ资源中文在线天堂| 9热在线视频观看99| 黄色片一级片一级黄色片| 丰满的人妻完整版| 在线观看舔阴道视频| 在线观看免费日韩欧美大片| 美女免费视频网站| 可以在线观看毛片的网站| 国产精品 国内视频| 99国产极品粉嫩在线观看| 成人18禁高潮啪啪吃奶动态图| 少妇裸体淫交视频免费看高清 | 一级毛片精品| 18美女黄网站色大片免费观看| 免费看a级黄色片| 久久伊人香网站| 国产精品自产拍在线观看55亚洲| 亚洲国产高清在线一区二区三 | 亚洲第一电影网av| 极品教师在线免费播放| 亚洲精品国产区一区二| 亚洲男人的天堂狠狠| 国产一区二区三区在线臀色熟女| 久久香蕉精品热| 成年女人毛片免费观看观看9| 亚洲精品粉嫩美女一区| 老司机在亚洲福利影院| 日本vs欧美在线观看视频| 欧美黑人欧美精品刺激| 老熟妇乱子伦视频在线观看| 极品人妻少妇av视频| 欧美黑人欧美精品刺激| 欧美不卡视频在线免费观看 | 在线观看日韩欧美| 色综合亚洲欧美另类图片| 国产精品亚洲美女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费av片在线观看野外av| 国产精品亚洲美女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 国产免费av片在线观看野外av| 亚洲专区字幕在线| 可以在线观看的亚洲视频| 国产私拍福利视频在线观看| 色婷婷久久久亚洲欧美| 国产精品美女特级片免费视频播放器 | 国产成人欧美在线观看| 国产精品九九99| 国产视频一区二区在线看| 91麻豆av在线| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费观看网址| 国产精品乱码一区二三区的特点 | 久久精品aⅴ一区二区三区四区| 咕卡用的链子| 一区二区三区精品91| 国产av在哪里看| www.熟女人妻精品国产|