• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*

    2021-11-23 07:29:48ZheWang王喆andWenguangZhu朱文光
    Chinese Physics B 2021年11期
    關(guān)鍵詞:朱文

    Zhe Wang(王喆) and Wenguang Zhu(朱文光)

    1Department of Physics,University of Science and Technology of China,Hefei 230026,China

    2International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    3Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,School of Physical Sciences,University of Science and Technology of China,Hefei 230026,China

    Keywords: transition metal dichalcogenides,phase transformation,hydrogen evolution reaction,density functional theory

    1. Introduction

    Transition metal dichalcogenides (TMDs), as a class of representative layered materials,received tremendous research attention in recent years owing to their rich electronic, optical, and catalytic properties.[1-5]In the atomic structures of TMDs,each monolayer contains a transition-metal layer sandwiched between two chalcogenide layers. The variation in the stacking geometry of the three atomic layers may leads to different phases, typically a trigonal prismatic phase (1H) and an octahedral phase(1T).An intriguing feature of monolayer TMDs is their electronic structures critically depending on the atomic-layer stacking geometry. For group-VI-element TMDs MoS2, its trigonal prismatic phase is a good semiconductor with a sizable bandgap,whereas its octahedral phase becomes metallic. This transition can be qualitatively understood as the difference in the splitting and filling of the transitionmetal d-orbital dominated energy bands due to the different crystal symmetries and coordination environments of the two phases.[6]Such distinct electronic structures may in turn lead to disparate physical and chemical properties,such as catalytic activity. Although both 1H- and 1T-MoS2has shown to be catalytic for the hydrogen evolution reaction(HER),the active sites are solely limited at the edges in the 1H phase[7,8]but include the whole basal plane of the 1T phase.[9-14]However,for pristine MoS2,the 1T phase is energetically less stable than the 1H phase. Therefore,to enhance the catalytic performance of MoS2, it is highly desirable to increase the ratio of the 1T phase via tuning the relative stability of the two phases.

    In this effort, there have been extensive attempts to induce structural phase transformation of group-VI elements Mo- and W-based TMDs and stabilize the 1T phase.[15-18]The main strategy of these research is to dope extra electrons into the TMDs via, for example, Re doping[19]and alkali ion intercalation.[20-23]Some other approaches including mechanical stress[24]and metal substrates[25-27]have also been reported. However, the stability of the obtained 1T phase still needs to be improved.[28,29]In addition, for the catalytic purpose, it is also vitally important to leave the active sites open for chemical reaction.

    In this work, we use first-principles density functional theory (DFT) calculations to investigate the effects of three low-work-function metal substrates including Ti, Zr, and Hf on the structural,electronic,and catalytic properties of monolayer MoS2and WS2. A distorted 1T phase,named 1T'phase,is identified to become energetically most stable in the presence of the metal substrates. The electronic structure analysis indicates that the metal substrates donate electrons to the MoS2and WS2monolayers,leading to the phase transformation. Meanwhile, the presence of the substrates also significantly reduces the kinetic barriers of the phase transformation. In addition, Gibbs free energy calculations suggest that the HER catalytic activity on the top surface of the 1T'-MoS2monolayers is still largely preserved as placed on the Zr or Hf substrate.

    2. Computational methods

    The first-principles DFT calculations were performed using the Viennaab initiosimulation package(VASP).[30]Core and valence electrons were described using the projectoraugmented wave (PAW) method.[31,32]The exchange and correlation functional was treated using the Perdew-Burke-Ernzerhof (PBE) parametrization of generalized gradient approximation(GGA)for structural relaxations and total energy calculations.[33]The energy cut-off of the plane wave basis was set to 300 eV. Electronic minimization was performed with a tolerance of 10?4eV, and ionic relaxation was performed with a force tolerance of 0.01 eV/?A on each ion. A vacuum region more than 15 ?A was used to ensure decoupling between neighboring slabs. AΓ-centered 18×18×1 Monkhorst-Pack[34]k-mesh was used fork-point sampling.The climbing image nudged elastic band(CI-NEB)method[35]was used to determine the minimum energy pathways of the various kinetic processes and their transition states with five intermediate geometries(images)interpolated between the initial and the final states, and the transition states were finally achieved by the optimized central image. In addition,the van der Waals corrections was included as parameterized in the semiempirical DFT-D3(BJ)method.[36,37]

    3. Results and discussion

    3.1. Structures and structural stability of TMDs with substrates

    Monolayer 1H-and 1T-MoS2(WS2),as shown in Fig.1,are both composed of three layers of atoms, and each atomic layer contains only one element stacking in a sequence of SMo(W)-S.All the atoms in each atomic layer are arranged into a close-packed triangular lattice. The difference between the two phases is their vertical stacking geometries. As shown in Figs.1(b)and 1(d),respectively,the 1H phase follows an ABA stacking sequence,while the 1T phase forms an ABC stacking sequence. For freestanding MoS2and WS2monolayers, the 1H phase is energetically most stable with total energy differences of approximately 0.8 eV from the DFT calculations. In addition, the freestanding 1T-MoS2and 1T-WS2monolayers are metastable. A more stable phase,named 1T'phase,can be derived from the high-symmetry 1T phase via local structural distortion, ending up with a 2×1 superstructure and a small band gap opening(Figs.1(e)and 1(f)).The calculated total energy of the 1T'phase is 0.25 eV/MoS2(0.32 eV/WS2) lower than that of the 1T phase,whereas it is still higher than that of 1H phase by around 0.6 eV for monolayer MoS2(WS2).

    Threehcpmetals, Ti, Zr, and Hf, are chosen to investigate the effects of low-work-function metal substrates on the structural stability and catalytic activity of monolayer MoS2and WS2. The lattices of the (0001) surface of these metals(Figs. 1(g) and 1(h)) can nicely match with the in-plane lattices of MoS2and WS2. The calculated lattice constants of MoS2and WS2in different phases and the metals along with their lattice mismatches are summarized in Table 1. The lattice mismatches between MoS2(WS2)and Ti,Zr,and Hf are~7.8%,~1.5%,and~0.4%,respectively.In the calculations of the combined systems, the lattices of MoS2and WS2are adjusted to match the optimal lattices of the metal substrates,unless otherwise specified.

    Table 1. Calculated lattice constants of MoS2 and WS2 in different phases and the metal substrates along with their lattice mismatches.

    Fig.1. Atomic structures of monolayer MoS2 (WS2),with Mo(W)atoms in red and S atoms in yellow,and the metal substrates,with the metal atoms in blue. (a)-(b)1H phase. (c)-(d)1T phase. (e)-(f)1T' phase. (g)-(h)Ti,Zr or Hf substrate. The sites of the metal atoms on the surface and second layer,and the hollow site are defined as A,B,and C,respectively.

    To determine the most favorable stacking structures of the monolayer MoS2and WS2on the metal substrates, various possible high-symmetry stacking configurations are considered.For the(0001)surface terminated slabs of hcp metals,the atoms in each layer also form a triangular lattice, and the vertical stacking follows an ABAB sequence. To label different stacking configurations of the TMDs monolayers on the metal substrates,we denote the surface layer of the metal substrates as site A and the second layer as site B. The stacking configurations of the TMDs monolayers, as shown in Fig. 2,can be labeled asXY(X,Y=A,B,C),whereXandYcorrespond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate, respectively.The calculation results of the MoS2/Hf system are summarized in the table of Fig.2, which shows that for the 1H phase, the most favorable stacking configuration is BA, while it is CA for the 1T and 1T'phases. More importantly, in contrast to the freestanding monolayer,the most stable structure of MoS2becomes the 1T'phase in the presence of the Hf substrate.

    To further examine the validity of our calculations, we thoroughly investigated the relative stability of various structural phases of MoS2and WS2on Ti, Zr, and Hf substrates with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H-or 1TTMDs monolayers. The calculated relative energies of different phases of MoS2and WS2in the two most likely configurations CA and BA on the metal substrates are summarized in Table 2. The results clearly confirm the above conclusion.The 1T'/1T phase of MoS2and WS2monolayers are always energetically more favorable than the 1H phase on these metal substrates. In the cases of using Ti as the substrate, the 1T'phase becomes unstable exclusively as the lattice parameter is set to the lattice constant of Ti,because of a large compressive strain imposed on the TMDs monolayers. Instead, the structures were stabilized into the 1T phase,which still have lower energies than the 1H phase. Therefore, the proposed metal substrates can effectively reverse the relative thermaldynamic stability of monolayer MoS2and WS2from the 1H phase for the freestanding case to the 1T'/1T phase.

    Fig.2. Atomic structures of various possible high-symmetry stacking configurations and their relative energies in the MoS2/Hf system. The different stacking configurations are labeled as XY (X,Y =A, B, C), where X and Y correspond to the positions of the bottom S layer and the Mo atom with respect to the underlying metal substrate,respectively. All data are the energies per MoS2.

    Table 2. Relative energies of various structural phases of MoS2 and WS2 with and without the metal substrates. The combined systems with different settings of the lattice parameters using the optimal lattice constant of the metal substrate or the 1H- or 1T-TMDs. The energies of each row are relative to the energy of the most stable structure in this row. All data are the energy per MoS2 or WS2.

    Fig.3. Band structures of(a)1H-MoS2 and(b)1T'-MoS2 with and without the metal substrates,where the MoS2 derived energy bands in the combined systems are highlighted in red.

    The underlying mechanism of the metal substrateinduced phase stability reversal can be revealed from electronic structure analysis. Figure 3 shows the calculated band structures of 1H-and 1T'-MoS2monolayers on the three metal substrates,respectively,where the MoS2derived energy bands are highlighted in red. For comparison, the calculated band structures of freestanding MoS2monolayers in the 1H and 1T'phases are also illustrated in Fig.3.Although the energy bands of MoS2are modified to a certain extent in the combined systems due to the hybridization with the metal substrates, the positions of the original band edges of freestanding MoS2can still be identified. From these plots,it can be seen that for both 1H and 1T'phases,the Fermi levels of the combined systems were always moved up into the original conduction bands of MoS2, indicating the existence of effective electron transfer from the metal substrates to the MoS2monolayers. This observation is also consistent with our initial design of taking advantage of a low-work-function metal substrate to donate electrons into TMDs so as to reverse the relative stability from the 1H phase to the 1T'/1T phase.

    3.2. Kinetics of phase transformation

    Kinetics is also a key factor for the feasibility of phase transformation. In this regard,we investigated the kinetic processes and calculated the energy barriers of MoS2and WS2monolayers transforming from the 1H phase to the 1T phase in the presence of the metal substrates. Since the rate-limiting processes for the 1H phase to the 1T and 1T'phases are essentially the same,[39]we use the 1T phase as the final state to simplify the calculation. The difference between 1H and 1T phases is the vertical alignment of the two chalcogen layers. The phase transformation thus can be achieved by simply moving one of the chalcogen layers collectively with respect to the other two atomic layers. However, when the TMDs monolayers placed on the metal substrates, the top and the bottom chalcogen layers become inequivalent, and thus there are two possible phase transformation pathways from the 1H phase to the 1T phase. For the 1H phase, the positions of the top and bottom S layer are both at the site B (defined in Fig. 1) with respect to the underlying metal substrate. The phase transformation from the 1H phase to the 1T phase can be achieved by simply moving the top or the bottom S layer from the site B to the site C. Figures 4(a) and 4(c) show the calculated energy profiles of the kinetic processes involving the moving of the top S layer. Compared with the cases of freestanding monolayers, the energy barriers are effectively reduced from~1.6 eV to~1.2 eV.More interestingly,in the kinetic process involving the moving of the bottom S layer as shown in Figs. 4(b) and 4(d), the energy barriers are further substantially reduced to~0.7 eV. For both cases, the optimized transition states correspond to the moving S atoms located nearly at the bridge sites of the central Mo/W layer.The energy barriers to move the bottom S layer are smaller than the barrier of a freestanding monolayer MoS2transforming from the 1T'phase to the 1H phase (~0.9 eV).[39]Such a 1T'to 1H phase transformation has been demonstrated to be experimentally accessible for MoS2.[28,29]All these results indicate that the proposed metal substrates can effectively facilitate the phase transformation of adsorbed MoS2and WS2monolayers from the 1H phase to the 1T'/1T phase.

    Fig.4. Two possible phase transformation pathways from the 1H phase to the 1T phase. (a)MoS2 with the moving of the top S layer,(b)MoS2 with the moving of the bottom S layer,(c)WS2 with the moving of the top S layer,(d)WS2 with the moving of the bottom S layer. In all plots,the green circles and arrows attached to S atoms indicate the moving atom and the direction of atomic motion during the process of the phase transformation.

    3.3. Substrate effects on the hydrogen evolution reaction

    We next investigate the catalytic activity of the 1T'-MoS2and 1T'-WS2monolayers with the support of the metal substrates. Different from the 1T'phase achieved by ion intercalation, the top surface of the TMDs monolayers is still freely exposed for the chemical reaction. In addition,the metal substrates can be used directly as an electrode. Therefore, such a combined system is an ideal setup for the electrocatalytic HER.

    It has been commonly recognized that the catalytic performance of an HER is essentially dictated by the Gibbs free energy (?GH) of H adsorption on the catalysts with a value around zero being optimal.[40]For this reason and simplicity,we calculated the Gibbs free energies of atomic hydrogen adsorption on the metal substrate supported MoS2and WS2monolayers with 4×4 supercells as a measure. The calculation results are summarized in Table 3. For freestanding MoS2, the basal plane of the 1H phase is catalytically inert,?GH=1.92 eV, while the 1T'phase is active, with a ?GHof 0.19 eV. In the presence of the metal substrates, the ?GHof 1H-MoS2is reduced to~1.5 eV, but still too large for the HER.For 1T'-MoS2,although their ?GHare generally increased by the metal substrates, the ?GHof 1T'-MoS2with Zr and Hf substrates are 0.48 eV and 0.56 eV, respectively,which are still comparable to the ?GHof Au (~0.5 eV).[41]For the case of 1T'-MoS2/Ti, the ?GHincreases to 1.30 eV,which may be related to the large lattice mismatch. For the cases of 1T'-WS2, their ?GHare always larger than those of 1T'-MoS2on the same metal substrate,among which the 1T'-WS2/Zr system has the lowest ?GHas large as 0.75 eV.To sum up,MoS2with Zr or Hf as the substrate may be considered as a promising HER catalyst.

    Table 3. The Gibbs free energy(?GH)of the hydrogen evolution reaction for 4×4 TMDs supercell with and without the metal substrates at 1/16 H coverage.

    Overall, the metal substrates reduced the ?GHof the 1H phase and increased the ?GHof the 1T'phase. According to previous studies on freestanding TMDs,[42,43]the strength of H adsorption on the surface of TMDs is determined by the ability of the surface chalcogen atoms to attract electrons from H, and ?GHclosely correlates to the position of the lowest unoccupied state of the catalyst (the conduction band minimum for semiconductors or the Fermi level for metals) with respect to the vacuum level. To examine its validity in our systems,we plot ?GHversusthe lowest unoccupied state positionεLUS, which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2) or the Fermi level for MoS2(WS2) in the presence of the metal substrates. As shown in Fig. 5, an obvious linear correlation is revealed, which in consistent with the previous work,[42,43]and also indicates thatεLUSis still a significant determinant for the HER of MoS2(WS2)on the metal substrates. In addition,compared with the freestanding monolayer MoS2(WS2), the values ofεLUSincrease for the 1T'phase and decrease for the 1H phase in the presence of the metal substrates,which can be attributed to the interaction and charge transfer between the MoS2(WS2) and the metal substrates.

    Fig.5.Correlation between the Gibbs free energy ?GH and the lowest unoccupied state εLUS,which is calculated as the energy difference of the vacuum level and the conduction band minimum for freestanding MoS2(WS2)or the Fermi level for MoS2 (WS2)in the presence of the metal substrates.

    4. Conclusions

    In summary,we have demonstrated from both energetics and kinetics aspects that low-work-function metals Ti,Zr,and Hf can be used as a functional substrate to effectively make monolayer MoS2and WS2undergo structural transformation from the 1H phase to the 1T'/1T phase,based on DFT calculations. In addition,1T'-MoS2with Zr or Hf as a substrate may function as a potential catalyst for the HER.

    Acknowledgment

    Computational support was provided by National Supercomputing Center in Tianjin.

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    走三邊
    秦川好
    唱起號子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    伦精品一区二区三区| 国产极品天堂在线| 国产精品秋霞免费鲁丝片| 又粗又硬又长又爽又黄的视频| 天天躁日日操中文字幕| 秋霞在线观看毛片| 中文资源天堂在线| 国产永久视频网站| 国产极品天堂在线| 高清毛片免费看| 亚洲国产最新在线播放| 国产免费视频播放在线视频| 一级毛片久久久久久久久女| 91在线精品国自产拍蜜月| 我要看日韩黄色一级片| 综合色丁香网| 美女内射精品一级片tv| 久久国内精品自在自线图片| 亚洲人与动物交配视频| 欧美日韩亚洲高清精品| 中文在线观看免费www的网站| 一个人免费看片子| 国产在线男女| 伦理电影大哥的女人| 人妻夜夜爽99麻豆av| 热re99久久精品国产66热6| 99久国产av精品国产电影| 久久久久久久久久久丰满| 大香蕉久久网| 男女下面进入的视频免费午夜| 天堂8中文在线网| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 欧美三级亚洲精品| 九色成人免费人妻av| 日韩亚洲欧美综合| 国产伦精品一区二区三区四那| 国产av码专区亚洲av| 色网站视频免费| 国产v大片淫在线免费观看| 天堂俺去俺来也www色官网| 日韩一区二区三区影片| 少妇熟女欧美另类| 亚洲av不卡在线观看| 亚洲国产精品国产精品| 青春草视频在线免费观看| 国产精品蜜桃在线观看| 日本欧美视频一区| 免费看不卡的av| 久久女婷五月综合色啪小说| 日韩av不卡免费在线播放| 在线观看一区二区三区| 丰满人妻一区二区三区视频av| 舔av片在线| 亚洲va在线va天堂va国产| 久久人人爽人人片av| 精品人妻一区二区三区麻豆| av视频免费观看在线观看| 久久女婷五月综合色啪小说| 亚洲av国产av综合av卡| 国产伦精品一区二区三区视频9| 少妇的逼好多水| 国产免费视频播放在线视频| 国产人妻一区二区三区在| av在线观看视频网站免费| 一边亲一边摸免费视频| 日韩 亚洲 欧美在线| 99久久精品一区二区三区| 日韩人妻高清精品专区| 国产精品爽爽va在线观看网站| 51国产日韩欧美| 国产欧美日韩精品一区二区| 亚洲真实伦在线观看| 一级二级三级毛片免费看| 日本黄色片子视频| 99re6热这里在线精品视频| 国产一区二区三区av在线| 久久综合国产亚洲精品| 国产91av在线免费观看| 黑丝袜美女国产一区| av国产免费在线观看| 观看美女的网站| 欧美3d第一页| 欧美激情极品国产一区二区三区 | 亚洲,一卡二卡三卡| 国产精品伦人一区二区| av天堂中文字幕网| 国产精品三级大全| 成人二区视频| 熟女电影av网| 成人特级av手机在线观看| 少妇熟女欧美另类| 国产精品.久久久| 国产伦精品一区二区三区视频9| 亚洲国产最新在线播放| 97在线人人人人妻| 午夜福利高清视频| 少妇裸体淫交视频免费看高清| 狂野欧美白嫩少妇大欣赏| 国产精品人妻久久久久久| 日韩av在线免费看完整版不卡| 久久ye,这里只有精品| 日本黄色片子视频| 99精国产麻豆久久婷婷| 久久久精品94久久精品| 干丝袜人妻中文字幕| 亚洲最大成人中文| 免费不卡的大黄色大毛片视频在线观看| 色婷婷久久久亚洲欧美| 国产在线男女| 免费播放大片免费观看视频在线观看| 国内精品宾馆在线| 精品视频人人做人人爽| 国产午夜精品久久久久久一区二区三区| 久久人人爽av亚洲精品天堂 | 日日撸夜夜添| 热99国产精品久久久久久7| 一级毛片aaaaaa免费看小| 日韩欧美 国产精品| 国国产精品蜜臀av免费| 久久久久久久国产电影| 国内少妇人妻偷人精品xxx网站| 亚洲精品国产成人久久av| 国产精品一二三区在线看| 国产成人freesex在线| 国产精品秋霞免费鲁丝片| 国产精品久久久久成人av| 国产淫语在线视频| 日本与韩国留学比较| 一区二区三区四区激情视频| 国产大屁股一区二区在线视频| av网站免费在线观看视频| 美女xxoo啪啪120秒动态图| 特大巨黑吊av在线直播| 最近中文字幕2019免费版| 久久久国产一区二区| 少妇人妻精品综合一区二区| 成人亚洲精品一区在线观看 | 亚洲人成网站在线播| 九九在线视频观看精品| 成人18禁高潮啪啪吃奶动态图 | 女人十人毛片免费观看3o分钟| 直男gayav资源| 久久人妻熟女aⅴ| av一本久久久久| 久久久久久久大尺度免费视频| 免费av不卡在线播放| 亚洲av福利一区| 一级黄片播放器| 亚洲在久久综合| 久久久久久久久大av| 亚洲国产精品成人久久小说| 大香蕉久久网| 激情五月婷婷亚洲| av线在线观看网站| 亚洲一区二区三区欧美精品| 美女福利国产在线 | 亚洲欧美成人综合另类久久久| 中文字幕精品免费在线观看视频 | 免费观看无遮挡的男女| 免费黄频网站在线观看国产| 国产黄频视频在线观看| 嫩草影院入口| 成年女人在线观看亚洲视频| 免费播放大片免费观看视频在线观看| 午夜激情福利司机影院| 成人免费观看视频高清| 欧美国产精品一级二级三级 | 久久久久国产网址| 中文精品一卡2卡3卡4更新| 成年免费大片在线观看| 国产黄片美女视频| 成人漫画全彩无遮挡| 久久精品国产a三级三级三级| 在线看a的网站| 我要看日韩黄色一级片| 一个人免费看片子| 欧美三级亚洲精品| 五月玫瑰六月丁香| 亚洲国产色片| 日韩视频在线欧美| 两个人的视频大全免费| 国产精品人妻久久久影院| 男男h啪啪无遮挡| 亚洲人成网站在线播| 日韩,欧美,国产一区二区三区| 高清黄色对白视频在线免费看 | 五月玫瑰六月丁香| 国产在视频线精品| 直男gayav资源| h日本视频在线播放| 欧美bdsm另类| 国精品久久久久久国模美| 极品教师在线视频| 亚洲,欧美,日韩| 在线观看免费日韩欧美大片 | 秋霞在线观看毛片| 一个人看视频在线观看www免费| 国产成人免费观看mmmm| 亚洲成人一二三区av| 黑丝袜美女国产一区| a级毛片免费高清观看在线播放| 欧美极品一区二区三区四区| 成人毛片a级毛片在线播放| 国产黄片视频在线免费观看| 观看免费一级毛片| 精品国产乱码久久久久久小说| 在现免费观看毛片| 亚洲欧美日韩东京热| 亚洲精品色激情综合| 国产视频内射| 交换朋友夫妻互换小说| 日日摸夜夜添夜夜爱| 精品视频人人做人人爽| 国产精品一及| 亚洲精品456在线播放app| av.在线天堂| 国产精品一区二区在线不卡| 联通29元200g的流量卡| 99热网站在线观看| 日韩一区二区三区影片| 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 极品少妇高潮喷水抽搐| 3wmmmm亚洲av在线观看| 秋霞在线观看毛片| 人体艺术视频欧美日本| 99九九线精品视频在线观看视频| 精品亚洲成国产av| 亚洲真实伦在线观看| 高清欧美精品videossex| 不卡视频在线观看欧美| 一级毛片电影观看| 久久久久久久久久久丰满| 汤姆久久久久久久影院中文字幕| 成年人午夜在线观看视频| 熟女av电影| 日韩大片免费观看网站| 久久精品国产亚洲av天美| 日韩人妻高清精品专区| 99久国产av精品国产电影| 久久久久国产网址| 成人特级av手机在线观看| videos熟女内射| 国产一区二区三区av在线| 我要看黄色一级片免费的| 亚洲欧美日韩东京热| 夫妻午夜视频| 国产成人精品一,二区| 国产 一区精品| 老司机影院成人| www.av在线官网国产| 男女边吃奶边做爰视频| 中文字幕制服av| 亚洲精品亚洲一区二区| 婷婷色综合www| 国产在线视频一区二区| 亚洲内射少妇av| 老熟女久久久| 免费播放大片免费观看视频在线观看| 久热久热在线精品观看| 欧美精品一区二区免费开放| 国产黄色视频一区二区在线观看| 两个人的视频大全免费| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放| 亚洲国产欧美人成| 成人美女网站在线观看视频| 国产成人91sexporn| 国产视频内射| 边亲边吃奶的免费视频| 亚洲婷婷狠狠爱综合网| 伊人久久精品亚洲午夜| 丰满迷人的少妇在线观看| 成人美女网站在线观看视频| 日本vs欧美在线观看视频 | 国产精品不卡视频一区二区| xxx大片免费视频| 99热这里只有精品一区| 少妇人妻一区二区三区视频| 在线免费观看不下载黄p国产| 亚洲成人av在线免费| 美女xxoo啪啪120秒动态图| 精品久久久噜噜| 国产精品av视频在线免费观看| 国产精品久久久久久精品电影小说 | 嫩草影院新地址| 97热精品久久久久久| 99热这里只有是精品在线观看| 如何舔出高潮| 成人美女网站在线观看视频| 少妇被粗大猛烈的视频| 亚洲欧美一区二区三区国产| 亚洲成色77777| 97在线视频观看| 亚洲不卡免费看| 国产高潮美女av| 成人无遮挡网站| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 久久午夜福利片| 欧美一级a爱片免费观看看| 精品人妻视频免费看| 男人和女人高潮做爰伦理| 赤兔流量卡办理| 哪个播放器可以免费观看大片| 亚洲国产最新在线播放| 国产欧美日韩精品一区二区| 蜜臀久久99精品久久宅男| 一级毛片我不卡| 国产欧美日韩精品一区二区| 精品国产乱码久久久久久小说| 国产精品久久久久久精品电影小说 | 亚洲精华国产精华液的使用体验| 欧美日韩视频精品一区| 一区二区三区四区激情视频| 男人添女人高潮全过程视频| 看非洲黑人一级黄片| 久久久色成人| 女性生殖器流出的白浆| 97在线视频观看| 中文字幕制服av| 欧美精品人与动牲交sv欧美| a级毛片免费高清观看在线播放| 久久久久性生活片| 女性生殖器流出的白浆| 国产亚洲午夜精品一区二区久久| 久久久久久人妻| av网站免费在线观看视频| 丰满少妇做爰视频| 熟女av电影| 欧美精品国产亚洲| 日韩一区二区三区影片| 欧美三级亚洲精品| 我要看日韩黄色一级片| 亚洲图色成人| 中文欧美无线码| 日韩欧美精品免费久久| 国产伦精品一区二区三区四那| 亚洲成人中文字幕在线播放| 亚洲高清免费不卡视频| 人妻 亚洲 视频| 精品久久久久久久久亚洲| av不卡在线播放| 人妻一区二区av| 日本vs欧美在线观看视频 | 国产精品久久久久久久久免| 午夜福利网站1000一区二区三区| 最近中文字幕高清免费大全6| 久久国产精品男人的天堂亚洲 | 亚洲av中文字字幕乱码综合| 国产精品福利在线免费观看| 亚洲精品久久午夜乱码| 久久国产精品男人的天堂亚洲 | 偷拍熟女少妇极品色| videos熟女内射| 国产午夜精品久久久久久一区二区三区| 欧美日韩国产mv在线观看视频 | 日本爱情动作片www.在线观看| 国产欧美日韩精品一区二区| 十分钟在线观看高清视频www | 18禁在线播放成人免费| 免费黄频网站在线观看国产| 成人国产麻豆网| 男男h啪啪无遮挡| 久久av网站| 亚洲欧洲国产日韩| 韩国高清视频一区二区三区| 国产高潮美女av| 性色avwww在线观看| 伊人久久精品亚洲午夜| 欧美另类一区| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 毛片一级片免费看久久久久| 久久久久国产网址| 亚洲精品国产成人久久av| 亚洲第一av免费看| 国产精品一及| 国产精品久久久久久精品古装| 午夜福利在线观看免费完整高清在| 美女xxoo啪啪120秒动态图| 男女无遮挡免费网站观看| 3wmmmm亚洲av在线观看| 熟女人妻精品中文字幕| 在线天堂最新版资源| 偷拍熟女少妇极品色| 亚洲国产毛片av蜜桃av| 日韩不卡一区二区三区视频在线| 国产黄色视频一区二区在线观看| 日韩成人伦理影院| 中文精品一卡2卡3卡4更新| 97在线人人人人妻| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 国产成人精品婷婷| 欧美极品一区二区三区四区| 蜜臀久久99精品久久宅男| 婷婷色综合www| 人妻一区二区av| 国产男女内射视频| tube8黄色片| 日本wwww免费看| 妹子高潮喷水视频| 男女边摸边吃奶| 插阴视频在线观看视频| 老师上课跳d突然被开到最大视频| 街头女战士在线观看网站| 男人和女人高潮做爰伦理| 久久女婷五月综合色啪小说| 一级毛片久久久久久久久女| 免费人成在线观看视频色| 一区二区av电影网| 男人狂女人下面高潮的视频| 交换朋友夫妻互换小说| 午夜老司机福利剧场| 一个人看视频在线观看www免费| 麻豆国产97在线/欧美| 伊人久久国产一区二区| 一区在线观看完整版| 99热全是精品| 永久免费av网站大全| 最后的刺客免费高清国语| 日韩,欧美,国产一区二区三区| 激情 狠狠 欧美| 精品视频人人做人人爽| 日日撸夜夜添| 伊人久久国产一区二区| 一区二区av电影网| 热re99久久精品国产66热6| av网站免费在线观看视频| 午夜老司机福利剧场| 国产探花极品一区二区| 黑人高潮一二区| 中文字幕亚洲精品专区| 日韩在线高清观看一区二区三区| 亚洲伊人久久精品综合| 日韩 亚洲 欧美在线| 欧美最新免费一区二区三区| 校园人妻丝袜中文字幕| 欧美高清成人免费视频www| 黑人高潮一二区| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 性色av一级| 亚洲精品自拍成人| 在线 av 中文字幕| 免费观看在线日韩| 亚洲婷婷狠狠爱综合网| 日韩,欧美,国产一区二区三区| 欧美性感艳星| 赤兔流量卡办理| 亚洲内射少妇av| 日韩视频在线欧美| 中国三级夫妇交换| 97在线人人人人妻| 岛国毛片在线播放| 免费观看无遮挡的男女| 欧美三级亚洲精品| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 97在线人人人人妻| 成人特级av手机在线观看| 99国产精品免费福利视频| 亚洲婷婷狠狠爱综合网| 成人毛片a级毛片在线播放| 韩国高清视频一区二区三区| 久久99热这里只有精品18| 大又大粗又爽又黄少妇毛片口| 久久久久人妻精品一区果冻| 看十八女毛片水多多多| 男人爽女人下面视频在线观看| 国产黄色免费在线视频| 内地一区二区视频在线| 日日撸夜夜添| 国产午夜精品一二区理论片| 91在线精品国自产拍蜜月| 国产熟女欧美一区二区| 欧美xxxx性猛交bbbb| 最黄视频免费看| 亚洲av在线观看美女高潮| 啦啦啦在线观看免费高清www| 国产午夜精品一二区理论片| 午夜福利视频精品| 男的添女的下面高潮视频| 免费看日本二区| 最近最新中文字幕免费大全7| 中文字幕人妻熟人妻熟丝袜美| 夫妻午夜视频| 亚洲国产日韩一区二区| 久久久色成人| 成人黄色视频免费在线看| 久久影院123| 波野结衣二区三区在线| 狂野欧美激情性bbbbbb| 最新中文字幕久久久久| 一级毛片aaaaaa免费看小| 校园人妻丝袜中文字幕| 成年美女黄网站色视频大全免费 | 久久韩国三级中文字幕| 久久久久久九九精品二区国产| 国产精品久久久久久精品古装| 最黄视频免费看| 黄色欧美视频在线观看| 欧美一区二区亚洲| 日本免费在线观看一区| 人妻系列 视频| 亚洲av成人精品一二三区| 欧美97在线视频| 日本av手机在线免费观看| 美女脱内裤让男人舔精品视频| 在线免费观看不下载黄p国产| 免费播放大片免费观看视频在线观看| 精品亚洲成国产av| 久久人人爽av亚洲精品天堂 | 一级黄片播放器| 亚洲欧洲国产日韩| 午夜视频国产福利| 99久久综合免费| 91午夜精品亚洲一区二区三区| 欧美成人精品欧美一级黄| 国产欧美另类精品又又久久亚洲欧美| 国产毛片在线视频| 春色校园在线视频观看| 欧美日韩在线观看h| 观看免费一级毛片| 综合色丁香网| 男女免费视频国产| 亚洲国产成人一精品久久久| 少妇的逼好多水| 国产成人精品福利久久| 水蜜桃什么品种好| 免费观看a级毛片全部| 亚洲国产毛片av蜜桃av| 日本av手机在线免费观看| 男女免费视频国产| 亚洲国产成人一精品久久久| 色吧在线观看| 精品一区二区三卡| 91久久精品国产一区二区成人| 在线看a的网站| 久久久久久久大尺度免费视频| 久久久国产一区二区| 黄色一级大片看看| 简卡轻食公司| 亚洲国产av新网站| 亚洲精华国产精华液的使用体验| 亚洲综合精品二区| 国产精品成人在线| 国产色婷婷99| 91精品国产国语对白视频| 男的添女的下面高潮视频| 蜜桃久久精品国产亚洲av| 精品一区在线观看国产| 老司机影院毛片| 韩国高清视频一区二区三区| 国产精品人妻久久久影院| 国产在线视频一区二区| 国产精品一区www在线观看| 国内揄拍国产精品人妻在线| 人人妻人人看人人澡| 欧美日韩国产mv在线观看视频 | 亚洲国产精品国产精品| 国产精品精品国产色婷婷| 免费观看在线日韩| 中文字幕制服av| 一级毛片电影观看| 国产av码专区亚洲av| 一级av片app| 国产亚洲91精品色在线| 日韩国内少妇激情av| a 毛片基地| 日本vs欧美在线观看视频 | 国产 一区精品| 免费人成在线观看视频色| 嫩草影院入口| 国产精品福利在线免费观看| 夜夜爽夜夜爽视频| 天天躁日日操中文字幕| 自拍偷自拍亚洲精品老妇| 夜夜爽夜夜爽视频| av卡一久久| 国产黄频视频在线观看| 亚洲三级黄色毛片| 国产免费一区二区三区四区乱码| 久久99蜜桃精品久久| 青春草视频在线免费观看| 99久久综合免费| 街头女战士在线观看网站| 男人添女人高潮全过程视频| 亚洲高清免费不卡视频| av播播在线观看一区| 免费人成在线观看视频色| 王馨瑶露胸无遮挡在线观看| 国产精品无大码| 99久久精品一区二区三区| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 水蜜桃什么品种好| 成人黄色视频免费在线看| av线在线观看网站| 久久久久久久久大av| 如何舔出高潮| 亚洲天堂av无毛| 久久久久久久久久久丰满| 午夜激情久久久久久久| 亚洲国产精品999| 美女福利国产在线 | 欧美另类一区| 国产在线免费精品| 麻豆成人午夜福利视频| 深夜a级毛片| 国产高清三级在线|