• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure study of topological semimetals XCd2Sb2(X =Eu and Yb)

    2022-08-01 06:02:56ChuchuZhu朱楚楚HaoSu蘇豪ErjianCheng程二建LinGuo郭琳BinglinPan泮炳霖YeyuHuang黃燁煜JiaminNi倪佳敏YanfengGuo郭艷峰XiaofanYang楊小帆andShiyanLi李世燕
    Chinese Physics B 2022年7期
    關(guān)鍵詞:楚楚

    Chuchu Zhu(朱楚楚), Hao Su(蘇豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖),Yeyu Huang(黃燁煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艷峰),?,Xiaofan Yang(楊小帆),?, and Shiyan Li(李世燕),3,4,§

    1State Key Laboratory of Surface Physics and Department of Physics,F(xiàn)udan University,Shanghai 200438,China

    2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    Keywords: high pressure,topological semimetal,magnetism,superconductivity

    1. Introduction

    Topological materials have been widely investigated in recent years due to their novel physical properties and the potential application in electronic devices.[1–6]By introducing magnetism into the topological materials,the initial electronic structure is modified by the broken time-reversal symmetry.[7]The combination of intrinsic magnetic order and nontrivial topology provides a platform for the investigations of exotic quantum states, such as Weyl semimetals,[8–11]anomalous Hall effect,[12,13]and axion insulators.[1,14]

    In this context, the topological semimetals EuCd2M2(M=As and Sb)have recently attracted a lot of attention due to its special A-type AFM configuration.[15–26]The Eu spins order ferromagnetically in theabplane and stack antiferromagnetically alongcaxis below N′eel temperatureTN=9.5 K forM=As and 7.4 K forM=Sb.[15–17]First-principle theoretical calculations predicted that EuCd2M2(M= As and Sb) is an AFM Dirac semimetal candidate with unbrokenC3symmetry,[18]and a single pair of Weyl nodes could be generated by splitting the Dirac cone close to Fermi surface in ferromagnetic(FM)state.[19]Experimentally,in AFM phase,the EuCd2M2was revealed to hold several nontrivial topological states including axion insulator, AFM topological crystalline insulator, and higher order topological insulator.[15,16,20]In spin-polarized FM phase induced by an external magnetic field alongcaxis, a single pair of Weyl nodes is generated near Fermi level due to the break of nonsymmetric time-reversal symmetry.[17,20]In the paramagnetic phase aboveTN, quasistatic FM fluctuations lift the Kramers degeneracy, indicating a centrosymmetric Weyl semimetal state of EuCd2M2.[22]Furthermore, the magnetic order in EuCd2M2can be suppressed by substituting europium atoms with non-magnetic atoms,for instance,ytterbium. The Yb-based compounds behave paramagnetically and theC3symmetry is maintained,becoming ideal Dirac semimetal candidates.Therefore,XCd2M2(X=Eu and Yb,M=As and Sb)has provided an ideal platform for exploring the intriguing interplay between topology and magnetism.[23–25]

    Applying pressure is a clean and effective method of tuning crystal structure and electronic state. Under pressure,the magnetic ordering may be suppressed and novel ground states such as superconductivity may emerge.[27–32]In this paper, we report the high-pressure electrical transport studies on EuCd2Sb2and YbCd2Sb2. It is found that the AFM transition temperatureTNof EuCd2Sb2increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa, then the magnetism disappears. No sign of superconductivity is observed down to 300 mK. In contrast, superconductivity emerges in YbCd2Sb2at 1.94 GPa, manifesting a superconducting dome in the temperature-pressure phase diagram. High-pressure xray diffraction (XRD) measurements on YbCd2Sb2show no structural phase transition at low pressure,but a crystalline-toamorphous phase transition at about 16 GPa.Similar structural phase transition may cause the disappearance of magnetism in EuCd2Sb2.

    2. Materials and methods

    The EuCd2Sb2single crystals were grown by using tin as flux.[16]High-quality single crystals of YbCd2Sb2were grown by self-flux method using a mixture of Yb(purity 99.9%),Cd(purity 99.99%),and Sb(purity 99.999%)powders with a molar ratio of 1:20:2. The mixture was loaded into a corundum crucible which was further sealed in a quartz ampoule under vacuum. Subsequently,the ampoule was heated at 730°C for 5000 minutes and then slowly cooled down to 430°C at a rate of 1°C/h. Single crystals can be obtained by removing excess flux in a centrifuge and cooling down to room temperature.

    High pressure was generated by a diamond anvil cell(DAC),in which diamond anvils with a culet size of diameter 300 μm and a non-magnetic Be–Cu gasket were employed.Cubic boron nitride (c-BN) and NaCl powders were used as insulating material and pressure transmitting medium,respectively.XCd2Sb2(X=Eu and Yb)single crystals were crashed into small pieces and loaded inside of a hole (120 μm in diameter) in the center of the gasket. Subsequently, four electrodes of 4-μm-thick platinum thin foils were laid on the sample. With applying pressure, the small single crystals were crashed into powder and compressed together solidly, allowing a standard ohmic contact between sample and electrodes.The solid pressure transmitting medium provides a quasihydrostatic condition.The pressure inside the DAC was scaled by monitoring the Ruby fluorescence at room temperature each time before and after the measurement.[33]High pressure resistance of EuCd2Sb2and YbCd2Sb2were measured in a physical property measurement system(PPMS,Quantum Design)and a3He cryostat with Van der Pauw method.

    The XRD measurement at ambient pressure was performed by using an x-ray diffractometer (D8 Advance,Bruker). The high-pressure synchrotron XRD experiments were carried out using a symmetric DAC with a 260-μm culet diamond. A rhenium gasket was pre-compressed to 30 μm in thickness followed by drilling the central part by laser to form a 90-μm diameter hole as the sample chamber. The sample chamber was filled with a mixture of the sample,a ruby chip,and silicone oil as the pressure transmitting medium. The experimental pressures were determined by the pressure-induced fluorescence shift of ruby. Synchrotron XRD measurements were carried out at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) using a monochromatic beam of 0.6199 ?A.

    3. Results and discussion

    Figure 1(a)shows the crystal structure ofXCd2Sb2(X=Eu and Yb)at ambient pressure.XCd2Sb2crystallizes in trigonal structure with a space group ofP3m1 (No. 164).[34,35]The ionic [Cd2Sb2] slab is sandwiched between layers of ytterbium/europium cations alongcaxis. From the XRD patterns in Fig.1(b),only(00l)Bragg peaks are detected,demonstrating that the largest natural surface of as-grownXCd2Sb2single crystals isabplane. Typical resistivityρ(T) curves ofXCd2Sb2single crystals at ambient pressure are plotted in Fig. 1(c). At high temperature, the resistivity of EuCd2Sb2exhibits a metallic behavior. Below 100 K, with decreasing temperature the resistivity increases rapidly to a maximum atTN=7.4 K and then drops sharply.The low-temperature resistivity behavior of EuCd2Sb2resembles previous report on its sister compound EuCd2As2, which attributed the sharp drop belowTNto the reduced scattering from the ordered state of the Eu moments.[23]For paramagnetic YbCd2Sb2,its resistivity exhibits a weakly metallic behavior.

    Fig.1. (a)Schematic crystal structure of XCd2Sb2 (X =Eu and Yb). Green,purple,and orange balls represent Sb,Cd,and Eu/Yb atoms,respectively. (b)Room-temperature x-ray diffraction pattern of XCd2Sb2 (X =Eu and Yb) single crystals, showing that the largest natural surface is ab plane. (c) Typical resistivity curves of XCd2Sb2 (X =Eu and Yb)single crystals at ambient pressure. The peak at 7.4 K denotes the antiferromagnetic transition of EuCd2Sb2.

    Fig.2. Temperature dependence of the normalized resistance under different pressures for EuCd2Sb2(a)below 14.9 GPa and(b)above 14.9 GPa in a temperature range of 2 K–300 K,respectively. The arrows denote the N′eel temperature TN. The inset of(b)depicts the pressure dependence of R at T =2 K(red squares) and 300 K (blue circles). (c) The temperature–pressure phase diagram of EuCd2Sb2. The values of TN are obtained from panel(a).

    Figures 2(a)and 2(b)present the temperature-dependence normalized resistanceR/R300Kof EuCd2Sb2up to 43.7 GPa.The data are obtained from two samples with two experimental runs, which have consistent results. The application of 2.61 GPa and 5.12 GPa shiftTN(the peak position) towards higher values. For 9.56 GPa and above, the AFM peak becomes broader and lower, therefore we redefine the value ofTNas the point of intersection of two lines extrapolated from theR(T)curve below and above the temperatures of the broad peak. The value ofTNincreases substantially to a maximum of 50.9 K at 14.9 GPa, about 6.8 times of that at ambient pressure. When the pressure is above 14.9 GPa, the AFM peak completely vanishes,indicating the absence of magnetic phase transition. The absolute resistancesR2KandR300Kalso decrease to very small values, as shown in the inset of Fig. 2(b). From these results, we construct the temperaturepressure phase diagram of EuCd2Sb2in Fig. 2(c). There are two main features in the phase diagram: (i)TNincreases monotonously with the applied pressure up to 14.9 GPa,then drops to zero. A similar phase diagram has recently been reported in EuIn2As2, in which the increase ofTNis mainly attributed to the enhancement of intralayer ferromagnetic exchange coupling by pressure.[36](ii)A non-magnetic state appears after the collapse of AFM phase above 14.9 GPa. Similarly, for EuIn2As2, with increasing pressure up to 17 GPa,a crystalline-to-amorphous phase transition occurs,which impedes further enhancement ofTN.[36]This will be discussed later. In order to further check whether there is pressureinduced superconductivity in EuCd2Sb2,we also measure another sample down to 300 mK and no sign of superconductivity is observed(data not shown here).

    The resistanceR(T)from 0.3 K to 300 K for YbCd2Sb2sample A under pressures up to 29.2 GPa is plotted in Fig.3(a).At low temperature, a resistance drop is clearly observed under 1.94 GPa,and becomes more pronounced with increasing pressure, as shown in Fig. 3(b). The value ofTc(defined at the 10%drop of normal-state resistance,),first increases to a maximum of 1.67 K at 5.22 GPa then decreases, eventually drops to below 0.3 K at 29.2 GPa. Noting that no zero resistance is observed for YbCd2Sb2sample A in the whole pressure range. To confirm that theRdrop is due to superconducting transition,we measure the resistance of sample A at different magnetic fields under 10.0 GPa. TheRdrop is gradually suppressed upon increasing magnetic field and completely disappears at 0.6 T. The upper critical fieldμ0Hc2(T)as a function of temperature is extracted and plotted in the inset of Fig. 3(c). It can be well fitted by the empirical Ginzburg–Landau(GL)formula[37]

    The zero-temperature upper critical fieldμ0Hc2(0) is determined to be 0.41 T,which is much lower than the Pauli paramagnetic limit fieldHp(0)=1.84Tc≈1.86 T,[38,39]indicating the absence of Pauli pair breaking.

    Fig. 3. High-pressure resistance curves of YbCd2Sb2 sample A. (a) Temperature dependence of resistance under different pressures up to 300 K.(b)Low-temperature resistance shows the superconducting transition. The inset in panel (b) demonstrates that pressure-induced superconductivity emerges at 1.94 GPa. (c)Temperature dependence of resistance at different magnetic fields under 10.0 GPa. The superconducting transition temperature Tc is defined at the 10%drop of normal-state resistance(T10%c ).The inset in panel(c)depicts the upper critical field μ0Hc2 as a function of Tc, which can be well fitted by Ginzburg–Landau formula.

    Fig. 4. (a) Low-temperature resistance under different pressures for YbCd2Sb2 sample B. (b) Temperature dependence of resistance under 0 T and 1 T at 6.96 GPa. (c)Temperature–pressure phase diagram of YbCd2Sb2,showing a dome-shaped pressure-induced superconductivity.

    In order to reproduce the pressure-induced superconductivity in YbCd2Sb2, a new sample B obtained from a different batch was measured under pressures from 3.85 GPa to 28.8 GPa, as shown in Fig. 4(a). For sample B, zero resistance is observed and the highestTcis 1.65 K under 6.96 GPa, consistent with sample A. When an external field 1 T is applied, theRdrop of sample B under 6.96 GPa is completely suppressed, as shown in Fig. 4(b).These results confirm the pressure-induced superconductivity in YbCd2Sb2. Combining the results of sample A with sample B, the temperature–pressure phase diagram of YbCd2Sb2is mapped out in Fig.4(c),which shows a clear superconducting dome. Note that the data points of 24.9 GPa for sample A and 25.2 GPa for sample B are not shown,since theTcs are below our lowest temperature 0.3 K.For the data points of 29.2 GPa for sample A and 28.8 GPa for sample B,we estimate that theTcs are very close to zero.These do not affect the overall shape of the superconducting dome in Fig.4(c).

    To check whether the pressure-induced superconductivity arises from a structural phase transition, we performed high-pressure synchrotron XRD measurements on YbCd2Sb2sample, shown in Fig. 5(a) for different pressures. The ambient–pressure phase persists up to 12.3 GPa,since no new diffraction peaks appear. Therefore, the superconductivity in YbCd2Sb2is not related to a pressure-induced structural phase transition. The pressure dependence of lattice parametersa,b,and unit-cell volumeV/Zare plotted in Figs. 5(b) and 5(c),obtained by fitting the XRD data with GSAS software. There is no anomaly ina,b,andV/Zexcept that the volume is compressed by 15.3%. Below 12.3 GPa,the evolution ofV/Zcan be well fitted by Birch–Murnaghan equation[40]

    whereB0,B′0,andV0are the bulk modulus,first-order derivative of the bulk modulus, and the derived zero-pressure volume, respectively. The fitting givesV0= 145.2 ?A3,B0=34.6 GPa,andB′0=9.1.

    Fig. 5. (a) High-pressure x-ray diffraction (λ = 0.6199 ?A) patterns of YbCd2Sb2 under pressures ranging from 0.1 GPa to 22.7 GPa. (b) and (c)Pressure dependence of the lattice parameters a,c,and V/Z for YbCd2Sb2,respectively. The black dashed line is the fitting of third-order Birch–Murnaghan equation, which derives zero-pressure volume V0 =145.2 ?A3,bulk modulus B0=34.6 GPa,and the first-order derivative of the bulk modulus B′0=9.1.

    Above 12.3 GPa, the pristine trigonal phase still exists,but the peak intensity decreases and some small diffraction peaks appear around major splitting peaks, which is resembling of EuCd2As2,[41]suggesting the instability of crystal structure and the emergence of new phase. However,it is hard to determine the space group of the high-pressure phase due to the complex diffraction spectra. When the pressure is higher than 16.3 GPa, the original diffraction peaks gradually vanish and only two humps are detected at 22.7 GPa. This is reminiscent of the crystalline-to-amorphous phase transition in EuIn2As2at~17 GPa.[36]For YbCd2Sb2, the superconductivity persists into the amorphous phase. Considering the structure similarity of EuCd2Sb2, YbCd2Sb2, and EuIn2As2,such crystalline-to-amorphous phase transition should also occur in EuCd2Sb2. Since the amorphous phase has no lattice period thus absence of magnetic order, this may explain the sudden disappearance of AFM order around 14.9 GPa in EuCd2Sb2. On the other hand, considering the energy difference between divalent and trivalent Eu ionic state is not extremely large and the ion radius of Eu3+is smaller than Eu2+,Eu2+state could thus be easily destabilized and pushed towards Eu3+state with external energy like pressurization in some Eu-based compounds,[42]leading to the collapse of antiferromagnetism. Whereas we did not detected the thermal hysteresis on cooling and warming resistance curves (as a hallmark of valence transition),[43–45]more high-pressure xray photoemission spectroscopy(XPS),x-ray absorption nearedge spectroscopy (XANES), and XRD measurements that could directly monitor valence and structure transition are further needed.

    The superconducting dome found in YbCd2Sb2is quite interesting. Usually, such a superconducting dome is associated with the suppression of magnetic order[46]or chargedensity wave.[47]However, no magnetic order and chargedensity wave have been observed in YbCd2Sb2. In this sense,its superconducting dome may be due to a Lifshitz transition(related to electrical topological transition and Fermi surface reconstruction), as observed in WTe2.[28]More Hall coefficient measurement on single crystal and electronic band structure calculation under pressure are needed to further clarify this issue.

    4. Conclusion

    We have systematically measured the resistance of topological semimetalsXCd2Sb2(X= Eu and Yb) under high pressures.For EuCd2Sb2,it is found that pressure strongly enhances the AFM transition up to~15 GPa,then the magnetic order suddenly disappears. The increase ofTNis attributed to pressure-enhanced intralayer FM exchange coupling and a crystalline-to-amorphous phase transition may cause the disappearance of magnetic order. For paramagnetic YbCd2Sb2,a clear superconducting dome is observed in the temperature–pressure phase diagram, which may relate to some kind of Lifshitz transition. Our results demonstrate thatXCd2Sb2(X=Eu and Yb)is a novel platform for exploring the interplay among magnetism,topology and superconductivity.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No.KF202009).

    猜你喜歡
    楚楚
    租房變搶劫
    楚 楚
    長江叢刊(2018年22期)2018-11-14 22:44:32
    一個女孩的心靈成長史
    金楚楚??樓素宏??駱俊杰??《石繪》
    掌上明珠
    刺猬
    鏡子
    第109次求婚
    穿腸毒
    色(小說)
    翠苑(2009年6期)2009-03-29 03:43:08
    偷拍熟女少妇极品色| 午夜老司机福利剧场| 午夜福利在线观看吧| 日本 欧美在线| 成人无遮挡网站| 青草久久国产| 亚洲人成电影免费在线| 中文字幕人妻熟人妻熟丝袜美 | 免费搜索国产男女视频| 亚洲久久久久久中文字幕| 亚洲国产欧美网| 伊人久久精品亚洲午夜| 亚洲国产精品合色在线| 黄色日韩在线| 1000部很黄的大片| 午夜免费成人在线视频| 亚洲狠狠婷婷综合久久图片| 最新在线观看一区二区三区| 天天一区二区日本电影三级| avwww免费| 两个人视频免费观看高清| 又爽又黄无遮挡网站| 在线观看舔阴道视频| 亚洲精品亚洲一区二区| 国产黄a三级三级三级人| 日本一二三区视频观看| 91麻豆精品激情在线观看国产| 欧美成人a在线观看| 色av中文字幕| 国产黄片美女视频| 免费电影在线观看免费观看| 1024手机看黄色片| 色综合婷婷激情| 精品人妻偷拍中文字幕| 女生性感内裤真人,穿戴方法视频| 久久久色成人| 精品国内亚洲2022精品成人| 亚洲精品在线观看二区| 深爱激情五月婷婷| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 国产精品av视频在线免费观看| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 国产精品女同一区二区软件 | a在线观看视频网站| 亚洲第一电影网av| 动漫黄色视频在线观看| 国产精品日韩av在线免费观看| 在线观看日韩欧美| 亚洲国产日韩欧美精品在线观看 | 欧美另类亚洲清纯唯美| 在线a可以看的网站| 欧美午夜高清在线| 免费看十八禁软件| 免费人成在线观看视频色| 伊人久久精品亚洲午夜| 国产精品99久久99久久久不卡| 变态另类成人亚洲欧美熟女| 在线播放无遮挡| 成人特级黄色片久久久久久久| 亚洲专区中文字幕在线| 亚洲av一区综合| 美女高潮的动态| 久久久久免费精品人妻一区二区| 午夜福利18| 我要搜黄色片| 免费看日本二区| 欧美精品啪啪一区二区三区| 亚洲激情在线av| 青草久久国产| 国产av麻豆久久久久久久| 老熟妇仑乱视频hdxx| 国产一区二区在线av高清观看| 在线观看日韩欧美| 日本熟妇午夜| 国产精品一及| 可以在线观看的亚洲视频| 真人做人爱边吃奶动态| av中文乱码字幕在线| 老汉色av国产亚洲站长工具| 91久久精品国产一区二区成人 | 两个人看的免费小视频| 国产精品久久久久久久电影 | 国产伦在线观看视频一区| 精品久久久久久,| 亚洲欧美一区二区三区黑人| 日韩欧美在线二视频| 在线观看免费视频日本深夜| 国产av不卡久久| 亚洲人成电影免费在线| 欧美精品啪啪一区二区三区| 亚洲精品色激情综合| 麻豆成人午夜福利视频| 在线观看舔阴道视频| 在线视频色国产色| 日韩欧美精品免费久久 | 国产免费一级a男人的天堂| 亚洲内射少妇av| 三级毛片av免费| 欧美日韩国产亚洲二区| av欧美777| 成人无遮挡网站| 国产成人a区在线观看| 悠悠久久av| 90打野战视频偷拍视频| 蜜桃亚洲精品一区二区三区| 全区人妻精品视频| 极品教师在线免费播放| 亚洲第一电影网av| 亚洲 国产 在线| 99国产综合亚洲精品| 18禁黄网站禁片午夜丰满| 亚洲在线观看片| 网址你懂的国产日韩在线| 免费av毛片视频| 免费观看的影片在线观看| 免费观看精品视频网站| 日韩欧美精品v在线| 亚洲国产精品成人综合色| 法律面前人人平等表现在哪些方面| 色老头精品视频在线观看| 亚洲成人久久性| 麻豆国产97在线/欧美| 男女视频在线观看网站免费| 日韩欧美在线二视频| 亚洲国产高清在线一区二区三| 国产国拍精品亚洲av在线观看 | 精品一区二区三区人妻视频| 国产黄色小视频在线观看| 精品久久久久久成人av| 国产高清视频在线播放一区| 久久久精品欧美日韩精品| 又爽又黄无遮挡网站| 欧美最新免费一区二区三区 | av在线天堂中文字幕| 亚洲av不卡在线观看| 一级黄色大片毛片| 噜噜噜噜噜久久久久久91| 老司机午夜福利在线观看视频| h日本视频在线播放| 美女高潮喷水抽搐中文字幕| 97超级碰碰碰精品色视频在线观看| 99国产精品一区二区三区| 国产欧美日韩一区二区三| 男人的好看免费观看在线视频| 丁香六月欧美| 一区福利在线观看| 国产美女午夜福利| 一个人看视频在线观看www免费 | 欧美日韩国产亚洲二区| 亚洲18禁久久av| 午夜激情福利司机影院| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 少妇的丰满在线观看| 麻豆成人av在线观看| 一二三四社区在线视频社区8| 少妇的逼水好多| 国产成人系列免费观看| 国产欧美日韩一区二区精品| 欧美精品啪啪一区二区三区| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| 此物有八面人人有两片| 91在线精品国自产拍蜜月 | 亚洲精品粉嫩美女一区| 最近在线观看免费完整版| 精品久久久久久久久久久久久| 国产精品一区二区三区四区免费观看 | 亚洲精品日韩av片在线观看 | 成人国产综合亚洲| 欧美日韩中文字幕国产精品一区二区三区| 欧美极品一区二区三区四区| 12—13女人毛片做爰片一| 叶爱在线成人免费视频播放| 亚洲在线自拍视频| 97人妻精品一区二区三区麻豆| 男人的好看免费观看在线视频| 免费av观看视频| avwww免费| 久9热在线精品视频| 好看av亚洲va欧美ⅴa在| 日韩欧美一区二区三区在线观看| 两人在一起打扑克的视频| 日本成人三级电影网站| 国内毛片毛片毛片毛片毛片| 一级毛片女人18水好多| 国内揄拍国产精品人妻在线| 老司机午夜十八禁免费视频| 国产黄片美女视频| 亚洲av一区综合| 国产高清三级在线| 午夜a级毛片| 成人性生交大片免费视频hd| 一级黄色大片毛片| 69人妻影院| 午夜精品一区二区三区免费看| 村上凉子中文字幕在线| 最近在线观看免费完整版| 日本熟妇午夜| 一个人免费在线观看的高清视频| 两个人看的免费小视频| 国内揄拍国产精品人妻在线| 黄色片一级片一级黄色片| 少妇高潮的动态图| 19禁男女啪啪无遮挡网站| 欧美极品一区二区三区四区| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 久久久久免费精品人妻一区二区| 国产黄a三级三级三级人| 色综合欧美亚洲国产小说| 国产高潮美女av| 免费搜索国产男女视频| 国产成+人综合+亚洲专区| 宅男免费午夜| 亚洲久久久久久中文字幕| 国产乱人视频| 美女cb高潮喷水在线观看| 好看av亚洲va欧美ⅴa在| 亚洲av免费在线观看| 欧美中文日本在线观看视频| 好男人电影高清在线观看| 老鸭窝网址在线观看| 亚洲av中文字字幕乱码综合| 99热只有精品国产| 国产av一区在线观看免费| 国产精品影院久久| 欧美色视频一区免费| 在线十欧美十亚洲十日本专区| 十八禁网站免费在线| 婷婷丁香在线五月| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 成人高潮视频无遮挡免费网站| 亚洲熟妇熟女久久| 日韩欧美在线二视频| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 内射极品少妇av片p| 美女高潮喷水抽搐中文字幕| 免费在线观看亚洲国产| 在线十欧美十亚洲十日本专区| 成人国产一区最新在线观看| 九九热线精品视视频播放| 久久久国产成人精品二区| 欧美精品啪啪一区二区三区| 哪里可以看免费的av片| 国产aⅴ精品一区二区三区波| 村上凉子中文字幕在线| 日韩有码中文字幕| 国产精品亚洲一级av第二区| 国产精品久久久久久人妻精品电影| 波多野结衣巨乳人妻| 高清日韩中文字幕在线| 国产淫片久久久久久久久 | 国产精品电影一区二区三区| 国产成+人综合+亚洲专区| 午夜影院日韩av| 日韩av在线大香蕉| 99久久精品一区二区三区| 日韩精品青青久久久久久| 天堂√8在线中文| 国产成人av教育| 在线观看舔阴道视频| 国产三级在线视频| 最近最新免费中文字幕在线| 亚洲av中文字字幕乱码综合| 欧美精品啪啪一区二区三区| 亚洲熟妇熟女久久| 亚洲不卡免费看| 欧美一区二区精品小视频在线| 超碰av人人做人人爽久久 | 欧美一区二区精品小视频在线| 69av精品久久久久久| 久久久国产成人精品二区| 小说图片视频综合网站| www.999成人在线观看| 97超级碰碰碰精品色视频在线观看| 岛国在线观看网站| 长腿黑丝高跟| 国产成人欧美在线观看| 国产精品乱码一区二三区的特点| 最好的美女福利视频网| 十八禁人妻一区二区| 夜夜躁狠狠躁天天躁| 国产真人三级小视频在线观看| 日韩亚洲欧美综合| 少妇熟女aⅴ在线视频| 精品久久久久久,| 精品欧美国产一区二区三| 亚洲无线观看免费| 欧美黄色片欧美黄色片| 欧美日韩亚洲国产一区二区在线观看| 嫩草影视91久久| 制服丝袜大香蕉在线| 国产在视频线在精品| 好男人电影高清在线观看| 成人午夜高清在线视频| 久久国产精品人妻蜜桃| 日韩精品青青久久久久久| 99国产精品一区二区蜜桃av| 悠悠久久av| 老汉色av国产亚洲站长工具| 首页视频小说图片口味搜索| 麻豆成人av在线观看| 天天添夜夜摸| 91麻豆av在线| 12—13女人毛片做爰片一| 啪啪无遮挡十八禁网站| 欧美高清成人免费视频www| 久久精品国产清高在天天线| 成年免费大片在线观看| av天堂中文字幕网| 超碰av人人做人人爽久久 | 三级男女做爰猛烈吃奶摸视频| 美女黄网站色视频| 国产视频内射| 日本成人三级电影网站| 美女黄网站色视频| 性欧美人与动物交配| 亚洲va日本ⅴa欧美va伊人久久| 他把我摸到了高潮在线观看| 1024手机看黄色片| 成人精品一区二区免费| www日本黄色视频网| 午夜福利在线观看吧| 成人精品一区二区免费| 精品久久久久久,| 精品久久久久久久末码| 国产久久久一区二区三区| 欧美日韩瑟瑟在线播放| 男女床上黄色一级片免费看| 老司机午夜十八禁免费视频| 国产毛片a区久久久久| 欧美黑人欧美精品刺激| 成年免费大片在线观看| www日本在线高清视频| 亚洲18禁久久av| 老司机午夜福利在线观看视频| 午夜影院日韩av| 亚洲欧美激情综合另类| 亚洲精品亚洲一区二区| xxxwww97欧美| 午夜福利18| 美女高潮的动态| 村上凉子中文字幕在线| 亚洲欧美精品综合久久99| 亚洲自拍偷在线| 桃色一区二区三区在线观看| 亚洲精品日韩av片在线观看 | 欧美+亚洲+日韩+国产| 熟女人妻精品中文字幕| 日韩欧美国产一区二区入口| 国产亚洲欧美98| 国产午夜精品久久久久久一区二区三区 | 日韩欧美在线乱码| 99国产综合亚洲精品| 91九色精品人成在线观看| 黄色视频,在线免费观看| 国产激情偷乱视频一区二区| 色综合亚洲欧美另类图片| 久99久视频精品免费| 国语自产精品视频在线第100页| 亚洲狠狠婷婷综合久久图片| 欧美+日韩+精品| 日本免费a在线| 久久精品国产亚洲av涩爱 | 成人亚洲精品av一区二区| 国产一区二区在线观看日韩 | 国产男靠女视频免费网站| 国产视频内射| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 欧美bdsm另类| 国产精品久久电影中文字幕| 宅男免费午夜| 啦啦啦韩国在线观看视频| 19禁男女啪啪无遮挡网站| 国产激情偷乱视频一区二区| or卡值多少钱| 特级一级黄色大片| 久久6这里有精品| 久久久久国产精品人妻aⅴ院| 免费人成视频x8x8入口观看| 三级男女做爰猛烈吃奶摸视频| 最后的刺客免费高清国语| 亚洲中文字幕日韩| tocl精华| 神马国产精品三级电影在线观看| 久久草成人影院| 亚洲成人中文字幕在线播放| 国内久久婷婷六月综合欲色啪| 精品国产美女av久久久久小说| 尤物成人国产欧美一区二区三区| 美女高潮喷水抽搐中文字幕| 天堂av国产一区二区熟女人妻| or卡值多少钱| 欧美日韩瑟瑟在线播放| 欧美成人一区二区免费高清观看| 亚洲中文字幕一区二区三区有码在线看| 精品欧美国产一区二区三| 国产爱豆传媒在线观看| e午夜精品久久久久久久| 亚洲欧美日韩无卡精品| 亚洲男人的天堂狠狠| 国产伦精品一区二区三区视频9 | 久久精品国产亚洲av香蕉五月| 级片在线观看| 麻豆国产97在线/欧美| 在线国产一区二区在线| 欧美日韩乱码在线| 黄色日韩在线| 1024手机看黄色片| 亚洲精品一区av在线观看| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久精品电影| 国产aⅴ精品一区二区三区波| 十八禁网站免费在线| 精品久久久久久久人妻蜜臀av| 乱人视频在线观看| 欧美日韩瑟瑟在线播放| 高清毛片免费观看视频网站| 日韩人妻高清精品专区| 亚洲第一欧美日韩一区二区三区| 国产欧美日韩一区二区三| 午夜精品一区二区三区免费看| 琪琪午夜伦伦电影理论片6080| 亚洲一区二区三区不卡视频| 一个人观看的视频www高清免费观看| 国产精品亚洲一级av第二区| 熟女人妻精品中文字幕| 少妇人妻一区二区三区视频| 亚洲不卡免费看| 欧美黄色片欧美黄色片| 午夜日韩欧美国产| 日日干狠狠操夜夜爽| 成年版毛片免费区| 好男人在线观看高清免费视频| 嫩草影视91久久| 久久草成人影院| 97碰自拍视频| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 嫁个100分男人电影在线观看| 欧美日韩瑟瑟在线播放| 极品教师在线免费播放| 天堂av国产一区二区熟女人妻| www.999成人在线观看| 天堂影院成人在线观看| 一a级毛片在线观看| 特大巨黑吊av在线直播| 久久人人精品亚洲av| 午夜激情欧美在线| 国产高清视频在线播放一区| 亚洲五月婷婷丁香| 亚洲精品一卡2卡三卡4卡5卡| 91在线精品国自产拍蜜月 | 免费看美女性在线毛片视频| 看片在线看免费视频| 99在线人妻在线中文字幕| xxx96com| 亚洲,欧美精品.| 亚洲av成人精品一区久久| 久久久久久大精品| 亚洲av五月六月丁香网| 久久精品国产综合久久久| 51午夜福利影视在线观看| 国产精品亚洲一级av第二区| 国产精华一区二区三区| 成人特级黄色片久久久久久久| 一本久久中文字幕| 国产精品久久久久久久电影 | 一级黄色大片毛片| 免费搜索国产男女视频| 久久精品国产亚洲av涩爱 | av国产免费在线观看| 亚洲欧美激情综合另类| 欧美+亚洲+日韩+国产| 午夜精品久久久久久毛片777| 亚洲精品在线美女| 国产成人影院久久av| 免费无遮挡裸体视频| 欧美成人性av电影在线观看| 国产成+人综合+亚洲专区| 叶爱在线成人免费视频播放| 欧美高清成人免费视频www| 综合色av麻豆| 成人精品一区二区免费| 久久香蕉国产精品| 亚洲av中文字字幕乱码综合| 久久香蕉国产精品| 看片在线看免费视频| 久久香蕉国产精品| 美女被艹到高潮喷水动态| 亚洲熟妇熟女久久| 在线观看舔阴道视频| 最近最新免费中文字幕在线| 91字幕亚洲| 精品99又大又爽又粗少妇毛片 | 免费av毛片视频| 一区二区三区国产精品乱码| 母亲3免费完整高清在线观看| 色哟哟哟哟哟哟| 久久精品国产99精品国产亚洲性色| 国内揄拍国产精品人妻在线| 国产精品野战在线观看| 亚洲国产精品成人综合色| 12—13女人毛片做爰片一| 老司机午夜福利在线观看视频| 亚洲av美国av| 国产精品99久久久久久久久| 久久九九热精品免费| 国产av在哪里看| 精品人妻一区二区三区麻豆 | 国产精品野战在线观看| 亚洲黑人精品在线| 大型黄色视频在线免费观看| 亚洲国产精品久久男人天堂| 九九热线精品视视频播放| 国产精品99久久99久久久不卡| 久99久视频精品免费| 最新中文字幕久久久久| 国产欧美日韩精品一区二区| 色播亚洲综合网| 国产乱人视频| 国产成人啪精品午夜网站| 久久久久久国产a免费观看| 国产精品一区二区三区四区免费观看 | 白带黄色成豆腐渣| 亚洲人成电影免费在线| 搡女人真爽免费视频火全软件 | 老汉色av国产亚洲站长工具| 国内精品一区二区在线观看| 欧美日韩一级在线毛片| 久久亚洲精品不卡| 日韩欧美在线乱码| 久久久久九九精品影院| 婷婷精品国产亚洲av在线| 国产精品亚洲av一区麻豆| 国产高清激情床上av| 中文字幕人妻熟人妻熟丝袜美 | 精品久久久久久久久久免费视频| 黄片小视频在线播放| 日本一本二区三区精品| 亚洲国产欧洲综合997久久,| 国产av麻豆久久久久久久| 噜噜噜噜噜久久久久久91| 搡老熟女国产l中国老女人| 制服丝袜大香蕉在线| 少妇高潮的动态图| 在线观看午夜福利视频| 精品国产超薄肉色丝袜足j| 成人性生交大片免费视频hd| 国产精品久久久久久亚洲av鲁大| 桃色一区二区三区在线观看| 国产成人系列免费观看| 欧美中文综合在线视频| 国产精品免费一区二区三区在线| 国产 一区 欧美 日韩| 天堂动漫精品| 国产亚洲精品综合一区在线观看| 天美传媒精品一区二区| 免费av不卡在线播放| 国产成人av教育| 国产私拍福利视频在线观看| 无限看片的www在线观看| 1024手机看黄色片| 精品国产三级普通话版| 91在线观看av| 国产精品嫩草影院av在线观看 | 在线a可以看的网站| 色视频www国产| www.999成人在线观看| 欧美激情久久久久久爽电影| 午夜激情欧美在线| 97超视频在线观看视频| 少妇熟女aⅴ在线视频| 一进一出抽搐动态| 成人av在线播放网站| av中文乱码字幕在线| 精品一区二区三区av网在线观看| 丝袜美腿在线中文| 97碰自拍视频| 国产在线精品亚洲第一网站| 久久久久久久精品吃奶| 神马国产精品三级电影在线观看| 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 亚洲精品亚洲一区二区| 男女那种视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 97碰自拍视频| 国产成人av激情在线播放| 免费搜索国产男女视频| 2021天堂中文幕一二区在线观| 中文字幕久久专区| 久久精品91无色码中文字幕| 精品久久久久久,| 亚洲av中文字字幕乱码综合| a在线观看视频网站| 亚洲精品成人久久久久久| 一级毛片高清免费大全| 美女cb高潮喷水在线观看| 最新中文字幕久久久久| 搡老熟女国产l中国老女人| av女优亚洲男人天堂| www.色视频.com| 成人欧美大片| 一夜夜www| 99视频精品全部免费 在线| 一级作爱视频免费观看| 97人妻精品一区二区三区麻豆|