• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Machine learning potential aided structure search for low-lying candidates of Au clusters

    2022-08-01 06:02:50TongheYing應(yīng)通和JianbaoZhu朱健保andWenguangZhu朱文光
    Chinese Physics B 2022年7期
    關(guān)鍵詞:朱文

    Tonghe Ying(應(yīng)通和), Jianbao Zhu(朱健保),?, and Wenguang Zhu(朱文光)

    1Department of Physics,University of Science and Technology of China,and Key Laboratory of Strongly-Coupled Quantum Matter Physics,Chinese Academy of Sciences,Hefei 230026,China

    2International Center for Quantum Design of Functional Materials(ICQD),Hefei National Laboratory for Physical Sciences at the Microscale,and Synergetic Innovation Center of Quantum Information and Quantum Physics,University of Science and Technology of China,Hefei 230026,China

    Keywords: machine learning potential,gold cluster,first-principles calculation

    1. Introduction

    For solid material, such as binary compounds and supported nanoparticles,[1,2]determination of its global stable structure is the cornerstone for a detailed study of its mechanical,electronic,magnetic,or chemical properties. In principle,the structure can be determined computationally by searching the potential energy surface (PES) of the system. To obtain the ground-state structure, unbiased search algorithms, such as genetic algorithm(GA),[3]basin-hopping(BH),[4]particleswarm optimization(PSO)[5]have been developed. However,all of these methods require a large number of energy and force calculations in the framework of density functional theory(DFT).Since the computational cost of DFT grows cubically with the size of the system and the configuration space also grows exponentially with the number of atoms,[6]the global structure search for large systems may be unpractical.In this context,alternative methods like empirical potentials[7]are often employed, but the transferability and accuracy are not always satisfactory.

    During lasts decades, ML techniques have been proved useful in various aspects of computational material physics.[8–16]However, most of them are used to assist the simulation of molecular dynamics (MD), where ML potential only needs to cover a part of configuration space.[17]In order to do the global optimization, we have to obtain an ML potential covering almost the whole configuration space,which can be very challenging. Nevertheless, once such an ML potential[18–20]is constructed,e.g.,neural-network-based approaches,[21–23]Gaussian approximation potentials,[24]it can largely accelerate the global optimization benefiting from the speed of ML predictions and still preserve the accuracy of first-principles calculations at the same time. Because of the characteristic of atomic systems, they can be naturally regarded as a graph,with vertices representing individual atoms and edges representing bonds. Therefore, high dimensional neural networks,especially convolutional graph neural networks,[21,25–29]which operate on graph structured data,are suitable to speed up the global optimization. These neural network potentials are based on atomic energy contributions and can be applied to systems of different sizes,which go beyond the limitations of previous neural networks for fixed-size systems.[30]

    Gold is one of the most inert metals in the periodic table, but at the nanometer scale it exhibits outstanding properties for nanoscience such as nanoelectronics, nanobiology,and nanocatalysis.[31–34]Since many intriguing structures and properties are found for nanometer-sized gold clusters, they are attracting interest as the building blocks of novel nanostructured materials and devices.[35,36]Among these applications,cluster structures play an important role in determining their properties, and some of them are highly stable at magic number sizes.[37]In this work,we utilized the combination of PSO[5]and a DFT trained SchNet potential[38]to accelerate the global optimization of Au clusters whose size is below 20 atoms. Trained with our newly developed dataset,the SchNet model shows a great performance on predicting the energy and forces of Au cluster structures in the process of optimizations. With this ML potential accelerated global optimization,we have successfully reproduced the well-known tetrahedral structure of Au20[35]and revealed the 2D–3D structural transition of Au clusters.

    2. Methods

    The workflow starts with PSO, a branch of evolutionary methodology for crystal structure prediction. Within the PSO scheme, each particle is influenced by both the best local and the best global particle,i.e., a particle can learn from its past experiences to adjust its flying speed and direction.Here,the population size is set to be 150 and other parameters are maintained as suggested by Wang.[5]In order to explore the search space of clusters as widely as possible to obtain low energy structures, we do not impose the symmetry constraint on the structure generation step. The most expensive part of the global optimization algorithm is the local relaxation performed at the DFT level. However, in our method,these calculations are replaced by the ML potential, which is obtained by training on our developed dataset. Since the best global particle of each generation largely controls the evolution of PSO, it is reevaluated by calculating the energies of the best local particles obtained from the ML potential at the DFT level. It is worth noting that our method can be classified into an evolution-type algorithm, which puts emphasis on structure search by generational change,while a selectiontype algorithm such as Bayesian optimization[39]aims to select structures preferentially from a large number of candidates by ML. Compared to the selection-type algorithm, generated initial structures by our method show a trend to more stable structures as generations increase. Moreover, in our method,we utilize a well-trained ML potential to replace the timeconsuming local optimization by DFT, promoting the acceleration of structure search.

    2.1. Graph neural network potential

    In order to reduce the total computational cost during the structure exploration,we exploit a graph convolutional neural network called SchNet[38]to describe interatomic potentials in the Au cluster system,which is a combination of a graph neural network and a convolutional neural network. The graph neural network regards atoms and pairwise interactions between them as nodes and edges, respectively. These nodes and edges are represented by feature vectors and they can be iteratively updated through convolution layers. The convolution layer is actually a message-passing function,which gathers information from neighboring atoms within a cutoff radiusRcand updates the feature vector of the central atom. To have an intuitive understanding of SchNet,Behler–Parrinello neural network(BPNN)[40]is often utilized for comparison,which is widely used last decades.In BPNN,the chemical environment around an atom is represented by a set of symmetry functions,which are rotationally,translationally and permutationally invariant, satisfying the requirement of descriptors. In order to distinguish between different chemical elements,each chemical element has its own neural network architecture with fitted parameters. However, in SchNet, descriptors are replaced by iteratively updated feature vectors, whose parameters can be learnt through training. Furthermore,all chemical elements in SchNet share the same architecture, the uniqueness of them guaranteed by respective randomly initialized feature vectors.Figure 1 shows an overview of the SchNet architecture. At each layer, the cluster is represented atom-wise analogous to pixels in an image and interactions between atoms are modeled by interaction blocks where radial basis functions

    play a key role in expanding the interatomic distances,riandrjrepresenting the position coordinate of atomiand atomjrespectively. The centersμkare chosen uniformly every 0.2 ?A between zero and the distance cutoff 5 ?A while the scaling parameterγ=1 ?A.Interactions of atomias the convolution with surrounding atoms can be formulated as

    where°represents the element-wise multiplication andlmeans the layer. The filter-generating networkWl:R3→RFmaps the atom positions to the filter values ofFdimensions.In the pooling layer,the total energy of a system is described as the summation of atomic contributions

    where the atomic energyεiis a function of its chemical environment.

    For the training of the model, the forces are included in the training loss function.The interatomic forces are related to the energy,so we can obtain an energy-conserving force model by differentiating the energy model w.r.t. the atom positions

    Then a combined loss

    can be defined,whereρis the trade-off parameter between the energy and forces loss. To minimize the loss function, after having tested many different hyperparameter settings, we finally use the ADAM optimizer[41]with 32 mini-batches and the learning rate is decayed with a ratio 0.96 from 10-3to 10-5once learning stagnates. The selection of hyperparameters,such as the trade-offρ,feature dimensionsF,interaction numbersT, will be discussed later, and the others follow the setting proposed previously.[38]

    Fig. 1. Illustrations of the SchNet architecture overview. The shifted softplus is defined as ssp(x)=ln(0.5ex+0.5)and the radial basis function is abbreviated to rbf. Wl(ri-rj)is the filter-generating network(orange color)and the box in gray represents the interaction block,which can be repeated for n times.

    2.2. Data generation

    The dataset used to train the ML model is a key factor.To ensure its diversity, data of 14 different sized Au clusters(Au10~Au19, Au21, Au26, Au33, Au35), with each size containing 100 different configurations, are used as initial structures for the simulated annealing (SA). Thus, an initial training dataset of 1.4×106structures is generated by SA from 1000 K to 0 K, which is kept 20 ps and the time step equals 20 fs. However,there are some unreasonable or similar structures in these generated data, which need further refinement.First, structures with the absolute value of any component of forces being above 10 eV/?A,which are considered as unphysical configurations, are removed from the dataset. Second,if some configurations are considered to be similar, only one of them can be kept. The two steps of refinements make the initially generated dataset decreased from 1.4×106to 38276 configurations.

    In the present work, we ensure that two structures are considered different by employing an interatomic and energy comparison criterion.[3]If the difference of energies of two configurations is more than 0.1 eV,they are considered as different configurations.Otherwise,the structure comparison criterion needs to be employed. A sorted list,Di, of all interatomic distances is calculated for all candidatesi. Two configurationsiandjare regarded equal,provided

    kindexes each entry in the listDi. The first criterion is the relative accumulated difference between two candidates and the second criterion is the maximum difference between two distances of the two candidates. Typical values areδrel=0.03 anddmax=0.7 ?A.

    The first-principles DFT calculations were performed using the ViennaAb InitioSimulation Package(VASP).[42]Valence electrons were described using the projector-augmented wave[43](PAW)method. The plane wave expansions were determined by an energy cutoff of 250 eV. The exchange and correlation functional was treated using the Perdew–Burke–Ernzerhof (PBE)[44]parametrization of generalized gradient approximation (GGA) for structural relaxations and total energy calculations. The isolated cluster was represented by a large cubic supercell of edge length 20 ?A and obviously only the Gamma point was used for itsk-point sampling.Optimized atomic structures were achieved when forces on all the atoms were<0.03 eV/?A and the energy was<1×10-4eV.Because the spin-orbit coupling(SOC)is positively correlated with the atomic number while Au has a large atomic number,to obtain the energies of found structures more accurately,we have also carried out the calculations including SOC, which is implemented in the noncollinear version[45]of the PAW method.

    3. Results and discussion

    In order to obtain accurate energy and force predictions,we first perform a model selection on the given reference data.Table 1 lists the results for various settings of numbers of interaction blocksT, numbers of feature dimensionsFof the atomic representations,and the energy-force trade-offρof the combined loss function. It is obvious that the model’s ability to predicting the energy and forces becomes better asTandFincrease.Finally,the model architecture ofT=6 andF=128 works best for the energy as well as forces. For the energy predictions, we obtain the best result when usingρ=0.1 as this puts more emphases on the energy loss while we achieve the best force predictions whenρ=0.01. Here,we select theρ=0.1 model as this achieves the most balanced performance.

    Table 1. Mean absolute errors for energy and forces predictions. We compare SchNet models with varying numbers of interaction blocks T,feature dimensions F,and energy-force tradeoff ρ. The selected model is in bold.

    We train a series of neural network (NN) potentials by gradually enlarging the size of the training dataset from 3827 to 30620.Figure 2(a)shows the evolution of the mean absolute error(MAE)of the energy and forces for these NN potentials,respectively. It is clearly seen that the value of the MAE of both the energy and force significantly decreases as the size of training data increases, indicating a gradual improvement of the potentials. The NN potential with 30620 training data gives the best performance, and will be used in the following work. The training process is done iteratively and after every iteration, testing of the trained weights is done by calculating the MAE of the energy and forces. After the 787th iteration the learning rate is below 10-5,and the training process is stopped. The difference between the MAE of training and testing is 0.043 eV for energy and 0.012 eV/ ?A for forces,as shown in Fig.2(b). The correlation plot between DFT energy (forces) and NN energy (forces) of the testing dataset is shown in Fig.2(c). It is evident from the plot that the accuracy of our NN potential is comparable to that of DFT.

    Since Au20is a tetrahedral structure that was confirmed by experiment and DFT calculation,[35]we take a look at the PSO evolution of its energy distributions, which is shown in Fig. 3. At the beginning of the search, found structures are in relative high-energy region, while their energies decrease quickly as the evolution continues. The structure that is found in the 3rd generation is an intermediate product, a local minimal one shown in the inset. The minima has been kept for several generations,until the global ground structure is found in the 21th generation. We can see that Au20is the famous tetrahedral pyramid,which is proved to be highly stable and is a unique molecule with atomic packing similar to that of bulk gold. It is important to notice that we do not include Au20into our training set,making the found Au20ground structure more convincing.

    Fig. 2. (a) The evolution of the MAE of the predicted energy (left panel)and forces(right panel)as a function of the training set size. (b)The MAE of the energy and forces of training and testing dataset decays as a function of iterations. (c)The comparison of the energy and forces calculated by the ML model and DFT.The black dashed line is the result of the least square fitting.

    Fig. 3. Evolution of energy distributions during PSO structure search for Au20 clusters,where local optimization is conducted by NN potential.Structures in the inset are a local minimal configuration and the ground one.

    Fig. 4. Structures of ground state candidates, found using the SchNet model. The final binding energies are all reoptimized by DFT. There are three items below every structure picture.The first one indicates the number of atoms,while the second and the third items mean the binding energy calculated by PBE and PBE+SOC respectively. The unit of values is eV.

    In addition, we perform structure searches for Au clusters between 4 and 20 atoms, with final configurations reoptimized by DFT, as shown in Fig. 4. To get more accurate energy results,we calculate the binding energy of Au clusters both with PBE and PBE+SOC respectively.The binding energies obtained including the SOC are higher than those without including the SOC for both 2D clusters and 3D clusters. It is obviously seen that small sized Au clusters tend to form planar structures while the larger ones are more likely to have stereo structures,with the critical size for the 2D–3D structural transition being Au14,which is generally consistent with previous research.[46]Furthermore, it can be noticed that many structures evolve from the prior structure with one atom added in a certain position. All 2D Au clusters whose size is below 14 atoms can be described by this rule and the tetrahedral pyramid of Au20can also be regarded as the evolution from Au19with one atom added in the top.More interestingly,some structures found by PSO even have lower binding energies than those reported by former literatures.[46,47]For example, the binding energies of Au13, Au15, Au17, Au18are lower by 0.214 eV,0.191 eV,0.326 eV,0.370 eV than that in the previous literatures,after we recalculate their binding energies with the same parameter of PBE+SOC in this paper. We also plot the energy per atom of our predicted clusters as a function of the cluster size,as displayed in Fig.5,showing an overall downward trend. This is due to the increase of the average number of nearest-neighbors with increasing size. Moreover, the binding energy per atom of even-sized clusters shows a little lower than the ones of their odd-sized neighbors, which can be explained by the effect of electron pairing. It is also remarkable that Au7is one local maximum point in Fig. 5, whose lower symmetry compared to neighbors Au6and Au8results in an increase in energy.

    Fig.5.Energy per atom of ground structures,obtained by the SchNet model.The energy values are given by DFT.

    4. Conclusion

    In this work,we developed an ML atomic potential serving the task of structure search for Au clusters,which has two major advantages. Firstly, SchNet considers the structure as a graph, with atoms representing nodes and interactions between atoms representing edges. This kind of representation bypasses tedious descriptors and makes it possible to be applied in the field where lacking of expert knowledge for the design of descriptors. Secondly, our ML potential replaces the time-consuming local optimization performed by VASP,which allows more structure optimization trials for large systems. By an extensive search in the size range of 4–20, we exhibited their low-lying structures and revealed that the 2D–3D structural transition takes place at the cluster sizeN=14.Such a successful search for low-lying structures of Au clusters not only proves that the current SchNet model is robustly and efficiently valid in seeking low-lying candidates of Au clusters but also indicates that ML is indeed powerful in interatomic potential modeling.

    The code and supporting data for this article are available from Ref.[48].

    Acknowledgements

    Computational support was provided by Supercomputing Center in USTC and National Supercomputing Center in Tianjin.

    Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0204904 and 2019YFA0210004).

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    秦川好
    唱起號(hào)子走漢江
    Interaction Solutions for Kadomtsev-Petviashvili Equation with Variable Coefficients?
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風(fēng)采
    北方人(2017年12期)2017-07-25 09:17:06
    啦啦啦 在线观看视频| 狠狠狠狠99中文字幕| 99久久99久久久精品蜜桃| 99riav亚洲国产免费| 日韩熟女老妇一区二区性免费视频| 久久人人爽av亚洲精品天堂| 性少妇av在线| 黄色视频,在线免费观看| av中文乱码字幕在线| 啦啦啦视频在线资源免费观看| 免费观看a级毛片全部| 十八禁网站免费在线| 欧美日韩亚洲国产一区二区在线观看 | 午夜激情av网站| 日韩免费高清中文字幕av| 亚洲五月色婷婷综合| 久久人人97超碰香蕉20202| 精品一区二区三卡| 最近最新中文字幕大全免费视频| 日本wwww免费看| 黑人欧美特级aaaaaa片| 日韩免费高清中文字幕av| 日韩一卡2卡3卡4卡2021年| 久久天堂一区二区三区四区| 岛国在线观看网站| 日韩欧美三级三区| 国产精品一区二区在线不卡| 午夜91福利影院| 一边摸一边做爽爽视频免费| 一区福利在线观看| cao死你这个sao货| 中文字幕色久视频| 国产亚洲精品一区二区www | 久久草成人影院| 国精品久久久久久国模美| 成人精品一区二区免费| 超碰97精品在线观看| 欧美黑人精品巨大| 天天操日日干夜夜撸| 日本撒尿小便嘘嘘汇集6| 久久久久久久久免费视频了| 天堂俺去俺来也www色官网| 免费少妇av软件| 亚洲av日韩精品久久久久久密| 国产av一区二区精品久久| 美女高潮喷水抽搐中文字幕| 丝袜人妻中文字幕| 亚洲欧洲精品一区二区精品久久久| 国产精品久久久久成人av| 91字幕亚洲| 美女高潮喷水抽搐中文字幕| 两性夫妻黄色片| 多毛熟女@视频| 人人妻人人添人人爽欧美一区卜| 久久久精品区二区三区| 亚洲av美国av| 日韩大码丰满熟妇| 制服人妻中文乱码| 一区二区三区激情视频| 在线免费观看的www视频| 欧美精品人与动牲交sv欧美| 国产区一区二久久| 久久精品亚洲精品国产色婷小说| 免费黄频网站在线观看国产| www.999成人在线观看| 欧美日韩黄片免| 精品乱码久久久久久99久播| 欧美色视频一区免费| 黄色 视频免费看| 极品少妇高潮喷水抽搐| 王馨瑶露胸无遮挡在线观看| 99精国产麻豆久久婷婷| 热re99久久精品国产66热6| 国产成人精品久久二区二区免费| 1024视频免费在线观看| 国产人伦9x9x在线观看| 老汉色∧v一级毛片| 国产aⅴ精品一区二区三区波| 久久亚洲真实| 久热这里只有精品99| 亚洲欧美色中文字幕在线| 亚洲欧美精品综合一区二区三区| 午夜免费鲁丝| 在线播放国产精品三级| 正在播放国产对白刺激| 91大片在线观看| 精品久久蜜臀av无| 亚洲成国产人片在线观看| 99精国产麻豆久久婷婷| 岛国毛片在线播放| 18禁国产床啪视频网站| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看完整版高清| 黄片小视频在线播放| 亚洲精品在线观看二区| 欧美成人午夜精品| 亚洲国产精品合色在线| 久久草成人影院| 黄色片一级片一级黄色片| 大型av网站在线播放| 99精国产麻豆久久婷婷| 亚洲中文av在线| 欧美日韩成人在线一区二区| 亚洲 欧美一区二区三区| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久电影中文字幕 | 欧美日韩黄片免| 午夜福利,免费看| 又大又爽又粗| 免费在线观看日本一区| 人人妻,人人澡人人爽秒播| 亚洲中文av在线| 日本一区二区免费在线视频| 91在线观看av| tube8黄色片| 久久人妻福利社区极品人妻图片| 亚洲综合色网址| 色婷婷久久久亚洲欧美| 在线观看免费视频网站a站| 亚洲精品中文字幕一二三四区| 夜夜夜夜夜久久久久| 亚洲情色 制服丝袜| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 中文字幕人妻丝袜一区二区| 99久久国产精品久久久| 99国产精品一区二区三区| 在线视频色国产色| 一级,二级,三级黄色视频| 在线播放国产精品三级| 国产精品综合久久久久久久免费 | 天堂动漫精品| 午夜福利免费观看在线| 俄罗斯特黄特色一大片| 国产色视频综合| 亚洲国产中文字幕在线视频| 一级毛片高清免费大全| 国产亚洲精品久久久久久毛片 | 亚洲av第一区精品v没综合| 高清av免费在线| 国产视频一区二区在线看| 美女高潮喷水抽搐中文字幕| 欧美黄色淫秽网站| 黄网站色视频无遮挡免费观看| 老汉色av国产亚洲站长工具| 美女 人体艺术 gogo| 久久精品亚洲精品国产色婷小说| 亚洲,欧美精品.| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 99久久综合精品五月天人人| 黄色成人免费大全| 精品久久久久久久毛片微露脸| 成年女人毛片免费观看观看9 | 91av网站免费观看| 夜夜躁狠狠躁天天躁| 男人舔女人的私密视频| 天天操日日干夜夜撸| 午夜老司机福利片| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 男女床上黄色一级片免费看| 久久国产精品人妻蜜桃| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久人妻精品电影| 熟女少妇亚洲综合色aaa.| 一区二区三区激情视频| 18禁观看日本| 久久 成人 亚洲| 男人舔女人的私密视频| 亚洲成a人片在线一区二区| 免费在线观看黄色视频的| 少妇被粗大的猛进出69影院| 50天的宝宝边吃奶边哭怎么回事| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 精品国产一区二区三区四区第35| 国产av精品麻豆| 国产国语露脸激情在线看| 两个人看的免费小视频| 久久精品亚洲熟妇少妇任你| 涩涩av久久男人的天堂| 日韩熟女老妇一区二区性免费视频| av福利片在线| 亚洲精品av麻豆狂野| 亚洲国产欧美日韩在线播放| 亚洲专区中文字幕在线| 大型av网站在线播放| 91老司机精品| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 国产精品乱码一区二三区的特点 | 女性被躁到高潮视频| 中文字幕人妻丝袜一区二区| 国产激情久久老熟女| 久久婷婷成人综合色麻豆| 中文字幕另类日韩欧美亚洲嫩草| 一级毛片女人18水好多| 久久精品aⅴ一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 97人妻天天添夜夜摸| 亚洲熟妇熟女久久| 正在播放国产对白刺激| 国产精品久久久av美女十八| 日韩有码中文字幕| 在线观看免费视频日本深夜| 欧美日韩亚洲综合一区二区三区_| 黑人猛操日本美女一级片| 久久久久久人人人人人| a在线观看视频网站| 少妇猛男粗大的猛烈进出视频| 日韩精品免费视频一区二区三区| 免费不卡黄色视频| 亚洲欧美日韩另类电影网站| 成年女人毛片免费观看观看9 | 国产av一区二区精品久久| 国产成人系列免费观看| 欧美激情高清一区二区三区| 中亚洲国语对白在线视频| 人人妻人人澡人人看| 国内毛片毛片毛片毛片毛片| 午夜老司机福利片| 91九色精品人成在线观看| 色在线成人网| 久久香蕉国产精品| 日韩欧美免费精品| 性少妇av在线| 精品久久久久久久久久免费视频 | 99在线人妻在线中文字幕 | 免费不卡黄色视频| 人妻丰满熟妇av一区二区三区 | 一级a爱片免费观看的视频| 男女下面插进去视频免费观看| 黄片大片在线免费观看| 黄片大片在线免费观看| 一级毛片女人18水好多| 中文字幕制服av| 五月开心婷婷网| 久久这里只有精品19| 看免费av毛片| 欧美日韩国产mv在线观看视频| 黄色 视频免费看| 成人av一区二区三区在线看| 久久久国产欧美日韩av| 国产xxxxx性猛交| 国产不卡一卡二| 人妻 亚洲 视频| 久久久久国内视频| 首页视频小说图片口味搜索| 中文字幕高清在线视频| 日韩制服丝袜自拍偷拍| 成人免费观看视频高清| 国产成人一区二区三区免费视频网站| 色播在线永久视频| 久久国产乱子伦精品免费另类| 日韩欧美三级三区| 精品欧美一区二区三区在线| 每晚都被弄得嗷嗷叫到高潮| 18禁裸乳无遮挡免费网站照片 | 日韩精品免费视频一区二区三区| 老司机午夜十八禁免费视频| 又黄又爽又免费观看的视频| 精品国产乱码久久久久久男人| 久久久久久久久免费视频了| 欧美在线黄色| aaaaa片日本免费| 精品少妇一区二区三区视频日本电影| 精品福利永久在线观看| 中文字幕精品免费在线观看视频| 99在线人妻在线中文字幕 | 免费观看人在逋| 久久久精品区二区三区| 交换朋友夫妻互换小说| av网站在线播放免费| av电影中文网址| 欧美黑人精品巨大| 这个男人来自地球电影免费观看| 亚洲精品av麻豆狂野| 大型黄色视频在线免费观看| 亚洲av第一区精品v没综合| 亚洲国产中文字幕在线视频| 亚洲成人免费电影在线观看| 国产免费现黄频在线看| 美女扒开内裤让男人捅视频| 亚洲欧美一区二区三区久久| 乱人伦中国视频| 久久天躁狠狠躁夜夜2o2o| 黄色怎么调成土黄色| 国产亚洲精品第一综合不卡| 青草久久国产| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区| 久久久久国产一级毛片高清牌| 黄色 视频免费看| 亚洲九九香蕉| av天堂久久9| 老司机深夜福利视频在线观看| 国产蜜桃级精品一区二区三区 | 国产精品1区2区在线观看. | 欧美日韩成人在线一区二区| 看免费av毛片| 精品亚洲成a人片在线观看| 黄色视频,在线免费观看| 校园春色视频在线观看| 久久久国产一区二区| 亚洲熟妇熟女久久| 香蕉国产在线看| 咕卡用的链子| 亚洲片人在线观看| 操出白浆在线播放| 色老头精品视频在线观看| 日韩欧美三级三区| 夜夜爽天天搞| 国产精品免费大片| 亚洲国产欧美网| 日韩成人在线观看一区二区三区| 精品国产乱码久久久久久男人| 久久热在线av| 大型黄色视频在线免费观看| 欧美在线一区亚洲| 亚洲精品久久午夜乱码| 亚洲国产看品久久| bbb黄色大片| 国产乱人伦免费视频| 国产av一区二区精品久久| 女人精品久久久久毛片| 日本黄色视频三级网站网址 | 伦理电影免费视频| 精品电影一区二区在线| 亚洲av欧美aⅴ国产| 色综合婷婷激情| 成年版毛片免费区| 亚洲色图av天堂| 亚洲熟妇熟女久久| 欧美中文综合在线视频| 国产在线一区二区三区精| 一个人免费在线观看的高清视频| 法律面前人人平等表现在哪些方面| 热re99久久精品国产66热6| 俄罗斯特黄特色一大片| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 亚洲人成电影观看| 午夜日韩欧美国产| 黄片小视频在线播放| 国产极品粉嫩免费观看在线| 美国免费a级毛片| 黄色女人牲交| 国产精品一区二区在线观看99| 人妻 亚洲 视频| 50天的宝宝边吃奶边哭怎么回事| 中文字幕精品免费在线观看视频| 亚洲第一av免费看| 男人的好看免费观看在线视频 | 亚洲国产欧美日韩在线播放| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| 精品人妻熟女毛片av久久网站| 女人精品久久久久毛片| 9热在线视频观看99| 午夜福利一区二区在线看| 国产黄色免费在线视频| 老司机深夜福利视频在线观看| 天堂√8在线中文| √禁漫天堂资源中文www| 999久久久国产精品视频| 免费人成视频x8x8入口观看| 国产成人av激情在线播放| 精品少妇一区二区三区视频日本电影| 日韩欧美三级三区| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 老鸭窝网址在线观看| 一本综合久久免费| 人妻一区二区av| 中出人妻视频一区二区| 妹子高潮喷水视频| 成在线人永久免费视频| 亚洲 欧美一区二区三区| 精品国产美女av久久久久小说| 久久九九热精品免费| 一本综合久久免费| 国产精品av久久久久免费| 午夜91福利影院| 俄罗斯特黄特色一大片| 在线十欧美十亚洲十日本专区| 久久99一区二区三区| 亚洲一区中文字幕在线| 日韩人妻精品一区2区三区| 久久久久国产精品人妻aⅴ院 | 国产97色在线日韩免费| 男女床上黄色一级片免费看| 男女之事视频高清在线观看| 国产国语露脸激情在线看| 久久久久久久久免费视频了| 精品国产一区二区三区四区第35| 99久久精品国产亚洲精品| 美女视频免费永久观看网站| 久久亚洲真实| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| av一本久久久久| 精品亚洲成a人片在线观看| 日韩大码丰满熟妇| 国产精品免费大片| 亚洲全国av大片| 最新的欧美精品一区二区| 老司机在亚洲福利影院| 免费高清在线观看日韩| 免费观看精品视频网站| 久久亚洲精品不卡| 99久久精品国产亚洲精品| 亚洲精品在线美女| 天堂中文最新版在线下载| 两个人看的免费小视频| 一区二区日韩欧美中文字幕| 精品欧美一区二区三区在线| av中文乱码字幕在线| 免费在线观看完整版高清| 精品国产美女av久久久久小说| 久久这里只有精品19| 亚洲精品av麻豆狂野| 宅男免费午夜| 成人三级做爰电影| 十八禁高潮呻吟视频| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 女人久久www免费人成看片| 久久影院123| 一区福利在线观看| 国产精品一区二区免费欧美| 欧美日韩中文字幕国产精品一区二区三区 | 天天躁日日躁夜夜躁夜夜| 免费女性裸体啪啪无遮挡网站| 国产精品国产高清国产av | 少妇粗大呻吟视频| 国产成人免费观看mmmm| 欧美黑人精品巨大| 亚洲欧美日韩高清在线视频| 一个人免费在线观看的高清视频| www日本在线高清视频| 一级,二级,三级黄色视频| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 露出奶头的视频| 国精品久久久久久国模美| 免费在线观看完整版高清| 午夜成年电影在线免费观看| 18禁观看日本| 1024视频免费在线观看| 欧美性长视频在线观看| 天堂中文最新版在线下载| 日韩免费高清中文字幕av| 精品久久久久久久毛片微露脸| 窝窝影院91人妻| 久久精品aⅴ一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| av在线播放免费不卡| 国产黄色免费在线视频| 手机成人av网站| 欧美激情高清一区二区三区| 亚洲欧美一区二区三区久久| 国产精品.久久久| 两个人看的免费小视频| 国产xxxxx性猛交| av福利片在线| 国产99白浆流出| 中亚洲国语对白在线视频| 久久精品亚洲熟妇少妇任你| 老司机影院毛片| 一级毛片高清免费大全| 精品电影一区二区在线| 日本精品一区二区三区蜜桃| 交换朋友夫妻互换小说| 亚洲自偷自拍图片 自拍| 丝袜美腿诱惑在线| 久久精品国产综合久久久| 久久天堂一区二区三区四区| 成人影院久久| 欧美午夜高清在线| svipshipincom国产片| 久久精品熟女亚洲av麻豆精品| 亚洲免费av在线视频| 国产在线一区二区三区精| 免费在线观看亚洲国产| 国产在线一区二区三区精| 两人在一起打扑克的视频| 国产欧美日韩一区二区三区在线| 亚洲精品在线观看二区| 欧美日韩一级在线毛片| 亚洲熟女毛片儿| 国产一区二区激情短视频| 国产aⅴ精品一区二区三区波| 久久久精品免费免费高清| 99久久综合精品五月天人人| 亚洲美女黄片视频| 热99re8久久精品国产| 999精品在线视频| 最新的欧美精品一区二区| 欧美精品亚洲一区二区| 69av精品久久久久久| 久久精品亚洲熟妇少妇任你| 香蕉丝袜av| 老司机深夜福利视频在线观看| 国内毛片毛片毛片毛片毛片| 亚洲精品成人av观看孕妇| 国产成人av教育| av在线播放免费不卡| xxxhd国产人妻xxx| а√天堂www在线а√下载 | 亚洲av熟女| 国产无遮挡羞羞视频在线观看| 精品一区二区三区四区五区乱码| 一区二区日韩欧美中文字幕| 久久国产亚洲av麻豆专区| 99国产精品一区二区蜜桃av | 国产亚洲欧美98| 国产主播在线观看一区二区| 亚洲色图综合在线观看| 亚洲欧美一区二区三区黑人| 超碰97精品在线观看| 久久久国产成人精品二区 | 成人手机av| 新久久久久国产一级毛片| 在线播放国产精品三级| 色94色欧美一区二区| 国产精品1区2区在线观看. | 身体一侧抽搐| 精品欧美一区二区三区在线| 精品人妻熟女毛片av久久网站| 欧美性长视频在线观看| 国产欧美日韩一区二区精品| 精品一区二区三卡| 窝窝影院91人妻| cao死你这个sao货| ponron亚洲| 欧美中文综合在线视频| 国产免费现黄频在线看| 久久国产精品影院| aaaaa片日本免费| 亚洲视频免费观看视频| 日日爽夜夜爽网站| 亚洲一码二码三码区别大吗| 少妇粗大呻吟视频| 法律面前人人平等表现在哪些方面| 大香蕉久久网| 欧美日韩av久久| 女警被强在线播放| 午夜福利乱码中文字幕| 在线观看免费高清a一片| 亚洲精华国产精华精| 亚洲av成人不卡在线观看播放网| 男女高潮啪啪啪动态图| 99精国产麻豆久久婷婷| 在线观看www视频免费| 久久久久视频综合| 99re6热这里在线精品视频| 欧美性长视频在线观看| 69精品国产乱码久久久| 国产高清激情床上av| 色播在线永久视频| 黄片大片在线免费观看| 亚洲欧美色中文字幕在线| 黄色怎么调成土黄色| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品一区在线观看| 女同久久另类99精品国产91| 欧美丝袜亚洲另类 | 99久久人妻综合| 欧美大码av| 欧美激情高清一区二区三区| 久久婷婷成人综合色麻豆| 熟女少妇亚洲综合色aaa.| 久久精品人人爽人人爽视色| 亚洲精品成人av观看孕妇| 十分钟在线观看高清视频www| 一本一本久久a久久精品综合妖精| av不卡在线播放| 在线观看免费午夜福利视频| 久久精品国产亚洲av香蕉五月 | 色精品久久人妻99蜜桃| 亚洲少妇的诱惑av| 91老司机精品| 免费人成视频x8x8入口观看| 人人妻,人人澡人人爽秒播| 最近最新中文字幕大全电影3 | 中文字幕高清在线视频| 高清毛片免费观看视频网站 | 美女高潮喷水抽搐中文字幕| 欧美日韩瑟瑟在线播放| 三级毛片av免费| 欧美黄色片欧美黄色片| 岛国在线观看网站| 国产成人一区二区三区免费视频网站| 18禁国产床啪视频网站| 欧美国产精品va在线观看不卡| 欧美日韩福利视频一区二区| 在线永久观看黄色视频| 欧美人与性动交α欧美软件| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三| 欧美乱色亚洲激情| 欧美日韩福利视频一区二区| 久久精品国产清高在天天线| 欧美性长视频在线观看| 无人区码免费观看不卡| 精品乱码久久久久久99久播| 欧美激情久久久久久爽电影 | 欧美乱妇无乱码| 亚洲国产看品久久| 精品卡一卡二卡四卡免费| 国产av又大|