• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Direct visualization of structural defects in 2D semiconductors

    2022-08-01 06:02:56YutuoGuo郭玉拓QinqinWang王琴琴XiaomeiLi李曉梅ZhengWei魏爭(zhēng)LuLi李璐YalinPeng彭雅琳WeiYang楊威RongYang楊蓉DongxiaShi時(shí)東霞XuedongBai白雪冬LuojunDu杜羅軍andGuangyuZhang張廣宇
    Chinese Physics B 2022年7期
    關(guān)鍵詞:李璐

    Yutuo Guo(郭玉拓), Qinqin Wang(王琴琴), Xiaomei Li(李曉梅), Zheng Wei(魏爭(zhēng)), Lu Li(李璐),Yalin Peng(彭雅琳), Wei Yang(楊威), Rong Yang(楊蓉),3, Dongxia Shi(時(shí)東霞),Xuedong Bai(白雪冬), Luojun Du(杜羅軍), and Guangyu Zhang(張廣宇),3,?

    1Beijing National Laboratory for Condensed Matter Physics and Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Science,University of Chinese Academy of Sciences,Beijing 100049,China

    3Songshan-Lake Materials Laboratory,Dongguan 523808,Guangdong Province,China

    Keywords: structural defects,direct visualization,molybdenum disulfide,anisotropic etching,edges

    1. Introduction

    Structural defects in two-dimensional (2D) semiconductors, such as zero-dimensional (0D) point defects and onedimensional (1D) grain boundaries, play important roles on modulation of their mechanical,electrical,optical,and chemical properties.[1–6]For examples, the vacancies and grain boundaries in 2D transition metal dichalcogenides (TMDs)can offer effective catalytic active sites and thus enhance the catalytic performance.[7–9]On the other hand, structural defects usually act as additional scattering centers and degrade the electric performance, such as mobility and on/off ratio.[2,6,10,11]As a consequence, it is essential to know the details of structural defects in 2D semiconductors on a large scale,such as the density and the location,which can provide key information to deeply understand their properties and to guide the further optimization.

    Arguably the atomic resolution microscopy tools,such as high-resolution transmission electron microscopy (HRTEM)and scanning tunneling microscopy(STM),[12–15]can directly visualize the structural defects in 2D semiconductors. However, these atomic resolution techniques not only cannot give large-scale information (usually only a few tens of nanometers), but also require ultra-high vacuum, complex setups or specialized sample preparation, making them impractical to be a usual basis to characterize structural defects in 2D semiconductors. Remarkably, because of the high reactivity,atomic-scale structural defects can be enlarged into macroscopic structures after being etched, offering the possibility for direct visualization on a large scale through atomic force microscope (AFM) or even optical microscope.[16–18]Recently, multiple methods have been developed to directly image the structural defects in 2D semiconductors on a large scale, for example, via enlarging the defect sites by selective etching or decorating them with nanoparticles.[18–20]However,these methods either introduce new defects or lead to surface modifications.[2,9,16,19,21–29]Damage to the surface and quality of 2D semiconductors hinders their further applications.

    In this paper,we introduce a non-invasive,facile method for large-scale assessment of structural defects in monolayer molybdenum disulfide (ML-MoS2), a prototypical 2D semiconductor. Weak wet etching is utilized to enlarge those structural defects in ML-MoS2for direct visualization under optical microscope or AFM. The weak etching only etches the defected sites while keeping the perfect lattice of ML-MoS2intact, as confirmed by TEM, AFM and photoluminescence(PL) spectroscopy. Using this technique, we systematically investigated the defects in different types of ML-MoS2samples, providing key information to understand their electrical performance.

    2. Methods

    2.1. Sample fabrications

    All monolayer MoS2samples on sapphire substrates were grown in a three temperature-zone chemical vapor deposition(CVD)system.For detailed information on the growth of MLMoS2large single domain,large domain ML-MoS2films,and small domain ML-MoS2,please refer to Refs.[33,35],respectively. For thick MoS2flakes,they were mechanically exfoliated from bulk crystals onto scotch-tape,and then transferred onto SiO2/Si substrates. For the ML-MoS2films on SiO2/Si substrate, the ML-MoS2films was etched off substrates by KOH solution and transferred onto the SiO2/Si substrates.

    2.2. Wet etching of the sample

    The MoS2on substrates were immersed in calcium hypochlorite solution for the desired time. After etching,the sample is rinsed in deionized water to remove chemical residues and terminate the etching process,dried with N2gas,and then characterized with optical microscopy.

    2.3. Sample characterizations

    Raman and PL spectra were carried out by a micro-Raman spectrometer (Horiba LabRAM HR Evolution) in a confocal backscattering configuration with an excitation laser wavelength of 532 nm, a laser power of 1 mW and spot size of 1 μm2. The PL mapping was obtained with WiTec(Alpha 300R) Raman microscope with a laser power of 1 mW and step size of 1 μm. AFM imaging was performed by Veeco Multimode III under ambient conditions. STEM imaging was performed by an aberration-corrected JEOL Grand ARM 300 CFEG operated at 80 kV.

    3. Results

    To directly visualize the structural defects in ML-MoS2,we first use a calcium hypochlorite solution to etch the samples at room temperature grown by CVD.The reaction process of MoS2and hypochlorite ion is as follows:[30]

    Since the defects have relatively high chemical reactivity, the etching process starts at the defects first. After the amplification by etching, 0D point defects and 1D grain boundaries transformed into triangular pits and trenches, respectively (Fig. 1(a)). This opens the possibilities to directly observe the structural defects in ML-MoS2by an optical microscope. Figure 1(b)shows the typical optical image of a single crystal ML-MoS2domain on sapphire substrates after etching with a 2-wt%calcium hypochlorite solution for 20 seconds at room temperature. Obvious pits appeared in the crystal domain after etching. The triangular shape of the etched pits indicating that the etching process has strong anisotropy. Alluringly, the etched triangular pits are in the same direction as the domains. For the CVD grown ML-MoS2grown under sulfur-rich conditions,the edges are S-terminated zigzag edges(ZZS).[10,31–33]The etched triangular pits in the same direction as the domains should have zigzag edges terminated with molybdenum(ZZMo),[24,34]as shown in the inset of Fig.1(b).Figure 1(c)shows a typical optical image of merged ML-MoS2domains on sapphire substrates after etching. It can be seen that the grain boundaries have been etched to be trenches,enable the direct visualization. Figure 1(d) presents the AFM image of the etched trenches,indicating that the edges are very smooth and the surface is clean.

    Fig. 1. Anisotropic and non-invasive etching of ML-MoS2 by calcium hypochlorite solution: (a)schematic diagram of wet etching;(b)optical image of ML-MoS2 large single domain after etching. The inset shows the schematic diagram of the atomic geometry of ML-MoS2 large single domain;(c) optical image of merged ML-MoS2 domains after etching with calcium hypochlorite solution; (d) close-up AFM image of the areas surrounded by lines in panel(c);(e)the evolution of the number of triangular pits in different batches of MoS2 with the etching time;(f)PL spectra of MoS2 with different etching times. Scale bar: 10 μm in panels(b)and(c),1 μm in panel(d).

    Figure 1(e)shows the evolution of the number of triangular pits in three triangular domains from different batches with etching time. The number of triangular pits of all the three samples reached saturation after about 200 seconds. This indicates that the etching process of ML-MoS2by hypochlorite ion only starts from the inherent defects,and does not generate new defects. This is further confirmed by the perfect atomic structure after etching,please see Fig.S1 for more details.The increase in the number of triangular pits over time in the initial stage of etching may stem from the different chemical reactivity of different defects.[12,13]Figure 1(f) shows that the PL spectra of ML-MoS2after etching remained unchanged,even if the etching time was extended to 600 seconds. This indicates that our method is non-invasive and significantly different from previous etching methods.[16,18,21,22]Please see Fig. S2 for more details of the PL spectra in Supporting information.

    Fig.2. Defect density of different types of treated MoS2 samples: (a)AFM image of mechanically exfoliated MoS2 etched by calcium hypochlorite solution; (b) optical image of CVD-grown ML-MoS2 films with small grain size etched by calcium hypochlorite solution; (c) close-up AFM image of the areas surrounded by lines in panel(b);(d)optical image of CVD-grown ML-MoS2 films with large grain size etched by calcium hypochlorite solution.The white arrow points to the location of the triangular pits;(e)close-up optical image of the areas surrounded by lines in panel (d); (f) statistics of average pits densities of various MoS2 samples. Scale bar:1 μm in panel(a),10 μm in panel(b),300 nm in panel(c),10 μm in panel(d),2 μm in panel(e).

    Using our non-invasive techniques,we further studied the internal defects of different types of MoS2,namely,mechanically exfoliated MoS2,CVD-grown ML-MoS2single domain,and CVD-grown ML-MoS2films with small and large grain size. After 60 seconds of etching, triangular pits appeared in mechanically exfoliated MoS2, as shown in Fig. 2(a). The density of triangular pits is~4.50×106cm-2. For CVDgrown ML-MoS2films with small grain size, as shown in Figs. 2(b) and 2(c), the density of triangular pits is much higher than that of mechanically exfoliated MoS2and can reach~1.18×109cm-2.Notably,the triangular pits of CVDgrown ML-MoS2films with small grain size have two orientations. This is because the film is stitched by two oriented domains: 0°and 60°.[35]For CVD-grown ML-MoS2single domain and ML-MoS2films with large grain size,the densities of triangular pits are~4.47×105cm-2and~5.61×105cm-2,respectively, which are much lower than that of CVD-grown ML-MoS2films with small grain size and also more than one order of magnitude lower than that of mechanically exfoliated MoS2. Statistics of average pits densities of various MoS2samples are shown in Fig. 2(f). The ultralow defect density in CVD-grown ML-MoS2films with large grain size provides key information for understanding the excellent electrical properties recently observed.[33]It is worth noting that in order to avoid the mutual fusion phenomenon of the pits during the etching process,see Fig.S3 for details,the etching time for CVD-grown ML-MoS2films with small grain size and mechanically exfoliated MoS2is only 60 seconds. This is different from the situations of CVD-grown ML-MoS2single domain and ML-MoS2films with large grain size where the etching has reached saturation(etching time exceeds 200 seconds). This means that the defect densities in mechanically exfoliated MoS2and CVD-grown ML-MoS2films with small grain size may be higher than that shown in Fig.2(f).

    Apart from the intrinsic defects,we also use our method to study the artificially introduced defects in MoS2. Chemical hydrogen plasma treatment can generate sulfur vacancies in MoS2.[36–38]After treating with calcium hypochlorite solution, MoS2treated with hydrogen plasma is quickly etched away. Note that before treating with calcium hypochlorite solution, the structure of MoS2treated with hydrogen plasma is intact (Fig. S4). Even if the etching time is shortened to about 0.5 seconds, there are still many pits on the surface of the MoS2sample, as shown in Fig. 3(a). The grooves in the image are attributed to the stress caused by the bombardment of hydrogen ions on the MoS2. This indicates that the calcium hypochlorite solution has a good response to the sulfur vacancies generated by hydrogen plasma. Argon plasma treatment is a physical process and can introduce phase transitions in MoS2.[39]After argon ion treatment of the CVD-grown MLMoS2films with large grain size,the density of triangular pits is increased by more than three orders of magnitude and can reach 4.70×108cm-2,as shown in Fig.3(b).Figure S5 shows details about the phase transition. The strongly enhanced defect density in samples treated by argon ion provides new insight to understand the physical mechanism of phase transitions triggered by argon plasma treatment.[40]

    Fig. 3. Response of wet etch to artificial defects: (a) AFM image of MoS2 treated by hydrogen plasma after being etched by solution;(b)optical image of 1T phase MoS2 after being etched by solution. The inset is an AFM image of the sample. Scale bar: 100 nm in panel(a), 10 μm in panel(b), 1 μm in the insert of panel(b).

    Significantly, the shape of the pit can be highly tunable by the concentration of the solution. As shown in Figs.4(a)–4(h),as the concentration of calcium hypochlorite solution decreases, the shape of the pits evolves from triangles to truncated triangles, then to hexagons, and finally to inverse triangles. This indicates that the edges of the pit change from pure ZZMoto pure ZZSas the concentration of the solution decreases.[34]The etch rate of the two types of edge states varies with concentration as shown in Fig.4(i). In other word,our technique opens up the opportunities to obtain atomically sharp edge states on demand. This provides opportunities for different cut-off boundaries of ML-MoS2, showing great application potential in metamaterial preparation,[41]heterojunction epitaxy,[42,43]defect repair,[44,45]hydrogen evolution catalysis,[46]nonlinear optics,[47]and nanoelectronics.[48,49]In addition, the anisotropic etching of ML-MoS2by the calcium hypochlorite solution is not limited by the substrate.Figure S6 shows that for ML-MoS2on SiO2substrate, the pits also show triangle sharp, indicating the anisotropy of the etching. In addition to MoS2, the calcium hypochlorite solution can also be used to etch other 2D-TMDs, such as WSe2,MoSe2, and WS2(Fig. S7). This indicates that our method is a general technique for directly visualizing defects in 2DTMDs, and has the potential to be applied to other 2D semiconductors.

    Fig. 4. The shape of the pits etched under different calcium hypochlorite concentrations: (a)–(h)optical images of MoS2 etched by different concentrations of calcium hypochlorite solutions.The blue and red sides of the triangles and truncated triangles in the illustration correspond to ZZMo and ZZS,respectively. (i)Etching rate of the two types of boundaries varies with concentration. ν1 and ν2 respectively correspond to the etching rate of Zigzag edges terminated with molybdenum (ZZMo) and sulphur (ZZS). Scale bar:10 μm in panels(a)–(h).

    4. Summary

    In summary, we have developed a simple and noninvasive method to directly visualize the structural defects in 2D-TMDs on a large scale. Utilizing this etching technique,we have investigated the intrinsic defects of four types of MoS2samples and found that CVD-grown ML-MoS2single domain and ML-MoS2films with large grain size have lowest defect density. This enable us to understand the relationship between structural defects and performance. Moreover, for artificially introduced defects, such as sulfur vacancies introduced by hydrogen plasma and phase transition triggered by argon plasma, our method also has a good response. Finally,the edges of by etched pits can be tunable by changing the concentration of the calcium hypochlorite solution,providing the opportunities to obtain edge states on demand.

    Acknowledgments

    Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B0101340001), the Strategic Priority Research Program of Chinese Academy of Sciences (CAS) (Grant No.XDB30000000),and the National Natural Science Foundation of China(Grant Nos.61888102 and 11834017).

    猜你喜歡
    李璐
    李璐
    骨科創(chuàng)傷患者的心理護(hù)理方法研究
    《愛(ài)護(hù)地球》
    李璐
    春夢(mèng)無(wú)痕
    “不務(wù)正業(yè)”的學(xué)霸之路
    “不務(wù)正業(yè)”的學(xué)霸之路
    危險(xiǎn)戀人,愛(ài)有多濃恨有多深
    女士(2016年8期)2016-05-14 20:31:05
    記憶大師之戀:中了過(guò)目不忘的毒
    久久久久久久久大av| 国产蜜桃级精品一区二区三区| 少妇丰满av| 不卡视频在线观看欧美| 99精品久久久久人妻精品| 国产 一区精品| 国产伦在线观看视频一区| 久久国内精品自在自线图片| 一进一出抽搐gif免费好疼| 国产探花在线观看一区二区| 简卡轻食公司| 丰满的人妻完整版| 国产成人a区在线观看| 噜噜噜噜噜久久久久久91| 99久久精品一区二区三区| 久9热在线精品视频| 国产精品国产三级国产av玫瑰| 亚洲va日本ⅴa欧美va伊人久久| 午夜激情欧美在线| 18禁在线播放成人免费| 美女大奶头视频| 在线观看66精品国产| 真实男女啪啪啪动态图| 国产视频内射| 熟女人妻精品中文字幕| 亚洲五月天丁香| 国产精品日韩av在线免费观看| 午夜福利18| 精品一区二区三区视频在线观看免费| 亚洲精华国产精华液的使用体验 | 天堂影院成人在线观看| 午夜福利视频1000在线观看| 偷拍熟女少妇极品色| 淫秽高清视频在线观看| 午夜福利欧美成人| 亚洲欧美日韩无卡精品| 午夜福利在线观看免费完整高清在 | 久久国产精品人妻蜜桃| 很黄的视频免费| 国模一区二区三区四区视频| 亚洲av日韩精品久久久久久密| 久久久久久久久大av| 婷婷色综合大香蕉| 1000部很黄的大片| 伊人久久精品亚洲午夜| 国产欧美日韩精品一区二区| 精品人妻一区二区三区麻豆 | 天堂动漫精品| 亚洲成人精品中文字幕电影| 亚洲一区二区三区色噜噜| 欧美精品啪啪一区二区三区| 99热这里只有是精品50| 国产综合懂色| 国产精品久久久久久久久免| 中出人妻视频一区二区| 日本免费一区二区三区高清不卡| 尾随美女入室| 热99re8久久精品国产| 亚洲精品久久国产高清桃花| or卡值多少钱| 男女边吃奶边做爰视频| 最好的美女福利视频网| 老熟妇仑乱视频hdxx| 国产毛片a区久久久久| 国内久久婷婷六月综合欲色啪| 又爽又黄无遮挡网站| 午夜激情欧美在线| 国产精品嫩草影院av在线观看 | 久久久色成人| 久久6这里有精品| 亚洲国产欧洲综合997久久,| www日本黄色视频网| 国产免费一级a男人的天堂| 国内精品一区二区在线观看| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 久久久久久久久中文| 色尼玛亚洲综合影院| 国产69精品久久久久777片| 国产成人影院久久av| 校园人妻丝袜中文字幕| 国产成人福利小说| 国产精品人妻久久久影院| 国产精品女同一区二区软件 | 日本免费一区二区三区高清不卡| 他把我摸到了高潮在线观看| 免费人成视频x8x8入口观看| 免费在线观看成人毛片| 国产中年淑女户外野战色| 美女高潮的动态| 亚洲第一电影网av| 波多野结衣巨乳人妻| 成人特级黄色片久久久久久久| 国产午夜精品久久久久久一区二区三区 | 美女被艹到高潮喷水动态| 欧美区成人在线视频| 草草在线视频免费看| 一个人免费在线观看电影| 99riav亚洲国产免费| 人妻少妇偷人精品九色| 嫩草影视91久久| 日日啪夜夜撸| 哪里可以看免费的av片| 欧美色视频一区免费| 亚洲美女搞黄在线观看 | 一卡2卡三卡四卡精品乱码亚洲| 联通29元200g的流量卡| 国产一区二区三区视频了| 国产蜜桃级精品一区二区三区| 国产黄色小视频在线观看| 免费观看的影片在线观看| 最新在线观看一区二区三区| 国产精品野战在线观看| 看十八女毛片水多多多| 99久久久亚洲精品蜜臀av| 22中文网久久字幕| 久久精品国产清高在天天线| 免费看美女性在线毛片视频| 亚洲精品久久国产高清桃花| 搡老妇女老女人老熟妇| 亚洲av五月六月丁香网| 亚洲午夜理论影院| 色尼玛亚洲综合影院| 国产av一区在线观看免费| 国产精品永久免费网站| 中文字幕免费在线视频6| 久久久久久久久久久丰满 | 欧美中文日本在线观看视频| 18禁黄网站禁片午夜丰满| 嫁个100分男人电影在线观看| 97热精品久久久久久| 免费搜索国产男女视频| 日本爱情动作片www.在线观看 | 国产精品三级大全| 午夜福利欧美成人| 久久精品国产亚洲av香蕉五月| av天堂在线播放| 亚洲精品一区av在线观看| 亚洲真实伦在线观看| 亚洲真实伦在线观看| 男女做爰动态图高潮gif福利片| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品电影| 日本 av在线| 久久久久久久久大av| 国产一区二区在线av高清观看| 综合色av麻豆| 午夜亚洲福利在线播放| а√天堂www在线а√下载| 制服丝袜大香蕉在线| 嫩草影院入口| 国产精品嫩草影院av在线观看 | 啦啦啦观看免费观看视频高清| 欧美日本视频| 99久久九九国产精品国产免费| 亚洲中文字幕一区二区三区有码在线看| 22中文网久久字幕| 五月伊人婷婷丁香| 亚洲内射少妇av| 丝袜美腿在线中文| 久久久国产成人免费| 成人鲁丝片一二三区免费| 国产大屁股一区二区在线视频| 中出人妻视频一区二区| 亚洲在线自拍视频| 午夜日韩欧美国产| 成人高潮视频无遮挡免费网站| 老熟妇仑乱视频hdxx| 国产爱豆传媒在线观看| av天堂在线播放| 热99在线观看视频| 国产av不卡久久| 色播亚洲综合网| 久久久色成人| 女的被弄到高潮叫床怎么办 | 婷婷精品国产亚洲av在线| 日本与韩国留学比较| 欧美bdsm另类| 亚洲精品成人久久久久久| 国产私拍福利视频在线观看| 深爱激情五月婷婷| 日日干狠狠操夜夜爽| 精品一区二区免费观看| 亚洲av美国av| 亚洲综合色惰| 日韩强制内射视频| 99久久无色码亚洲精品果冻| 好男人在线观看高清免费视频| 91麻豆av在线| 午夜精品一区二区三区免费看| 免费观看精品视频网站| 天堂av国产一区二区熟女人妻| 特大巨黑吊av在线直播| 十八禁国产超污无遮挡网站| 18+在线观看网站| 国产在线男女| 中国美白少妇内射xxxbb| 中文字幕av在线有码专区| 亚洲四区av| 国产成人av教育| 天堂影院成人在线观看| 国产精品人妻久久久久久| 国产伦在线观看视频一区| 999久久久精品免费观看国产| 99久久精品热视频| 欧美性感艳星| 日韩 亚洲 欧美在线| 国产精品一区二区免费欧美| 日韩精品中文字幕看吧| 日韩一本色道免费dvd| 日韩欧美三级三区| 国产精品久久久久久av不卡| 国内毛片毛片毛片毛片毛片| 国产三级在线视频| 国产乱人视频| 精品一区二区免费观看| 99国产精品一区二区蜜桃av| 97超级碰碰碰精品色视频在线观看| 国产又黄又爽又无遮挡在线| 国产精品亚洲美女久久久| 1000部很黄的大片| 午夜a级毛片| 国产亚洲91精品色在线| 嫩草影院入口| 极品教师在线视频| 午夜免费男女啪啪视频观看 | 成年版毛片免费区| 日本免费一区二区三区高清不卡| 免费av毛片视频| 欧美成人性av电影在线观看| 精品无人区乱码1区二区| 天堂网av新在线| 在线观看舔阴道视频| 国产激情偷乱视频一区二区| 午夜福利在线观看吧| 18+在线观看网站| 天堂√8在线中文| 99热这里只有是精品50| 久久精品国产99精品国产亚洲性色| 色视频www国产| 联通29元200g的流量卡| 天天一区二区日本电影三级| 国产爱豆传媒在线观看| 国产精品一及| 久久天躁狠狠躁夜夜2o2o| 亚洲av电影不卡..在线观看| 亚洲欧美日韩东京热| 午夜福利在线在线| 女生性感内裤真人,穿戴方法视频| 国产精品久久久久久av不卡| 亚洲avbb在线观看| 欧美激情久久久久久爽电影| 最好的美女福利视频网| 亚州av有码| 亚洲av熟女| 如何舔出高潮| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲欧美日韩无卡精品| 一级毛片久久久久久久久女| 麻豆精品久久久久久蜜桃| 中文字幕av在线有码专区| 国内精品美女久久久久久| 亚州av有码| 男插女下体视频免费在线播放| 别揉我奶头 嗯啊视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区三区视频了| 国产精品,欧美在线| 色播亚洲综合网| 中文在线观看免费www的网站| 色5月婷婷丁香| 神马国产精品三级电影在线观看| 男女边吃奶边做爰视频| 久久国内精品自在自线图片| 国产 一区 欧美 日韩| 亚洲色图av天堂| eeuss影院久久| 我要搜黄色片| 成年免费大片在线观看| 一级毛片久久久久久久久女| 深爱激情五月婷婷| 中文字幕精品亚洲无线码一区| a级一级毛片免费在线观看| 国产女主播在线喷水免费视频网站 | 国产乱人伦免费视频| 亚洲成人精品中文字幕电影| 听说在线观看完整版免费高清| 国产成人av教育| 色综合婷婷激情| 人人妻,人人澡人人爽秒播| 国产精品自产拍在线观看55亚洲| 韩国av在线不卡| 欧美人与善性xxx| 18禁黄网站禁片免费观看直播| 一夜夜www| 亚洲美女搞黄在线观看 | 色综合色国产| 一a级毛片在线观看| 性插视频无遮挡在线免费观看| 亚洲男人的天堂狠狠| 一个人看视频在线观看www免费| 亚洲自拍偷在线| 狠狠狠狠99中文字幕| 中文字幕免费在线视频6| 免费无遮挡裸体视频| www.色视频.com| 国产精华一区二区三区| 欧美最黄视频在线播放免费| 一进一出抽搐gif免费好疼| 少妇的逼好多水| 成人av在线播放网站| 久久国产精品人妻蜜桃| 夜夜看夜夜爽夜夜摸| av国产免费在线观看| 制服丝袜大香蕉在线| 女人被狂操c到高潮| 搡老熟女国产l中国老女人| 波多野结衣高清无吗| 最近视频中文字幕2019在线8| 乱系列少妇在线播放| 91在线观看av| 国产乱人视频| 国产精品自产拍在线观看55亚洲| 97超级碰碰碰精品色视频在线观看| 亚洲,欧美,日韩| 国产真实伦视频高清在线观看 | 日日摸夜夜添夜夜添小说| 国产极品精品免费视频能看的| 五月玫瑰六月丁香| 简卡轻食公司| 麻豆一二三区av精品| av在线蜜桃| 床上黄色一级片| 两人在一起打扑克的视频| 亚洲成av人片在线播放无| 欧美日本亚洲视频在线播放| 看免费成人av毛片| 小蜜桃在线观看免费完整版高清| 日韩一本色道免费dvd| 男女之事视频高清在线观看| 亚洲人成网站在线播| 日韩,欧美,国产一区二区三区 | 色吧在线观看| 国产欧美日韩一区二区精品| 波多野结衣巨乳人妻| 国产精品福利在线免费观看| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片 | 2021天堂中文幕一二区在线观| 丰满的人妻完整版| 99在线人妻在线中文字幕| 九九热线精品视视频播放| 在线观看午夜福利视频| 亚洲av第一区精品v没综合| 国产精品久久视频播放| 一级黄片播放器| 亚洲第一电影网av| 黄色丝袜av网址大全| 小蜜桃在线观看免费完整版高清| 精品福利观看| 中文亚洲av片在线观看爽| 免费看a级黄色片| 色综合亚洲欧美另类图片| 亚洲精品国产成人久久av| 男插女下体视频免费在线播放| 日本黄色片子视频| 亚洲不卡免费看| 在线国产一区二区在线| 九九在线视频观看精品| 欧美日本亚洲视频在线播放| 久久婷婷人人爽人人干人人爱| 色哟哟·www| 97热精品久久久久久| 国产在视频线在精品| 国产爱豆传媒在线观看| 亚洲性夜色夜夜综合| 亚洲精品乱码久久久v下载方式| 我的老师免费观看完整版| 日本a在线网址| 中文字幕人妻熟人妻熟丝袜美| 91午夜精品亚洲一区二区三区 | 亚洲三级黄色毛片| 亚洲精品日韩av片在线观看| 成人无遮挡网站| 精品久久久久久久久久免费视频| 2021天堂中文幕一二区在线观| 最近最新免费中文字幕在线| 久久久久久久久久久丰满 | 国产蜜桃级精品一区二区三区| 欧美激情在线99| 亚洲天堂国产精品一区在线| 国产精品久久久久久久电影| 变态另类丝袜制服| 简卡轻食公司| 尾随美女入室| 精品久久久久久久久亚洲 | 免费av不卡在线播放| 国产91精品成人一区二区三区| 国产人妻一区二区三区在| 免费观看精品视频网站| 五月伊人婷婷丁香| 1024手机看黄色片| 国产成人一区二区在线| 日本熟妇午夜| 国产精品一及| 干丝袜人妻中文字幕| 亚洲av二区三区四区| 床上黄色一级片| 免费黄网站久久成人精品| 午夜福利高清视频| 亚洲国产精品成人综合色| 美女被艹到高潮喷水动态| 在线观看一区二区三区| 精品人妻熟女av久视频| 久久久久免费精品人妻一区二区| 99国产极品粉嫩在线观看| 一区二区三区免费毛片| 国产激情偷乱视频一区二区| 久久精品久久久久久噜噜老黄 | 老熟妇仑乱视频hdxx| 91麻豆精品激情在线观看国产| 男女视频在线观看网站免费| 国产v大片淫在线免费观看| 日日摸夜夜添夜夜添av毛片 | 哪里可以看免费的av片| 国模一区二区三区四区视频| 亚洲avbb在线观看| 内射极品少妇av片p| 嫩草影视91久久| 女生性感内裤真人,穿戴方法视频| 俺也久久电影网| 别揉我奶头 嗯啊视频| 国产乱人伦免费视频| 3wmmmm亚洲av在线观看| av在线天堂中文字幕| x7x7x7水蜜桃| 少妇的逼水好多| 国内少妇人妻偷人精品xxx网站| 麻豆国产97在线/欧美| 高清毛片免费观看视频网站| 亚洲精品乱码久久久v下载方式| 国产精品98久久久久久宅男小说| 欧美色视频一区免费| 欧美另类亚洲清纯唯美| 国产熟女欧美一区二区| 有码 亚洲区| 欧美高清性xxxxhd video| 成人国产一区最新在线观看| 啪啪无遮挡十八禁网站| 麻豆一二三区av精品| 久久99热这里只有精品18| 51国产日韩欧美| .国产精品久久| 有码 亚洲区| 久久久久久久久久久丰满 | 国产精品久久久久久久电影| 日本a在线网址| 久久久久久久久中文| 国产91精品成人一区二区三区| 悠悠久久av| 村上凉子中文字幕在线| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 久久久久久国产a免费观看| 九九爱精品视频在线观看| 午夜影院日韩av| 熟女人妻精品中文字幕| 女同久久另类99精品国产91| 搡老妇女老女人老熟妇| 真人做人爱边吃奶动态| 免费电影在线观看免费观看| 极品教师在线视频| 99久久久亚洲精品蜜臀av| www.www免费av| 欧美日韩瑟瑟在线播放| 国产一区二区亚洲精品在线观看| 久久久久精品国产欧美久久久| 成人三级黄色视频| 午夜激情欧美在线| 成人av一区二区三区在线看| www.www免费av| 麻豆一二三区av精品| 日本精品一区二区三区蜜桃| 别揉我奶头 嗯啊视频| 久久国产乱子免费精品| 热99re8久久精品国产| 国产午夜福利久久久久久| 色播亚洲综合网| 一个人看视频在线观看www免费| 嫩草影院精品99| 99久久精品一区二区三区| 欧美黑人欧美精品刺激| 亚洲不卡免费看| 国产一区二区在线观看日韩| 国产日本99.免费观看| 成人毛片a级毛片在线播放| 男插女下体视频免费在线播放| 国产精品一区二区三区四区免费观看 | 精品福利观看| 欧美zozozo另类| 欧美激情国产日韩精品一区| a级毛片a级免费在线| 非洲黑人性xxxx精品又粗又长| 亚洲一区二区三区色噜噜| 在线观看午夜福利视频| 免费无遮挡裸体视频| 欧美一区二区亚洲| 窝窝影院91人妻| 欧美黑人欧美精品刺激| 久久国产精品人妻蜜桃| 久久99热这里只有精品18| 欧美另类亚洲清纯唯美| 国产一区二区在线观看日韩| 久久99热6这里只有精品| 国产精品综合久久久久久久免费| 亚洲最大成人手机在线| 国内精品一区二区在线观看| 听说在线观看完整版免费高清| 午夜免费男女啪啪视频观看 | 床上黄色一级片| 观看免费一级毛片| 亚洲av.av天堂| 国内久久婷婷六月综合欲色啪| 搡女人真爽免费视频火全软件 | 欧美成人一区二区免费高清观看| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 欧美高清成人免费视频www| 哪里可以看免费的av片| 国产精品一区二区免费欧美| 久久中文看片网| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产清高在天天线| 黄色丝袜av网址大全| 黄色女人牲交| 日韩欧美在线二视频| 男女做爰动态图高潮gif福利片| 精品99又大又爽又粗少妇毛片 | 国产精品伦人一区二区| av在线蜜桃| 久久午夜亚洲精品久久| 在线观看免费视频日本深夜| 欧美黑人巨大hd| av天堂中文字幕网| 99久久无色码亚洲精品果冻| 熟妇人妻久久中文字幕3abv| 国产伦人伦偷精品视频| 不卡视频在线观看欧美| 亚洲精品粉嫩美女一区| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件 | 99久久精品国产国产毛片| 动漫黄色视频在线观看| 精品欧美国产一区二区三| 99久久久亚洲精品蜜臀av| 国产人妻一区二区三区在| 国产精品综合久久久久久久免费| 乱系列少妇在线播放| 一区二区三区高清视频在线| 日韩 亚洲 欧美在线| 亚洲一区二区三区色噜噜| 简卡轻食公司| 国产精品综合久久久久久久免费| 午夜爱爱视频在线播放| 成人国产一区最新在线观看| 美女 人体艺术 gogo| 波多野结衣高清无吗| 免费看av在线观看网站| 搡老岳熟女国产| 日韩欧美在线二视频| 免费电影在线观看免费观看| 男女那种视频在线观看| 天堂动漫精品| a级一级毛片免费在线观看| 舔av片在线| 国产探花极品一区二区| 一个人观看的视频www高清免费观看| 精品福利观看| 高清毛片免费观看视频网站| 国产一区二区三区视频了| 国产欧美日韩一区二区精品| 国产乱人视频| xxxwww97欧美| www日本黄色视频网| 内地一区二区视频在线| 国产高清激情床上av| av在线老鸭窝| 久久精品影院6| 国产伦精品一区二区三区四那| 国产成人福利小说| 中国美白少妇内射xxxbb| 亚洲av第一区精品v没综合| 波野结衣二区三区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲成人免费电影在线观看| 精品欧美国产一区二区三| 在线观看av片永久免费下载| 日本黄色片子视频| 日韩中字成人| 真实男女啪啪啪动态图| 国产一区二区亚洲精品在线观看| 中国美白少妇内射xxxbb| 亚洲国产精品成人综合色| av福利片在线观看| 日本欧美国产在线视频| 日韩人妻高清精品专区| 色视频www国产| 日本 av在线| 亚洲在线自拍视频| 床上黄色一级片| 久久久久免费精品人妻一区二区| 成人午夜高清在线视频| av天堂中文字幕网| 好男人在线观看高清免费视频| 嫩草影视91久久|