• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion

    2017-03-15 10:46:51JIANGWenbinZHANGJie
    石油物探 2017年1期
    關(guān)鍵詞:朱文

    JIANG Wenbin,ZHANG Jie

    (Laboratory of Seismology and Physics of Earth’s Interior,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China)

    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion

    JIANG Wenbin,ZHANG Jie

    (Laboratory of Seismology and Physics of Earth’s Interior,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China)

    The first-arrival traveltime tomography is a standard approach for near-surface velocity estimation.However,it cannot resolve complex near-surface structures and will produce a smooth velocity model with low resolution.Early arrival waveform inversion is a robust tool for imaging the near surface structures,but it requires a good initial model to avoid cycle skipping between the predicted and observed data.Furthermore,waveform inversion requires substantial computation efforts.Therefore,we present joint seismic traveltime and waveform inversion method,and we expect the joint inversion method retains the advantages of both traveltime inversion and full waveform inversion and overcomes their respective drawbacks at the same time.The objective function includes both the traveltime and waveform misfit.At each iteration,the traveltimes are calculated by wavefront raytracing,and the waveforms are computed using a finite-difference method.The nonlinear optimization problem is solved by the conjugate gradient method.We apply the joint inversion method to study complex near-surface area where shallow overthrust and rugged topography present a significant challenge for applying traveltime inversion and waveform inversion alone.We test synthetic data to verify the advantages of the joint method,and then apply the method to a 2D dataset acquired in Yumen Oil field,China.The inversion results suggest that the joint traveltime and waveform inversion helps constrain the very shallow velocity structures and also resolve complex overthrust with large velocity contrasts.

    joint inversion,FWI,traveltime tomography

    1 Introduction

    Accurate near-surface velocity model is essential for imaging subsurface structures in seismic exploration.The first-arrival traveltime tomography has been widely applied for near-surface imaging[1-4].However,traveltime inversion assumes a high frequency approximation of the data which results in a suboptimal estimate of subsurface velocity model.In addition,the model resolution of traveltime inversion is less than that of waveform inversion[5].Full waveform inversion (FWI) is a promising method for refining subsurface velocity model.Since no high frequency assumption is required,FWI yields highly resolved velocity models,and gives accurate results in geologically complex areas[5-8].

    One fundamental challenge of FWI is the local minimum issue caused by the cycle-skipping between the predicted and observed data[9].In recent years,many new methods are proposed to improve the performance of FWI in subsurface model building.Researchers made great efforts to develop new FWI algorithms that can avoid or mitigate the cycle-skipping problem.WU et al.[10]developed a waveform envelope inversion method,which used waveform envelope to extracts low-frequency information of data.Envelope inversion method can avoid cycle-skipping problem and retrieve long-wavelength background velocity model for FWI.WARNER et al.[11]proposed adaptive waveform inversion,which reformulates the objective functions in terms of matching filters.The difference between observed and predicted data will project onto the time lag of the filter.Another effort tried to recover the background velocity model using traveltime shift as the misfit function.MA et al.[12]proposed a hybrid waveform inversion.They used wave-equation reflection traveltime inversion to update the low-wavenumber component and used FWI to update high-wavenumber details of the velocity model.JIAO et al.[13]developed adjustive full waveform inversion method,which built the relation between traveltime shift and model.Thus,FWI can correct the wrong background velocity model and mitigate cycle skipping issues.

    The first arrival traveltimes and the early arrival waveforms are different attributes of the seismic data.The later one is associated with the near surface structures with profound information.However,waveform inversion has the problem of nonuniqueness of the model solutions.It means that there could be many global minima and all of them fit data well (Fig.1).In some real data cases,the results of waveform inversion may not fit the first arrival traveltimes any more for the nonuniqueness of the FWI.ZHANG et al.[14]developed joint first arrival traveltime and waveform inversion to image the near surface velocity model using different types of data.The joint traveltime and waveform method minimizes the misfit function for both traveltimes and waveform in the inversion process.In this way,the joint inversion method can fit both data by combining different physical imaging theories[14].The inclusion of traveltimes in the joint inversion helps constrain the velocity estimation of upper layers tightly and reduce artifacts near the sources and receivers.

    Figure 1 Schematic plot explaining nonunique problem of full waveform inversion

    Most of the full waveform inversion methods are designed to image marine velocity structures or crosshole velocities where topography is simple or near-surface low velocity zones are not any concern[15-19].For near-surface velocity structure imaging,it sometimes requires to handle large topography variations in the full waveform inversion.The forward modeling using finite difference approach may produce inaccurate results in this situation.ZHANG et al.[20]proposed a variable grid mesh system for acoustic finite-difference modeling to solve this problem.In this study,we adopt this grid mesh system to FWI and the joint inversion method.

    PetroChina carried out a multichannel large-offset 2D seismic survey in northwest China,Yumen Oil Field in September,2004.YILMAZ et al.[21]analyzed the Yumen large-offset data and derived a prestack depth migration image.We apply our joint inversion method to obtain an accurate near-surface velocity model and compare it with conventional FWI results.

    We shall first present the theory of joint traveltime and waveform inversion.Through applying the joint inversion approach to 2D synthetic data,we study the performance of the joint inversion method for the situation where the velocity contrasts are large,and rugged topography is also significant.Then,we test the new method on real data acquired in Yumen oil field,China.Finally,we shall present conclusions of the results.

    2 Theory

    In the following,we shall discuss the theory of the joint inversion.Waveform inversion is a nonlinear problem.When the starting model is not close enough to the true one,the inversion process will stuck into local minimum and may not converge to the correct result.However,the traveltime inversion is nonlinear but stable.We could take advantages of the two methods to recover near-surface velocity model.The traveltime information can also constrain the near surface velocity and mitigate artifacts in model.

    The objective function of joint traveltime and waveform inversion is defined as:

    (1)

    wherePobsis observed data,Psynis calculated waveform,tobsis picked traveltime from observed data,tsynis synthetic traveltime,mis the velocity model,m0is a priori model.Lis a Laplacian operator for regularization,ωis a scaling factor between waveform residual and traveltime residual[14].

    We apply a regularized nonlinear conjugate gradients method to minimize the joint inversion misfit function,and calculate the following gradient to determine the model update direction:

    (2)

    PFis the forward propagated source wavefield,andPBrepresent the backward propagated residual wavefield.The first term on the right side of Equation (2) can be calculated by zero-lag correlation ofPFandPB[6-7,15,22-23].ATis a transposed sensitivity matrix of traveltimes containing raypath information,equivalent to the impact of traveltime sensitivity[2,14,24].For the traveltime inversion problem,we can easily access bothATandAmatrix after raytracing.Thus,we are able to place the following preconditioner to the gradient iteratively:

    (3)

    wheregkis the gradient of waveform inversion for thek-thiteration,Pis a preconditioner from traveltime tomography,andpkis a preconditioned gradient.With the combining traveltime data in the joint inversion,the inverse matrix of traveltime sensitivity could be treated as an effective preconditioner to waveform inversion.Thus,the joint inversion could find solutions quicker than performing FWI alone.We can easily access the raypath sensitivity matrix by applying raytracing in traveltime tomography.Therefore,computational cost in one-iteration of joint traveltime and waveform inversion is comparable to one-iteration FWI.In this study,the traveltime and raypath calculations are based on the algorithm of ZHANG et al[2].

    During the inversion process,selection of a weighting factor ω between waveform misfit and traveltime misfit is an important issue.Ifωis too large,the joint inversion will yield a smoothed and low resolution model close to traveltime tomography.Ifωis too small,the joint inversion cannot constrain the near-surface velocity well.In this study,we estimate the regularization parameterωfrom several experiments and fix them between 10-3and 10-2.We have observed that the regularization parameters in this range can lead to a reasonable inversion result.We can also adjustωvia trial and error to produce an acceptable model in practice.

    For FWI component,we adopt a variable grid mesh system for time domain acoustic finite-difference modeling to handle large topography variations in FWI.Topography shall be sufficiently sampled with refined boundary conditions in such a system.At the same time,the high velocity area in the deeper part of the model is not oversampled,ensuring efficient computation[20].

    3 Synthetic tests

    We carry out a synthetic test to analyze the nonlinearity of the objective functions.The true model is homogenous with a velocity of 2000m/s.We build a constant velocity model range from 1000m/s to 3000m/s with 10m/s interval.The acquisition geometry consists of 1 shot,and 100 receivers.The receivers are placed along surface at a 25 m interval.We calculate the objective functions value analytically.Assuming the forward modelling data from velocity model of 2000m/s is observed data,others are predicted data.Therefore,we can calculate traveltime residual and waveform residual versus different velocity models.

    Fig.2 shows the objective function of traveltime inversion,waveform inversion and the joint inversion (the weighting factor is 0.5,the objective functions were normalized) versus hypothetical velocities.The objective function of waveform inversion contains many local minima.If the starting model is far from the true model,waveform inversion will stuck into local minimum and produce wrong inversion result.Traveltime inversion shows weak nonlinearity and is more stable than waveform inversion,but the resolution of traveltime inversion is low.The joint inversion helps mitigate nonlinearity of the misfit function.It suggests that the joint inversion can mitigate the dependence of initial model better than the waveform inversion alone.Different weighting factors on the traveltime residual will change the shape of misfit function curve.If the weighting factor is small,the shape of misfit function curve is close to waveform misfit curve.It includes many local minimum.If the weighting is large,the joint inversion will yield a smoothed and low resolution model close to traveltime tomography.Appropriate weighting factor helps the joint inversion avoid local minimum and produce a relatively high resolution model.

    Figure 2 Objective functions for different near-surface inversion strategies (black:waveform inversion,blue:first-arrival traveltime tomography,red:joint traveltime and waveform inversion (weighting factor equals to 0.5))

    Furthermore,we apply the joint inversion method to a 2D synthetic model.The true model is shown in Fig.3a,which is designed according to a geological model of Yumen Oil Field.It includes faults,high-velocity contrasts,and rugged topography.To test the resolving power and reliability of the survey geometry,we choose the same shot and receiver intervals in the synthetic test as in Yumen seismic survey.It includes 80 shots with interval of 170m,and about 750 receivers for each shot with interval of 20m,a 10Hz peak frequency Ricker wavelet is used as the source wavelet.We use the acoustic finite-difference method to generate the shot records.Traveltimes were calculated by the shortest path ray-tracing method.Fig.3b presents a smoothed model,which is used as an initial model for FWI and the joint inversion.Figs.4a and 4b show the result of waveform inversion and the joint inversion result,respectively.Both FWI and the joint inversion could recover the fault zone successfully.However,in the FWI result,the velocity of the top low-velocity layer seems too high.The joint inversion produces fewer artefacts near shots and receivers in the solution.The joint traveltime and waveform inversion ensures the near-surface velocities to fit the first-arrival traveltime.Therefore,it constrains near surface velocity using traveltime information.

    Fig.5a shows the waveform overlay of a shot gather between observed waveform (black) and synthetic waveform (red) calculated with initial model.It clearly shows that the initial model does not produce cycle skipping for waveform.We compare the waveform overlay of a shot gather between observed data (black) and synthetics (red) associated with FWI result (Fig.5b),and overlay between observed data (black) and synthetics (red) associated

    Figure 3 The 2D model designed according to a geological model of Yumen Oil Field (a) Initial model for FWI and the joint inversion (b)

    Figure 4 Inversion results of the synthetic examplea the waveform inversion result; b the inverted model of joint traveltime and waveform inversion

    Figure 5 Waveform overlays of a shot gathera Waveform overlay between observed data (black) and synthetics (red) associated with initial model.The black points represent picked traveltimes; b Waveform overlay between observed data (black) and synthetics (red) associated with FWI result.The black points and red points represent picked traveltimes and synthetic traveltime calculated using FWI result,respectively; c Waveform overlay between observed data (black) and synthetics (red) associated with the joint inversion result.The black points and red points represent picked traveltimes and synthetic traveltime calculated using the joint inversion result,respectively

    with the joint inversion result (Fig.5c).The black points represent picked traveltimes.The red points in Figs.5b and 5c represent synthetic traveltime calculated using FWI result and the joint inversion result,respectively.We can observe that the traveltime data calculated using FWI result have a large time shift compared with picked traveltimes,while the traveltime data calculated from the joint inversion result are close to the picked traveltime.This clearly demonstrates that the joint inversion fits traveltime and waveform simultaneously in the inversion process.

    To quantify the accuracy of these results,we calculate the normalized data misfit (Fig.6a) and model misfit (Fig.6b) curves of the FWI and the joint inversion.The data misfit curves depict that the joint inversion method converges faster than the FWI because of the effective preconditioner.The model misfits of two methods decrease to the same level,means similar inversion results were obtained.We set the weighting factor as 0.01 in our inversion process.An appropriate weighting factor is important to lead to a good inversion result for the joint inversion.

    Figure 6 Convergence curves of the synthetic examplea The normalized data misfit of the waveform inversion and the joint inversion; b The model misfit of the waveform inversion and the joint inversion

    4 Field data applications

    A 2-D seismic survey was conducted at Yumen Oil Field.This area has significant lateral velocity variations and irregular topography associated with a rugged terrain.PetroChina conducted the seismic survey to retrieve the complex imbricate structures associated with the Yumen oil reservoir beneath the high velocity Kulong Shan allochthonous rocks in order to position production wells accurately.The Yumen large-offset survey line is in the SSW-NNE dominant structural dip direction.The northern part of the line is in Gobi Tan (Desert) and the southern half is over the Kulong Shan (mountains)[21].It is a survey line with large topography variations:the altitude difference along the line is larger than 1000m from south to north.The geometry consists of 211 shots with a 170m interval.A total of 1401 receiver groups are placed along 28km line at a 20m interval.The receiver spread is fixed for all shots in the common-spread acquisition geometry.Among the 211 shot records,we use 137 shot gathers for the near surface imaging.

    We select the near offset data (3km) to image the near-surface velocity structures in this study.We pick the first-arrival traveltime from the field records and edit traces.Fig.7 shows a typical common shot gather (CSG) from shot 20,with the black points indicating the picked traveltime.The average reciprocal error of the picks for most of the shots is approximately 10ms.The near surface area includes large topography variations,and the first-arrival data indicates complex near surface structures in the area.We conduct the first-arrival traveltime tomography[2]with a model consisting of 1410×101 cells and a uniform grid spacing of 20m.Fig.8 presents the first-arrival traveltime tomography solution.The traveltime tomography result shows strong lateral and vertical velocity variations below rugged topography.The near-surface velocities are higher in the Kulong Shan (left) half of the model compared to the Gobi Tan sediments (right).

    To resolve more details in the near surface ve-locity model,we apply FWI alone and the joint inversion to real data.The traveltime tomography solution is used as the starting model for FWI and the joint inversion.Fig.9 shows CSG 20 after a bandpass filter applied,removing bad trace,and muting data with an early-arrival time window of 100ms.Fig.10a depicts the average amplitude spectrums of raw data (solid line) and early arrival waveform (dash line)for CSG 20.The raw data is within a bandwidth of 6~30Hz.We can observe that the dominant frequency of the early arrival waveform is about 10Hz.We extract the source wavelet from each shot record for FWI and the joint inversion.Fig.10b shows the source wavelet for CSG 20.

    Figure 7 Field records from the Yumen seismic survey (Shot 20).Black points represent the picked traveltimes

    Figure 8 The near-surface model estimated from the first-arrival times

    Figure 9 The CSG 20 after preprocessing

    Figs.11a and 11b show the early-arrival waveform inversion and the joint inversion solutions,respectively.Both waveform inversion and the joint inversion present more velocity details than traveltime tomography alone.The joint inversion result is similar with the waveform inversion result,but fewer arte-facts are generated in the near-surface zones.

    Figure 10 The average amplitude spectrums of raw data (solid line) and early arrival waveform (dash line) for CSG 20 (a) Source wavelet for CSG 20 (b)

    Figure 11 Waveform inversion result (a) The joint inversion solution (b)

    Fig.12a depicts the waveform overlay of a shot gather (black) with synthetic waveform (red) associated with traveltime inversion result.Figs.12b and Figs.12c show corresponding waveform overlay of the same shot gather between observed data (black)

    and synthetics (red) associated with FWI result,and overlay between observed data (black) and synthetics (red) associated with the joint inversion,respectively.The overall waveform fit of waveform inversion is good except that some part of synthetic waveform does not match the observed data (900~1500m).

    Figure 12 Waveform overlays of a shot gathera Waveform overlay between observed data (black) and synthetics (red) associated with traveltime inversion result.The black points represent picked traveltimes; b Waveform overlay between observed data (black) and synthetics (red) associated with waveform inversion result.The black points and red points represent picked traveltimes and synthetic traveltime calculated using waveform inversion result,respectively; c Waveform overlay between observed data (black) and synthetics (red) associated with the joint inversion result.The black points and red points represent picked traveltimes and synthetic traveltime calculated using the joint inversion result,respectively

    The waveforms of the joint inversion are matched better than the waveform inversion due to the constraints of the traveltime information.The black points in three figures are picked traveltimes.The red points (Fig.12b,c) represent synthetic traveltimes calculated using the FWI result and the joint inversion result,respectively.We can observe a large time shift between traveltime calculated using the FWI result and picked traveltimes,while the traveltimes calculated from the joint inversion result are closer to the picked traveltimes.It suggests that fitting traveltime information by the joint inversion helps constrain the top near-surface velocity structures tightly.

    Fig.13 shows the normalized data misfit of waveform inversion and the joint inversion versus iterations.The waveform inversion needs about 10 iterations,while the joint inversion needs only 6 iterations to converge.The joint inversion helps speed up the inversion process and save computational effort.

    Figure 13 The normalized data misfit of the waveform inversion and the joint inversion

    5 Conclusions

    We apply a joint traveltime and waveform inversion approach to image the complex near-surface structures.Numerical experiment confirms that joint traveltime and waveform inversion produces a reasonable solution for models with large topography variations.Then we apply the joint method to data collected from Yumen Oil field in China.The result shows that the joint inversion can match waveform data better and does not produce shallow artefacts in the velocity model.The joint inversion method enables us to fit traveltime and waveform simultaneously in the inversion process.Therefore,the joint inversion helps produce more reliable near-surface velocity solutions than the waveform inversion method alone.

    Both the first arrival traveltimes and the early arrival waveforms are reliable sources of seismic data.With a traveltime preconditioner applied,the joint inversion converges faster than the waveform inversion alone.The joint inversion method helps constrain the nonunique solutions.However,nonuniqueness of model solutions is a fundamental issue in traveltime tomography and FWI.The joint inversion method may not entirely solve the problem,but it helps constrain the solutions.

    ACKNOWLEDGMENTS We gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No.41374132 and No.41674120).We appreciate the support from GeoTomo,allowing us to use TomoPlus software package.We thank PetroChina for offering the data from Yumen oil field.

    [1] ZHU X H,SIXTA D P,ANGSTMAN B G.Tomostatics:turning-ray tomography+static corrections[J].The Leading Edge, 1992,11(12):15-23

    [2] ZHANG J,TOKS?Z M N.Nonlinear refraction traveltime tomography[J].Geophysics,1998,63(5):1726-1737

    [3] LEUNG S,QIAN J.An adjoint state method for three-dimensional transmission traveltime tomography using first-arrivals[J].Communications in Mathematical Sciences,2006,4(1):249-266

    [4] TAILLANDIER C,NOBLE M,CHAURIS H,et al.First-arrival traveltime tomography based on the adjoint-state method[J].Geophysics,2009,74(6):WCB1-WCB10

    [5] SHENG J,LEEDS A,BUDDENSIEK M,et al.Early arrival waveform tomography on near-surface refraction data[J].Geophysics,2006,71(4):U47-U57

    [6] TARANTOLA A.Inversion of seismic-reflection data in the acoustic approximation[J].Geophysics,1984,49(8):1259-1266

    [7] PRATT R G,SHIN C,HICKS G J.Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J].Geophysical Journal International,1998,133(2):341-362

    [8] VIGH D,KAPOOR J,MOLDOVEANU N,et al.Breakthrough acquisition and technologies for subsalt imaging[J].Geophysics,2011,76(5):WB41-WB51

    [9] VIRIEUX J,OPERTO S.An overview of full-waveform inversion in exploration geophysics[J].Geophysics,2009,74(6):WCC1-WCC26

    [10] WU R S,LUO J R,WU B Y.Ultra-low-frequency information in seismic data and envelope inversion[J].Expanded Abstracts of 83rdAnnual Internat SEG Mtg,2013:3078-3082

    [11] WARNER M,GUASCH L.Adaptive waveform inversion-FWI without cycle skipping-theory[J].Expanded Abstracts of 76thEAGE Conference and Exhibition,2014:324-331

    [12] MA Y,HALE D.Wave-equation reflection traveltime inversion with dynamic warping and hybrid waveform inversion[J].Expanded Abstracts of 83rdAnnual Internat SEG Mtg,2013:871-876

    [13] JIAO K,SUN D,CHENG X,et al.Adjustive full waveform inversion[J].Expanded Abstracts of 85thAnnual Internat SEG Mtg,2015:1091-1095

    [14] ZHANG J,CHEN J.Joint seismic traveltime and waveform inversion for near surface imaging[J].Expanded Abstracts of 84thAnnual Internat SEG Mtg,2014:934-937

    [15] PRATT R G.Seismic waveform inversion in the frequency domain,part 1:theory and verification in a physical scale model[J].Geophysics,1999,64(3):888-901

    [16] MULDER W A,PLESSIX E E.Exploring some issues in acoustic full waveform inversion[J].Geophysical Prospecting,2008,56(6):827-841

    [17] SEARS T J,SINGH S C,BARTON P J.Elastic full waveform inversion of multi-component OBC seismic data[J].Geophysical Prospecting,2008,56(6):843-862

    [18] BOONYASIRIWAT C,SCHUSTER G T,VALASEK P,et al.Applications of multiscale waveform inversion to marine data using a flooding technique and dynamic early-arrival windows[J].Geophysics,2010,75(6):R129-R136

    [19] KELLY S,RAMOS-MARTINEZ J,ZOU K,et al.Inversion of refractions and reflections by full-waveform inversion for marine streamer data:classification of problem types and solution methods[J].The Leading Edge,2013,32(9):1130-1138

    [20] ZHANG W,ZHANG J.Full-waveform tomography with consideration for large topography variations[J].Expanded Abstracts of 81stAnnual Internat SEG Mtg,2011:2539-2542

    [21] YILMAZ O,ZHANG J,SHIXIN Y.Acquisition and processing of large-offset seismic data:a case study from northwest China[J].Expanded Abstracts of 75thAnnual Internat SEG Mtg,2005:2581-2584

    [22] LAILLY P.The seismic inverse problem as a sequence of before stack migrations[C]∥Conference on Inverse Scattering:Theory and Application.Philadelphia:SIAM,1983:206-220

    [23] TARANTOLA A.Inversion of travel times and seismic waveforms[C]∥Seismic Tomography.Switzerland:Springer Netherlands,1987:135-157

    [24] JIANG W,ZHANG J.Imaging complex near-surface land area with joint traveltime and waveform inversion[J].Expanded Abstracts of 85thAnnual Internat SEG Mtg,2015:1441-1445

    (編輯:朱文杰)

    2016-10-17;改回日期:2016-11-30。

    JIANG Wenbin (1992—),Ph.D Candidate,his main research interests are travel-time inversion and FWI.

    P631

    A

    1000-1441(2017)01-0057-12

    10.3969/j.issn.1000-1441.2017.01.007

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    秦川好
    唱起號(hào)子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    亚州av有码| 日韩精品有码人妻一区| 日韩精品青青久久久久久| 一区福利在线观看| 成人特级av手机在线观看| 一级二级三级毛片免费看| 嫩草影院新地址| 禁无遮挡网站| 99久国产av精品国产电影| 国模一区二区三区四区视频| 国产人妻一区二区三区在| 国产人妻一区二区三区在| 麻豆av噜噜一区二区三区| 成熟少妇高潮喷水视频| 九九爱精品视频在线观看| 国产伦精品一区二区三区四那| 色综合色国产| 日本黄色视频三级网站网址| 国产精品久久久久久亚洲av鲁大| 久久精品人妻少妇| 人体艺术视频欧美日本| av福利片在线观看| 91午夜精品亚洲一区二区三区| 国产精品无大码| 三级国产精品欧美在线观看| 尾随美女入室| 成人永久免费在线观看视频| 欧美成人免费av一区二区三区| 18禁在线播放成人免费| 免费看美女性在线毛片视频| 天天躁夜夜躁狠狠久久av| 两个人的视频大全免费| 国内少妇人妻偷人精品xxx网站| 男的添女的下面高潮视频| 寂寞人妻少妇视频99o| 日韩人妻高清精品专区| 国产真实伦视频高清在线观看| 国产精品无大码| 精品一区二区免费观看| 男人的好看免费观看在线视频| 精品日产1卡2卡| 色5月婷婷丁香| 12—13女人毛片做爰片一| 我的女老师完整版在线观看| 99久久精品国产国产毛片| 乱码一卡2卡4卡精品| 久久久久久久久久久免费av| 欧美bdsm另类| 亚洲五月天丁香| 欧美丝袜亚洲另类| 中文资源天堂在线| 波多野结衣高清无吗| 一级毛片电影观看 | 亚洲婷婷狠狠爱综合网| 国产综合懂色| 精品一区二区三区人妻视频| 国产一区二区在线av高清观看| 日本欧美国产在线视频| 久久久久久久久久久丰满| 欧美激情国产日韩精品一区| 久久精品夜夜夜夜夜久久蜜豆| 淫秽高清视频在线观看| 日韩高清综合在线| 亚洲成人久久爱视频| 国产中年淑女户外野战色| 国产片特级美女逼逼视频| 国产精品免费一区二区三区在线| 亚洲人成网站在线观看播放| 久久久欧美国产精品| 在线国产一区二区在线| 青春草视频在线免费观看| 国产黄片美女视频| 五月伊人婷婷丁香| 免费看美女性在线毛片视频| 可以在线观看的亚洲视频| 国产av一区在线观看免费| 直男gayav资源| 国产精品久久电影中文字幕| 久久久久久久久久久丰满| 国产精品野战在线观看| 九九爱精品视频在线观看| 国产精品蜜桃在线观看 | 人妻系列 视频| 性欧美人与动物交配| 人妻少妇偷人精品九色| 国产一区二区三区在线臀色熟女| 一区福利在线观看| 日韩精品青青久久久久久| 亚洲精品久久久久久婷婷小说 | kizo精华| 国内精品一区二区在线观看| 日本黄大片高清| 日日啪夜夜撸| 少妇被粗大猛烈的视频| 国产蜜桃级精品一区二区三区| 国产高清视频在线观看网站| 国产一区二区亚洲精品在线观看| 狂野欧美白嫩少妇大欣赏| 欧美高清成人免费视频www| 国产三级在线视频| 欧美xxxx黑人xx丫x性爽| 日韩欧美国产在线观看| 欧美日韩一区二区视频在线观看视频在线 | 成人毛片a级毛片在线播放| 长腿黑丝高跟| 青春草国产在线视频 | 变态另类丝袜制服| 久久精品久久久久久久性| 国产伦一二天堂av在线观看| 亚洲成人精品中文字幕电影| 天天躁日日操中文字幕| 国产大屁股一区二区在线视频| 欧美日韩一区二区视频在线观看视频在线 | 搡老妇女老女人老熟妇| 婷婷色av中文字幕| 欧美一级a爱片免费观看看| 熟妇人妻久久中文字幕3abv| 日韩视频在线欧美| 一级毛片我不卡| 九九爱精品视频在线观看| 尾随美女入室| 日本成人三级电影网站| 村上凉子中文字幕在线| 天堂√8在线中文| 少妇猛男粗大的猛烈进出视频 | 午夜福利在线在线| 久久99热这里只有精品18| 精品久久久久久久久av| 一夜夜www| 午夜老司机福利剧场| 久久精品夜色国产| 99热这里只有精品一区| 日韩大尺度精品在线看网址| 久久久久九九精品影院| 一进一出抽搐动态| 中出人妻视频一区二区| 高清毛片免费看| 青春草视频在线免费观看| 午夜福利成人在线免费观看| 老女人水多毛片| 不卡视频在线观看欧美| 国产精品99久久久久久久久| 夫妻性生交免费视频一级片| 菩萨蛮人人尽说江南好唐韦庄 | 少妇被粗大猛烈的视频| 深爱激情五月婷婷| 午夜激情欧美在线| 国产成人午夜福利电影在线观看| 高清午夜精品一区二区三区 | 给我免费播放毛片高清在线观看| 中出人妻视频一区二区| 亚洲人成网站在线观看播放| 又粗又爽又猛毛片免费看| 婷婷六月久久综合丁香| 精品久久国产蜜桃| 免费看美女性在线毛片视频| 亚洲va在线va天堂va国产| 麻豆av噜噜一区二区三区| 丝袜喷水一区| 不卡视频在线观看欧美| 国产女主播在线喷水免费视频网站 | 99国产精品一区二区蜜桃av| 日本一二三区视频观看| 国产视频内射| 成人高潮视频无遮挡免费网站| 久久久成人免费电影| 久久国内精品自在自线图片| 女人被狂操c到高潮| 老师上课跳d突然被开到最大视频| 国产免费男女视频| 男女啪啪激烈高潮av片| 高清日韩中文字幕在线| 日本爱情动作片www.在线观看| 麻豆成人午夜福利视频| 国产精品久久电影中文字幕| 日韩欧美在线乱码| 国产精品久久久久久久电影| 18禁黄网站禁片免费观看直播| 成年女人永久免费观看视频| 一本久久精品| 91精品国产九色| 麻豆一二三区av精品| 国产亚洲精品久久久久久毛片| 热99在线观看视频| 国产成人a∨麻豆精品| 日本黄色片子视频| 联通29元200g的流量卡| 国产精品1区2区在线观看.| 日本五十路高清| 国产成人精品婷婷| 六月丁香七月| 成人鲁丝片一二三区免费| 99久久精品一区二区三区| 波野结衣二区三区在线| 波多野结衣高清无吗| 亚洲精品色激情综合| 91在线精品国自产拍蜜月| 女的被弄到高潮叫床怎么办| 一个人看视频在线观看www免费| 亚洲乱码一区二区免费版| 成年女人永久免费观看视频| 午夜免费激情av| 欧美极品一区二区三区四区| 免费av观看视频| 国产高潮美女av| 天堂√8在线中文| 99热6这里只有精品| 小蜜桃在线观看免费完整版高清| 2022亚洲国产成人精品| 舔av片在线| 亚洲国产精品久久男人天堂| 在线a可以看的网站| 男女做爰动态图高潮gif福利片| 国产精品美女特级片免费视频播放器| 日韩国内少妇激情av| av又黄又爽大尺度在线免费看 | 美女高潮的动态| 国产熟女欧美一区二区| 精品免费久久久久久久清纯| 日韩视频在线欧美| 精华霜和精华液先用哪个| 精品欧美国产一区二区三| 国产探花极品一区二区| 国产视频首页在线观看| 中文字幕久久专区| 日韩制服骚丝袜av| 女人被狂操c到高潮| 国产成人精品久久久久久| 日韩成人av中文字幕在线观看| 亚洲av成人精品一区久久| 亚洲av中文av极速乱| 成人无遮挡网站| 91狼人影院| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 在线观看美女被高潮喷水网站| 嘟嘟电影网在线观看| 日本黄大片高清| av在线播放精品| 美女被艹到高潮喷水动态| 亚洲美女视频黄频| 欧美成人精品欧美一级黄| 欧美一区二区精品小视频在线| 欧美成人a在线观看| 亚洲欧美成人精品一区二区| 亚洲av成人av| 观看免费一级毛片| 久久这里只有精品中国| 蜜桃亚洲精品一区二区三区| 免费看a级黄色片| 一本一本综合久久| 少妇熟女aⅴ在线视频| 色综合亚洲欧美另类图片| 99久久精品国产国产毛片| 欧美成人免费av一区二区三区| 黄色一级大片看看| 国产高清激情床上av| 好男人视频免费观看在线| 天堂影院成人在线观看| 村上凉子中文字幕在线| 亚洲成人久久爱视频| 三级男女做爰猛烈吃奶摸视频| 乱人视频在线观看| 国产欧美日韩精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 99视频精品全部免费 在线| 深爱激情五月婷婷| 中文字幕av在线有码专区| 久久中文看片网| 晚上一个人看的免费电影| 日韩人妻高清精品专区| 久久九九热精品免费| 老熟妇乱子伦视频在线观看| 日韩强制内射视频| 国产激情偷乱视频一区二区| 国产亚洲91精品色在线| 99久久成人亚洲精品观看| 国产一区二区三区av在线 | 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 日本黄大片高清| 欧美成人a在线观看| 麻豆成人av视频| 变态另类丝袜制服| 又黄又爽又刺激的免费视频.| 国产一区二区在线观看日韩| 成年免费大片在线观看| 国产女主播在线喷水免费视频网站 | 欧美日本亚洲视频在线播放| 国产精品久久久久久精品电影小说 | 最近视频中文字幕2019在线8| 久久99热6这里只有精品| 国产精品99久久久久久久久| 美女大奶头视频| 乱系列少妇在线播放| 全区人妻精品视频| av卡一久久| 欧美人与善性xxx| 国产精品三级大全| 十八禁国产超污无遮挡网站| 免费av毛片视频| 精品日产1卡2卡| 日产精品乱码卡一卡2卡三| 麻豆国产av国片精品| av天堂中文字幕网| 亚洲高清免费不卡视频| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 国产精品野战在线观看| 一边亲一边摸免费视频| 免费观看精品视频网站| 99久久中文字幕三级久久日本| 老司机福利观看| 2021天堂中文幕一二区在线观| 亚洲欧美日韩高清专用| 国产精品一区二区性色av| 日韩欧美精品免费久久| 一级黄色大片毛片| videossex国产| 不卡视频在线观看欧美| 少妇裸体淫交视频免费看高清| 看黄色毛片网站| АⅤ资源中文在线天堂| 久久久精品大字幕| 国产私拍福利视频在线观看| 国产在视频线在精品| avwww免费| 亚洲精品456在线播放app| av天堂在线播放| 国产美女午夜福利| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 人妻夜夜爽99麻豆av| 国产成人影院久久av| h日本视频在线播放| 日本爱情动作片www.在线观看| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 又黄又爽又刺激的免费视频.| 日韩欧美一区二区三区在线观看| 亚洲精品乱码久久久v下载方式| av国产免费在线观看| 啦啦啦啦在线视频资源| 欧美日韩在线观看h| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 禁无遮挡网站| 三级国产精品欧美在线观看| 国产淫片久久久久久久久| 午夜福利在线观看免费完整高清在 | 国产精品电影一区二区三区| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 免费电影在线观看免费观看| 真实男女啪啪啪动态图| 日韩三级伦理在线观看| 啦啦啦观看免费观看视频高清| 亚洲精品色激情综合| 国产综合懂色| 国产伦精品一区二区三区视频9| 人妻少妇偷人精品九色| av福利片在线观看| 舔av片在线| 天堂影院成人在线观看| 亚洲自拍偷在线| 亚洲精品国产av成人精品| 久久精品国产亚洲av涩爱 | 天堂影院成人在线观看| 22中文网久久字幕| 免费人成视频x8x8入口观看| 国产精品乱码一区二三区的特点| 一夜夜www| 国产探花极品一区二区| 搡老妇女老女人老熟妇| 欧美不卡视频在线免费观看| 卡戴珊不雅视频在线播放| 不卡视频在线观看欧美| 色播亚洲综合网| 免费无遮挡裸体视频| 久久韩国三级中文字幕| 欧美区成人在线视频| 最后的刺客免费高清国语| 十八禁国产超污无遮挡网站| 国产男人的电影天堂91| 亚洲av中文字字幕乱码综合| 美女xxoo啪啪120秒动态图| 欧美+日韩+精品| 午夜亚洲福利在线播放| 老熟妇乱子伦视频在线观看| 日韩高清综合在线| 我的老师免费观看完整版| 麻豆成人午夜福利视频| 日日啪夜夜撸| 国产精品久久久久久久久免| 草草在线视频免费看| 又爽又黄a免费视频| 免费电影在线观看免费观看| 99热精品在线国产| 嫩草影院精品99| 国产成人一区二区在线| 女人十人毛片免费观看3o分钟| 国产精品.久久久| 亚洲精品影视一区二区三区av| 国语自产精品视频在线第100页| 美女内射精品一级片tv| 天堂中文最新版在线下载 | av天堂中文字幕网| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 国产单亲对白刺激| 草草在线视频免费看| 国产大屁股一区二区在线视频| 亚洲自偷自拍三级| 看黄色毛片网站| 偷拍熟女少妇极品色| 日韩成人伦理影院| 97超视频在线观看视频| 成人二区视频| 日韩欧美 国产精品| 69av精品久久久久久| 啦啦啦韩国在线观看视频| 婷婷六月久久综合丁香| 干丝袜人妻中文字幕| 午夜福利高清视频| 午夜免费激情av| 国产精品国产高清国产av| 国产精品爽爽va在线观看网站| 国产伦理片在线播放av一区 | 人人妻人人看人人澡| 亚洲无线在线观看| 亚洲欧美日韩东京热| 免费人成视频x8x8入口观看| 夜夜看夜夜爽夜夜摸| 精品欧美国产一区二区三| 99久久精品热视频| 99久久成人亚洲精品观看| 久久这里只有精品中国| 国产日韩欧美在线精品| 噜噜噜噜噜久久久久久91| 不卡视频在线观看欧美| 性色avwww在线观看| 国产免费一级a男人的天堂| 最近的中文字幕免费完整| 黄片无遮挡物在线观看| 国内久久婷婷六月综合欲色啪| 国产成年人精品一区二区| 天堂av国产一区二区熟女人妻| 欧美性感艳星| 老熟妇乱子伦视频在线观看| 99久国产av精品国产电影| 日韩一本色道免费dvd| 女人被狂操c到高潮| 国产高清激情床上av| 亚洲人成网站高清观看| 久久久精品欧美日韩精品| 搞女人的毛片| 一本久久精品| 此物有八面人人有两片| 99久国产av精品| 99热网站在线观看| 成人午夜精彩视频在线观看| 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 亚洲成人久久爱视频| 国产真实伦视频高清在线观看| 日本三级黄在线观看| 中文精品一卡2卡3卡4更新| 18+在线观看网站| 岛国在线免费视频观看| 天堂中文最新版在线下载 | 日本-黄色视频高清免费观看| 国产黄色视频一区二区在线观看 | 校园人妻丝袜中文字幕| 九九在线视频观看精品| 国产中年淑女户外野战色| 黄片wwwwww| 老女人水多毛片| 一级毛片电影观看 | av.在线天堂| 午夜激情福利司机影院| 久久精品夜夜夜夜夜久久蜜豆| 亚洲av成人精品一区久久| 噜噜噜噜噜久久久久久91| 色综合色国产| 麻豆国产av国片精品| 自拍偷自拍亚洲精品老妇| 久久精品国产亚洲av天美| 久久人人爽人人爽人人片va| 熟妇人妻久久中文字幕3abv| 最近手机中文字幕大全| 国产极品天堂在线| 亚洲国产精品国产精品| 国产精品日韩av在线免费观看| 亚洲欧美日韩东京热| 春色校园在线视频观看| 久久99精品国语久久久| 亚洲精品乱码久久久v下载方式| 国产亚洲91精品色在线| 国产探花极品一区二区| 国产亚洲精品久久久com| 久久久午夜欧美精品| 欧美高清性xxxxhd video| 国产国拍精品亚洲av在线观看| 日日摸夜夜添夜夜添av毛片| 亚洲精品久久国产高清桃花| 此物有八面人人有两片| 别揉我奶头 嗯啊视频| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 精品一区二区三区视频在线| 18禁黄网站禁片免费观看直播| 男女那种视频在线观看| 成人漫画全彩无遮挡| 在线a可以看的网站| 狂野欧美白嫩少妇大欣赏| 少妇丰满av| 一级毛片aaaaaa免费看小| 一区二区三区四区激情视频 | 啦啦啦啦在线视频资源| 国产精品国产三级国产av玫瑰| 亚洲成av人片在线播放无| 午夜福利在线观看吧| 亚洲精品亚洲一区二区| 国内久久婷婷六月综合欲色啪| 国国产精品蜜臀av免费| 婷婷精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 亚洲欧美成人综合另类久久久 | 大型黄色视频在线免费观看| 亚洲人成网站在线播| 色哟哟·www| 白带黄色成豆腐渣| 最近2019中文字幕mv第一页| 男女做爰动态图高潮gif福利片| 天堂av国产一区二区熟女人妻| 亚洲国产精品成人综合色| 午夜福利高清视频| 亚洲国产精品久久男人天堂| 亚洲无线在线观看| 一级黄色大片毛片| 麻豆精品久久久久久蜜桃| 国产精品一及| 伦精品一区二区三区| 给我免费播放毛片高清在线观看| 美女大奶头视频| 精品久久久噜噜| 狠狠狠狠99中文字幕| 12—13女人毛片做爰片一| 欧美极品一区二区三区四区| 国产精品日韩av在线免费观看| 国产黄片美女视频| 秋霞在线观看毛片| 我的女老师完整版在线观看| 伦精品一区二区三区| 国内精品宾馆在线| 黄片wwwwww| 免费一级毛片在线播放高清视频| 欧美在线一区亚洲| 成人毛片a级毛片在线播放| 亚洲久久久久久中文字幕| 亚洲无线在线观看| 插逼视频在线观看| 国产69精品久久久久777片| 国产成年人精品一区二区| 亚洲欧美日韩东京热| 国产人妻一区二区三区在| 久久亚洲精品不卡| 亚洲欧美成人精品一区二区| 禁无遮挡网站| eeuss影院久久| 国产激情偷乱视频一区二区| 欧美成人一区二区免费高清观看| 人人妻人人澡欧美一区二区| 亚洲av成人精品一区久久| 岛国在线免费视频观看| 91午夜精品亚洲一区二区三区| 精品久久久久久久久久久久久| 美女xxoo啪啪120秒动态图| 国产一级毛片七仙女欲春2| 中文字幕制服av| 久久久久久国产a免费观看| 一级黄色大片毛片| 欧美丝袜亚洲另类| 亚洲自偷自拍三级| 大香蕉久久网| 久久精品夜色国产| 免费不卡的大黄色大毛片视频在线观看 | 少妇熟女欧美另类| 爱豆传媒免费全集在线观看| 黄色配什么色好看| 精品无人区乱码1区二区| 97超视频在线观看视频| 亚洲国产精品合色在线| 亚洲成人久久爱视频| 久久久久久久久大av| 内射极品少妇av片p| 精品人妻熟女av久视频| 久久久久久伊人网av| 一个人看视频在线观看www免费| 国产人妻一区二区三区在| 丰满的人妻完整版| 久久精品国产亚洲av涩爱 | 黄片wwwwww| 在线国产一区二区在线| 亚洲最大成人手机在线| 亚洲欧美成人综合另类久久久 | 黄片无遮挡物在线观看| 欧美潮喷喷水| 亚洲va在线va天堂va国产| 日韩中字成人| 97超碰精品成人国产| 好男人在线观看高清免费视频| 久久这里只有精品中国| 欧美人与善性xxx| 欧美xxxx性猛交bbbb| 免费不卡的大黄色大毛片视频在线观看 |