• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-pressure study of topological semimetals XCd2Sb2(X =Eu and Yb)

    2022-08-01 06:02:56ChuchuZhu朱楚楚HaoSu蘇豪ErjianCheng程二建LinGuo郭琳BinglinPan泮炳霖YeyuHuang黃燁煜JiaminNi倪佳敏YanfengGuo郭艷峰XiaofanYang楊小帆andShiyanLi李世燕
    Chinese Physics B 2022年7期
    關(guān)鍵詞:楚楚

    Chuchu Zhu(朱楚楚), Hao Su(蘇豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖),Yeyu Huang(黃燁煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艷峰),?,Xiaofan Yang(楊小帆),?, and Shiyan Li(李世燕),3,4,§

    1State Key Laboratory of Surface Physics and Department of Physics,F(xiàn)udan University,Shanghai 200438,China

    2School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China

    3Collaborative Innovation Center of Advanced Microstructures,Nanjing 210093,China

    4Shanghai Research Center for Quantum Sciences,Shanghai 201315,China

    Keywords: high pressure,topological semimetal,magnetism,superconductivity

    1. Introduction

    Topological materials have been widely investigated in recent years due to their novel physical properties and the potential application in electronic devices.[1–6]By introducing magnetism into the topological materials,the initial electronic structure is modified by the broken time-reversal symmetry.[7]The combination of intrinsic magnetic order and nontrivial topology provides a platform for the investigations of exotic quantum states, such as Weyl semimetals,[8–11]anomalous Hall effect,[12,13]and axion insulators.[1,14]

    In this context, the topological semimetals EuCd2M2(M=As and Sb)have recently attracted a lot of attention due to its special A-type AFM configuration.[15–26]The Eu spins order ferromagnetically in theabplane and stack antiferromagnetically alongcaxis below N′eel temperatureTN=9.5 K forM=As and 7.4 K forM=Sb.[15–17]First-principle theoretical calculations predicted that EuCd2M2(M= As and Sb) is an AFM Dirac semimetal candidate with unbrokenC3symmetry,[18]and a single pair of Weyl nodes could be generated by splitting the Dirac cone close to Fermi surface in ferromagnetic(FM)state.[19]Experimentally,in AFM phase,the EuCd2M2was revealed to hold several nontrivial topological states including axion insulator, AFM topological crystalline insulator, and higher order topological insulator.[15,16,20]In spin-polarized FM phase induced by an external magnetic field alongcaxis, a single pair of Weyl nodes is generated near Fermi level due to the break of nonsymmetric time-reversal symmetry.[17,20]In the paramagnetic phase aboveTN, quasistatic FM fluctuations lift the Kramers degeneracy, indicating a centrosymmetric Weyl semimetal state of EuCd2M2.[22]Furthermore, the magnetic order in EuCd2M2can be suppressed by substituting europium atoms with non-magnetic atoms,for instance,ytterbium. The Yb-based compounds behave paramagnetically and theC3symmetry is maintained,becoming ideal Dirac semimetal candidates.Therefore,XCd2M2(X=Eu and Yb,M=As and Sb)has provided an ideal platform for exploring the intriguing interplay between topology and magnetism.[23–25]

    Applying pressure is a clean and effective method of tuning crystal structure and electronic state. Under pressure,the magnetic ordering may be suppressed and novel ground states such as superconductivity may emerge.[27–32]In this paper, we report the high-pressure electrical transport studies on EuCd2Sb2and YbCd2Sb2. It is found that the AFM transition temperatureTNof EuCd2Sb2increases from 7.4 K at ambient pressure to 50.9 K at 14.9 GPa, then the magnetism disappears. No sign of superconductivity is observed down to 300 mK. In contrast, superconductivity emerges in YbCd2Sb2at 1.94 GPa, manifesting a superconducting dome in the temperature-pressure phase diagram. High-pressure xray diffraction (XRD) measurements on YbCd2Sb2show no structural phase transition at low pressure,but a crystalline-toamorphous phase transition at about 16 GPa.Similar structural phase transition may cause the disappearance of magnetism in EuCd2Sb2.

    2. Materials and methods

    The EuCd2Sb2single crystals were grown by using tin as flux.[16]High-quality single crystals of YbCd2Sb2were grown by self-flux method using a mixture of Yb(purity 99.9%),Cd(purity 99.99%),and Sb(purity 99.999%)powders with a molar ratio of 1:20:2. The mixture was loaded into a corundum crucible which was further sealed in a quartz ampoule under vacuum. Subsequently,the ampoule was heated at 730°C for 5000 minutes and then slowly cooled down to 430°C at a rate of 1°C/h. Single crystals can be obtained by removing excess flux in a centrifuge and cooling down to room temperature.

    High pressure was generated by a diamond anvil cell(DAC),in which diamond anvils with a culet size of diameter 300 μm and a non-magnetic Be–Cu gasket were employed.Cubic boron nitride (c-BN) and NaCl powders were used as insulating material and pressure transmitting medium,respectively.XCd2Sb2(X=Eu and Yb)single crystals were crashed into small pieces and loaded inside of a hole (120 μm in diameter) in the center of the gasket. Subsequently, four electrodes of 4-μm-thick platinum thin foils were laid on the sample. With applying pressure, the small single crystals were crashed into powder and compressed together solidly, allowing a standard ohmic contact between sample and electrodes.The solid pressure transmitting medium provides a quasihydrostatic condition.The pressure inside the DAC was scaled by monitoring the Ruby fluorescence at room temperature each time before and after the measurement.[33]High pressure resistance of EuCd2Sb2and YbCd2Sb2were measured in a physical property measurement system(PPMS,Quantum Design)and a3He cryostat with Van der Pauw method.

    The XRD measurement at ambient pressure was performed by using an x-ray diffractometer (D8 Advance,Bruker). The high-pressure synchrotron XRD experiments were carried out using a symmetric DAC with a 260-μm culet diamond. A rhenium gasket was pre-compressed to 30 μm in thickness followed by drilling the central part by laser to form a 90-μm diameter hole as the sample chamber. The sample chamber was filled with a mixture of the sample,a ruby chip,and silicone oil as the pressure transmitting medium. The experimental pressures were determined by the pressure-induced fluorescence shift of ruby. Synchrotron XRD measurements were carried out at beamline BL15U1 of the Shanghai Synchrotron Radiation Facility (SSRF) using a monochromatic beam of 0.6199 ?A.

    3. Results and discussion

    Figure 1(a)shows the crystal structure ofXCd2Sb2(X=Eu and Yb)at ambient pressure.XCd2Sb2crystallizes in trigonal structure with a space group ofP3m1 (No. 164).[34,35]The ionic [Cd2Sb2] slab is sandwiched between layers of ytterbium/europium cations alongcaxis. From the XRD patterns in Fig.1(b),only(00l)Bragg peaks are detected,demonstrating that the largest natural surface of as-grownXCd2Sb2single crystals isabplane. Typical resistivityρ(T) curves ofXCd2Sb2single crystals at ambient pressure are plotted in Fig. 1(c). At high temperature, the resistivity of EuCd2Sb2exhibits a metallic behavior. Below 100 K, with decreasing temperature the resistivity increases rapidly to a maximum atTN=7.4 K and then drops sharply.The low-temperature resistivity behavior of EuCd2Sb2resembles previous report on its sister compound EuCd2As2, which attributed the sharp drop belowTNto the reduced scattering from the ordered state of the Eu moments.[23]For paramagnetic YbCd2Sb2,its resistivity exhibits a weakly metallic behavior.

    Fig.1. (a)Schematic crystal structure of XCd2Sb2 (X =Eu and Yb). Green,purple,and orange balls represent Sb,Cd,and Eu/Yb atoms,respectively. (b)Room-temperature x-ray diffraction pattern of XCd2Sb2 (X =Eu and Yb) single crystals, showing that the largest natural surface is ab plane. (c) Typical resistivity curves of XCd2Sb2 (X =Eu and Yb)single crystals at ambient pressure. The peak at 7.4 K denotes the antiferromagnetic transition of EuCd2Sb2.

    Fig.2. Temperature dependence of the normalized resistance under different pressures for EuCd2Sb2(a)below 14.9 GPa and(b)above 14.9 GPa in a temperature range of 2 K–300 K,respectively. The arrows denote the N′eel temperature TN. The inset of(b)depicts the pressure dependence of R at T =2 K(red squares) and 300 K (blue circles). (c) The temperature–pressure phase diagram of EuCd2Sb2. The values of TN are obtained from panel(a).

    Figures 2(a)and 2(b)present the temperature-dependence normalized resistanceR/R300Kof EuCd2Sb2up to 43.7 GPa.The data are obtained from two samples with two experimental runs, which have consistent results. The application of 2.61 GPa and 5.12 GPa shiftTN(the peak position) towards higher values. For 9.56 GPa and above, the AFM peak becomes broader and lower, therefore we redefine the value ofTNas the point of intersection of two lines extrapolated from theR(T)curve below and above the temperatures of the broad peak. The value ofTNincreases substantially to a maximum of 50.9 K at 14.9 GPa, about 6.8 times of that at ambient pressure. When the pressure is above 14.9 GPa, the AFM peak completely vanishes,indicating the absence of magnetic phase transition. The absolute resistancesR2KandR300Kalso decrease to very small values, as shown in the inset of Fig. 2(b). From these results, we construct the temperaturepressure phase diagram of EuCd2Sb2in Fig. 2(c). There are two main features in the phase diagram: (i)TNincreases monotonously with the applied pressure up to 14.9 GPa,then drops to zero. A similar phase diagram has recently been reported in EuIn2As2, in which the increase ofTNis mainly attributed to the enhancement of intralayer ferromagnetic exchange coupling by pressure.[36](ii)A non-magnetic state appears after the collapse of AFM phase above 14.9 GPa. Similarly, for EuIn2As2, with increasing pressure up to 17 GPa,a crystalline-to-amorphous phase transition occurs,which impedes further enhancement ofTN.[36]This will be discussed later. In order to further check whether there is pressureinduced superconductivity in EuCd2Sb2,we also measure another sample down to 300 mK and no sign of superconductivity is observed(data not shown here).

    The resistanceR(T)from 0.3 K to 300 K for YbCd2Sb2sample A under pressures up to 29.2 GPa is plotted in Fig.3(a).At low temperature, a resistance drop is clearly observed under 1.94 GPa,and becomes more pronounced with increasing pressure, as shown in Fig. 3(b). The value ofTc(defined at the 10%drop of normal-state resistance,),first increases to a maximum of 1.67 K at 5.22 GPa then decreases, eventually drops to below 0.3 K at 29.2 GPa. Noting that no zero resistance is observed for YbCd2Sb2sample A in the whole pressure range. To confirm that theRdrop is due to superconducting transition,we measure the resistance of sample A at different magnetic fields under 10.0 GPa. TheRdrop is gradually suppressed upon increasing magnetic field and completely disappears at 0.6 T. The upper critical fieldμ0Hc2(T)as a function of temperature is extracted and plotted in the inset of Fig. 3(c). It can be well fitted by the empirical Ginzburg–Landau(GL)formula[37]

    The zero-temperature upper critical fieldμ0Hc2(0) is determined to be 0.41 T,which is much lower than the Pauli paramagnetic limit fieldHp(0)=1.84Tc≈1.86 T,[38,39]indicating the absence of Pauli pair breaking.

    Fig. 3. High-pressure resistance curves of YbCd2Sb2 sample A. (a) Temperature dependence of resistance under different pressures up to 300 K.(b)Low-temperature resistance shows the superconducting transition. The inset in panel (b) demonstrates that pressure-induced superconductivity emerges at 1.94 GPa. (c)Temperature dependence of resistance at different magnetic fields under 10.0 GPa. The superconducting transition temperature Tc is defined at the 10%drop of normal-state resistance(T10%c ).The inset in panel(c)depicts the upper critical field μ0Hc2 as a function of Tc, which can be well fitted by Ginzburg–Landau formula.

    Fig. 4. (a) Low-temperature resistance under different pressures for YbCd2Sb2 sample B. (b) Temperature dependence of resistance under 0 T and 1 T at 6.96 GPa. (c)Temperature–pressure phase diagram of YbCd2Sb2,showing a dome-shaped pressure-induced superconductivity.

    In order to reproduce the pressure-induced superconductivity in YbCd2Sb2, a new sample B obtained from a different batch was measured under pressures from 3.85 GPa to 28.8 GPa, as shown in Fig. 4(a). For sample B, zero resistance is observed and the highestTcis 1.65 K under 6.96 GPa, consistent with sample A. When an external field 1 T is applied, theRdrop of sample B under 6.96 GPa is completely suppressed, as shown in Fig. 4(b).These results confirm the pressure-induced superconductivity in YbCd2Sb2. Combining the results of sample A with sample B, the temperature–pressure phase diagram of YbCd2Sb2is mapped out in Fig.4(c),which shows a clear superconducting dome. Note that the data points of 24.9 GPa for sample A and 25.2 GPa for sample B are not shown,since theTcs are below our lowest temperature 0.3 K.For the data points of 29.2 GPa for sample A and 28.8 GPa for sample B,we estimate that theTcs are very close to zero.These do not affect the overall shape of the superconducting dome in Fig.4(c).

    To check whether the pressure-induced superconductivity arises from a structural phase transition, we performed high-pressure synchrotron XRD measurements on YbCd2Sb2sample, shown in Fig. 5(a) for different pressures. The ambient–pressure phase persists up to 12.3 GPa,since no new diffraction peaks appear. Therefore, the superconductivity in YbCd2Sb2is not related to a pressure-induced structural phase transition. The pressure dependence of lattice parametersa,b,and unit-cell volumeV/Zare plotted in Figs. 5(b) and 5(c),obtained by fitting the XRD data with GSAS software. There is no anomaly ina,b,andV/Zexcept that the volume is compressed by 15.3%. Below 12.3 GPa,the evolution ofV/Zcan be well fitted by Birch–Murnaghan equation[40]

    whereB0,B′0,andV0are the bulk modulus,first-order derivative of the bulk modulus, and the derived zero-pressure volume, respectively. The fitting givesV0= 145.2 ?A3,B0=34.6 GPa,andB′0=9.1.

    Fig. 5. (a) High-pressure x-ray diffraction (λ = 0.6199 ?A) patterns of YbCd2Sb2 under pressures ranging from 0.1 GPa to 22.7 GPa. (b) and (c)Pressure dependence of the lattice parameters a,c,and V/Z for YbCd2Sb2,respectively. The black dashed line is the fitting of third-order Birch–Murnaghan equation, which derives zero-pressure volume V0 =145.2 ?A3,bulk modulus B0=34.6 GPa,and the first-order derivative of the bulk modulus B′0=9.1.

    Above 12.3 GPa, the pristine trigonal phase still exists,but the peak intensity decreases and some small diffraction peaks appear around major splitting peaks, which is resembling of EuCd2As2,[41]suggesting the instability of crystal structure and the emergence of new phase. However,it is hard to determine the space group of the high-pressure phase due to the complex diffraction spectra. When the pressure is higher than 16.3 GPa, the original diffraction peaks gradually vanish and only two humps are detected at 22.7 GPa. This is reminiscent of the crystalline-to-amorphous phase transition in EuIn2As2at~17 GPa.[36]For YbCd2Sb2, the superconductivity persists into the amorphous phase. Considering the structure similarity of EuCd2Sb2, YbCd2Sb2, and EuIn2As2,such crystalline-to-amorphous phase transition should also occur in EuCd2Sb2. Since the amorphous phase has no lattice period thus absence of magnetic order, this may explain the sudden disappearance of AFM order around 14.9 GPa in EuCd2Sb2. On the other hand, considering the energy difference between divalent and trivalent Eu ionic state is not extremely large and the ion radius of Eu3+is smaller than Eu2+,Eu2+state could thus be easily destabilized and pushed towards Eu3+state with external energy like pressurization in some Eu-based compounds,[42]leading to the collapse of antiferromagnetism. Whereas we did not detected the thermal hysteresis on cooling and warming resistance curves (as a hallmark of valence transition),[43–45]more high-pressure xray photoemission spectroscopy(XPS),x-ray absorption nearedge spectroscopy (XANES), and XRD measurements that could directly monitor valence and structure transition are further needed.

    The superconducting dome found in YbCd2Sb2is quite interesting. Usually, such a superconducting dome is associated with the suppression of magnetic order[46]or chargedensity wave.[47]However, no magnetic order and chargedensity wave have been observed in YbCd2Sb2. In this sense,its superconducting dome may be due to a Lifshitz transition(related to electrical topological transition and Fermi surface reconstruction), as observed in WTe2.[28]More Hall coefficient measurement on single crystal and electronic band structure calculation under pressure are needed to further clarify this issue.

    4. Conclusion

    We have systematically measured the resistance of topological semimetalsXCd2Sb2(X= Eu and Yb) under high pressures.For EuCd2Sb2,it is found that pressure strongly enhances the AFM transition up to~15 GPa,then the magnetic order suddenly disappears. The increase ofTNis attributed to pressure-enhanced intralayer FM exchange coupling and a crystalline-to-amorphous phase transition may cause the disappearance of magnetic order. For paramagnetic YbCd2Sb2,a clear superconducting dome is observed in the temperature–pressure phase diagram, which may relate to some kind of Lifshitz transition. Our results demonstrate thatXCd2Sb2(X=Eu and Yb)is a novel platform for exploring the interplay among magnetism,topology and superconductivity.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China (Grant No. 12174064) and the Shanghai Municipal Science and Technology Major Project (Grant No. 2019SHZDZX01). Yanfeng Guo acknowledges the research fund from the State Key Laboratory of Surface Physics and Department of Physics, Fudan University (Grant No.KF202009).

    猜你喜歡
    楚楚
    租房變搶劫
    楚 楚
    長江叢刊(2018年22期)2018-11-14 22:44:32
    一個女孩的心靈成長史
    金楚楚??樓素宏??駱俊杰??《石繪》
    掌上明珠
    刺猬
    鏡子
    第109次求婚
    穿腸毒
    色(小說)
    翠苑(2009年6期)2009-03-29 03:43:08
    免费女性裸体啪啪无遮挡网站| 亚洲第一av免费看| 国产av又大| 十八禁网站免费在线| 亚洲 国产 在线| 国产精品乱码一区二三区的特点 | 99热国产这里只有精品6| 深夜精品福利| 男人舔女人的私密视频| 欧美日韩av久久| 岛国在线观看网站| 岛国在线观看网站| 亚洲色图av天堂| 婷婷丁香在线五月| 性色av乱码一区二区三区2| 天天影视国产精品| 日韩欧美国产一区二区入口| 成人国产一区最新在线观看| 午夜影院日韩av| 免费在线观看影片大全网站| 欧美日韩一级在线毛片| 国产免费现黄频在线看| 桃色一区二区三区在线观看| 99热国产这里只有精品6| 91精品三级在线观看| 免费看a级黄色片| 亚洲成人久久性| 亚洲熟女毛片儿| 在线观看免费视频日本深夜| 欧美最黄视频在线播放免费 | 欧美一级毛片孕妇| 久久天躁狠狠躁夜夜2o2o| 在线观看一区二区三区| 久久香蕉精品热| 成人三级做爰电影| 香蕉国产在线看| 国产成人影院久久av| 真人一进一出gif抽搐免费| 一进一出抽搐动态| e午夜精品久久久久久久| 久久久久久亚洲精品国产蜜桃av| 久久久久国产一级毛片高清牌| 老司机福利观看| 性色av乱码一区二区三区2| 亚洲成人国产一区在线观看| 国产在线观看jvid| 久久国产精品男人的天堂亚洲| 一区福利在线观看| 亚洲av成人av| 免费观看人在逋| 日韩av在线大香蕉| 91精品三级在线观看| 黄色女人牲交| 亚洲久久久国产精品| 欧美日韩中文字幕国产精品一区二区三区 | 国产亚洲精品久久久久5区| 日日干狠狠操夜夜爽| 18禁裸乳无遮挡免费网站照片 | 9191精品国产免费久久| 老司机亚洲免费影院| 亚洲av五月六月丁香网| 亚洲专区国产一区二区| 久久精品91无色码中文字幕| 国产单亲对白刺激| 丝袜人妻中文字幕| 免费高清视频大片| 90打野战视频偷拍视频| 免费高清视频大片| 久久香蕉国产精品| 亚洲欧美精品综合一区二区三区| 老司机亚洲免费影院| 91在线观看av| 侵犯人妻中文字幕一二三四区| 精品国产超薄肉色丝袜足j| 涩涩av久久男人的天堂| 在线永久观看黄色视频| 90打野战视频偷拍视频| 免费看十八禁软件| 99精品久久久久人妻精品| 欧美中文日本在线观看视频| 国产精品久久电影中文字幕| 日日摸夜夜添夜夜添小说| 老司机深夜福利视频在线观看| 欧美成人午夜精品| 国产欧美日韩一区二区三区在线| 久久亚洲精品不卡| 久久人妻福利社区极品人妻图片| 真人一进一出gif抽搐免费| 夜夜夜夜夜久久久久| 性欧美人与动物交配| 色婷婷av一区二区三区视频| 女警被强在线播放| 这个男人来自地球电影免费观看| 人成视频在线观看免费观看| 国产精品av久久久久免费| 老汉色av国产亚洲站长工具| 他把我摸到了高潮在线观看| 男女下面进入的视频免费午夜 | 国产主播在线观看一区二区| 久久久国产欧美日韩av| 国产精品综合久久久久久久免费 | 久久久国产一区二区| 操美女的视频在线观看| 亚洲人成电影免费在线| 在线观看免费日韩欧美大片| av网站免费在线观看视频| 中亚洲国语对白在线视频| 日本撒尿小便嘘嘘汇集6| 国产极品粉嫩免费观看在线| 成年女人毛片免费观看观看9| 精品久久久久久电影网| 国产精品亚洲av一区麻豆| 亚洲av日韩精品久久久久久密| 亚洲精品国产区一区二| 国产三级在线视频| 在线观看一区二区三区激情| 99国产极品粉嫩在线观看| 日韩免费av在线播放| 午夜精品国产一区二区电影| 日韩欧美三级三区| 香蕉丝袜av| 日韩大码丰满熟妇| 欧美黄色淫秽网站| 色尼玛亚洲综合影院| www.精华液| 亚洲色图综合在线观看| 欧美激情久久久久久爽电影 | 搡老熟女国产l中国老女人| 久热爱精品视频在线9| 精品人妻1区二区| 日韩欧美一区视频在线观看| 久久精品aⅴ一区二区三区四区| 国产精品综合久久久久久久免费 | 欧美中文综合在线视频| 国产日韩一区二区三区精品不卡| 91九色精品人成在线观看| 精品国产亚洲在线| 国产精品99久久99久久久不卡| 午夜两性在线视频| 亚洲成人精品中文字幕电影 | 国产熟女午夜一区二区三区| 日本一区二区免费在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 国产97色在线日韩免费| 99国产精品99久久久久| 国产精品98久久久久久宅男小说| 99国产极品粉嫩在线观看| 99热只有精品国产| 深夜精品福利| 日韩精品免费视频一区二区三区| 日韩成人在线观看一区二区三区| 久久精品影院6| 嫁个100分男人电影在线观看| 亚洲一区高清亚洲精品| 日日爽夜夜爽网站| 亚洲精品成人av观看孕妇| av免费在线观看网站| 免费在线观看视频国产中文字幕亚洲| 人妻丰满熟妇av一区二区三区| 少妇粗大呻吟视频| 九色亚洲精品在线播放| 中文字幕精品免费在线观看视频| 可以在线观看毛片的网站| 女性被躁到高潮视频| 侵犯人妻中文字幕一二三四区| 神马国产精品三级电影在线观看 | 欧美日韩黄片免| 亚洲精品在线美女| 亚洲成人久久性| 欧美+亚洲+日韩+国产| 老熟妇仑乱视频hdxx| 韩国精品一区二区三区| 男人舔女人的私密视频| 午夜精品国产一区二区电影| 999久久久国产精品视频| 女同久久另类99精品国产91| 中文字幕精品免费在线观看视频| 亚洲专区字幕在线| 国产1区2区3区精品| 91九色精品人成在线观看| 亚洲专区字幕在线| 九色亚洲精品在线播放| 在线十欧美十亚洲十日本专区| 亚洲一区二区三区色噜噜 | 亚洲av电影在线进入| 高清毛片免费观看视频网站 | 性欧美人与动物交配| 免费av中文字幕在线| 9色porny在线观看| 欧美日韩精品网址| 波多野结衣av一区二区av| 国产黄a三级三级三级人| 最近最新免费中文字幕在线| 日韩有码中文字幕| 欧美黄色淫秽网站| 国产成人免费无遮挡视频| 久久久久久人人人人人| 亚洲av美国av| 18禁裸乳无遮挡免费网站照片 | 国产精品久久久久成人av| 亚洲自偷自拍图片 自拍| 国产成+人综合+亚洲专区| 色哟哟哟哟哟哟| 精品一区二区三卡| 国产精品爽爽va在线观看网站 | 老熟妇乱子伦视频在线观看| 亚洲成人免费av在线播放| 国产三级黄色录像| 亚洲av熟女| 在线观看日韩欧美| 夫妻午夜视频| 老司机在亚洲福利影院| 国产深夜福利视频在线观看| 国产真人三级小视频在线观看| 亚洲熟妇熟女久久| 一边摸一边抽搐一进一小说| 日本三级黄在线观看| 欧美日韩av久久| 啦啦啦免费观看视频1| 黄色视频,在线免费观看| 夜夜爽天天搞| 日本免费a在线| 91国产中文字幕| 伦理电影免费视频| 美女国产高潮福利片在线看| 久久人人精品亚洲av| 国产无遮挡羞羞视频在线观看| 无限看片的www在线观看| 欧美精品啪啪一区二区三区| 不卡一级毛片| 国产成人系列免费观看| 黄片小视频在线播放| 国产有黄有色有爽视频| 十八禁人妻一区二区| 国产麻豆69| 欧美大码av| 亚洲中文日韩欧美视频| 精品国产亚洲在线| 在线观看一区二区三区激情| 国产蜜桃级精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 亚洲av电影在线进入| 国产精品 国内视频| 99精品久久久久人妻精品| 91麻豆av在线| 免费在线观看日本一区| 国产亚洲精品一区二区www| 国产精品免费视频内射| 纯流量卡能插随身wifi吗| 欧美在线黄色| 天堂√8在线中文| 亚洲精品中文字幕一二三四区| 青草久久国产| 久久精品国产99精品国产亚洲性色 | 一级a爱视频在线免费观看| 久久久久久人人人人人| 国产精品香港三级国产av潘金莲| 亚洲久久久国产精品| 成年版毛片免费区| 动漫黄色视频在线观看| 新久久久久国产一级毛片| 精品久久久久久久毛片微露脸| 一个人观看的视频www高清免费观看 | 这个男人来自地球电影免费观看| 黄色丝袜av网址大全| 黄色 视频免费看| 中文字幕人妻丝袜一区二区| 如日韩欧美国产精品一区二区三区| 老司机午夜十八禁免费视频| 熟女少妇亚洲综合色aaa.| 亚洲 欧美一区二区三区| 国产精品国产高清国产av| 欧美在线黄色| 高清黄色对白视频在线免费看| 在线av久久热| 亚洲欧美一区二区三区久久| 久久久久国产精品人妻aⅴ院| 亚洲 国产 在线| 亚洲狠狠婷婷综合久久图片| 99久久综合精品五月天人人| 老司机亚洲免费影院| 国产一区在线观看成人免费| 亚洲五月天丁香| 国产高清videossex| 手机成人av网站| 欧美成人午夜精品| 91字幕亚洲| 91麻豆精品激情在线观看国产 | 久久精品国产综合久久久| 日韩欧美国产一区二区入口| 日韩欧美免费精品| 成人三级做爰电影| 欧美日韩av久久| 亚洲美女黄片视频| 午夜福利免费观看在线| 午夜精品久久久久久毛片777| 久久国产亚洲av麻豆专区| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月| 色精品久久人妻99蜜桃| 亚洲情色 制服丝袜| 国产亚洲欧美98| 亚洲 欧美一区二区三区| 精品福利观看| 午夜两性在线视频| 欧美激情极品国产一区二区三区| 成熟少妇高潮喷水视频| 999久久久精品免费观看国产| 成在线人永久免费视频| 亚洲一区高清亚洲精品| 亚洲欧美激情在线| 女性生殖器流出的白浆| 黑人猛操日本美女一级片| 亚洲午夜精品一区,二区,三区| 免费av毛片视频| 精品一区二区三区四区五区乱码| 欧美性长视频在线观看| 男女下面进入的视频免费午夜 | 91国产中文字幕| 成熟少妇高潮喷水视频| 99国产精品一区二区三区| 久久欧美精品欧美久久欧美| 亚洲中文av在线| 99精品久久久久人妻精品| 亚洲欧美日韩高清在线视频| 亚洲 欧美 日韩 在线 免费| 欧美午夜高清在线| 母亲3免费完整高清在线观看| 亚洲成国产人片在线观看| 麻豆成人av在线观看| 五月开心婷婷网| 中文字幕色久视频| 亚洲一区中文字幕在线| 无遮挡黄片免费观看| 极品教师在线免费播放| 无人区码免费观看不卡| 免费在线观看日本一区| 天堂俺去俺来也www色官网| 精品一区二区三卡| 黄频高清免费视频| av片东京热男人的天堂| 久久久久久久久中文| 亚洲精品国产区一区二| 在线免费观看的www视频| 1024视频免费在线观看| av网站在线播放免费| 亚洲va日本ⅴa欧美va伊人久久| 最好的美女福利视频网| 久久香蕉国产精品| 99香蕉大伊视频| 免费在线观看日本一区| 老汉色∧v一级毛片| 天堂动漫精品| 69av精品久久久久久| 亚洲欧美精品综合久久99| 精品高清国产在线一区| 久久人人精品亚洲av| www.www免费av| 欧美乱码精品一区二区三区| 亚洲国产看品久久| 青草久久国产| 咕卡用的链子| 日韩欧美一区二区三区在线观看| 亚洲av第一区精品v没综合| 色综合欧美亚洲国产小说| 色老头精品视频在线观看| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 国产精品久久久久成人av| 精品乱码久久久久久99久播| 国产成人欧美在线观看| 999久久久精品免费观看国产| 久久精品人人爽人人爽视色| 欧美日韩亚洲国产一区二区在线观看| 色哟哟哟哟哟哟| 亚洲人成77777在线视频| 97超级碰碰碰精品色视频在线观看| 91九色精品人成在线观看| 精品人妻在线不人妻| 亚洲欧美激情综合另类| 亚洲色图av天堂| 黄色视频不卡| 欧美一级毛片孕妇| 91av网站免费观看| 久久午夜综合久久蜜桃| 麻豆久久精品国产亚洲av | 美女扒开内裤让男人捅视频| 女同久久另类99精品国产91| 久久久水蜜桃国产精品网| 真人一进一出gif抽搐免费| 日日摸夜夜添夜夜添小说| 亚洲自拍偷在线| 国产精品久久视频播放| 可以在线观看毛片的网站| avwww免费| 免费搜索国产男女视频| 在线av久久热| 一级黄色大片毛片| 天堂动漫精品| 精品欧美一区二区三区在线| 久久久久久免费高清国产稀缺| 国产亚洲欧美在线一区二区| 操美女的视频在线观看| 亚洲专区国产一区二区| 黄色视频,在线免费观看| 欧美大码av| 在线观看一区二区三区激情| 午夜精品在线福利| av免费在线观看网站| 一个人免费在线观看的高清视频| 黑人猛操日本美女一级片| 亚洲 国产 在线| 视频在线观看一区二区三区| 免费观看精品视频网站| 12—13女人毛片做爰片一| 国产成人精品在线电影| 99久久综合精品五月天人人| 久久婷婷成人综合色麻豆| 亚洲aⅴ乱码一区二区在线播放 | 久久热在线av| 天天躁夜夜躁狠狠躁躁| 欧美日韩亚洲综合一区二区三区_| 操美女的视频在线观看| 亚洲av五月六月丁香网| 91精品三级在线观看| 女人精品久久久久毛片| 国产精品免费视频内射| 国产一区二区在线av高清观看| 久久久久久亚洲精品国产蜜桃av| 曰老女人黄片| 宅男免费午夜| 国产国语露脸激情在线看| 国产成+人综合+亚洲专区| 长腿黑丝高跟| 免费av中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 免费人成视频x8x8入口观看| 国产精品一区二区在线不卡| 老司机靠b影院| 日韩欧美免费精品| 黄色丝袜av网址大全| 久久久久久人人人人人| 日韩欧美免费精品| 男女高潮啪啪啪动态图| 午夜视频精品福利| av在线天堂中文字幕 | 色综合婷婷激情| 国产亚洲精品第一综合不卡| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 午夜影院日韩av| 国产成人影院久久av| 99久久99久久久精品蜜桃| 美女午夜性视频免费| 桃红色精品国产亚洲av| 国产精品1区2区在线观看.| 国产有黄有色有爽视频| 亚洲美女黄片视频| 国产午夜精品久久久久久| xxx96com| 久久精品aⅴ一区二区三区四区| 99久久精品国产亚洲精品| 国产精品综合久久久久久久免费 | 两个人免费观看高清视频| 黄色片一级片一级黄色片| 日韩精品中文字幕看吧| 99精品欧美一区二区三区四区| 亚洲成a人片在线一区二区| 欧美日韩黄片免| 又大又爽又粗| 欧美激情久久久久久爽电影 | 最近最新中文字幕大全免费视频| 99久久99久久久精品蜜桃| 黄色视频不卡| 日日夜夜操网爽| 人人妻人人爽人人添夜夜欢视频| 久久人妻av系列| 亚洲视频免费观看视频| 成人影院久久| 男女下面进入的视频免费午夜 | 精品卡一卡二卡四卡免费| 99国产精品免费福利视频| 丰满迷人的少妇在线观看| 亚洲精品久久成人aⅴ小说| 日本wwww免费看| 在线观看免费视频日本深夜| 天堂中文最新版在线下载| 9191精品国产免费久久| 91精品三级在线观看| 久久久久久久久免费视频了| 两个人免费观看高清视频| 久久久久国产一级毛片高清牌| 人人妻,人人澡人人爽秒播| 人人妻人人澡人人看| 久久婷婷成人综合色麻豆| 国产精品 国内视频| av电影中文网址| 在线天堂中文资源库| 色综合欧美亚洲国产小说| 99国产极品粉嫩在线观看| 久久久久九九精品影院| 亚洲精品一卡2卡三卡4卡5卡| 亚洲七黄色美女视频| 日韩免费高清中文字幕av| 久久精品人人爽人人爽视色| 人人妻人人添人人爽欧美一区卜| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| xxxhd国产人妻xxx| 岛国视频午夜一区免费看| 夜夜看夜夜爽夜夜摸 | 可以免费在线观看a视频的电影网站| 久久婷婷成人综合色麻豆| 久久久久久久久久久久大奶| 免费一级毛片在线播放高清视频 | 两个人免费观看高清视频| 亚洲免费av在线视频| 三上悠亚av全集在线观看| 国产av又大| 亚洲成人免费电影在线观看| 1024视频免费在线观看| 国产精品一区二区精品视频观看| 精品国产乱码久久久久久男人| 亚洲色图综合在线观看| 丰满的人妻完整版| 婷婷丁香在线五月| av天堂在线播放| 69精品国产乱码久久久| 国产精品免费视频内射| 精品免费久久久久久久清纯| 看黄色毛片网站| 长腿黑丝高跟| 久久影院123| 亚洲精品久久成人aⅴ小说| 女人被狂操c到高潮| 日韩精品青青久久久久久| 欧美日韩视频精品一区| 亚洲欧美日韩另类电影网站| 欧美日韩乱码在线| 高潮久久久久久久久久久不卡| 国产真人三级小视频在线观看| 亚洲人成伊人成综合网2020| 丝袜在线中文字幕| 午夜免费激情av| 国产精品98久久久久久宅男小说| 性色av乱码一区二区三区2| 亚洲午夜理论影院| 国产欧美日韩精品亚洲av| 制服人妻中文乱码| 黄色女人牲交| 多毛熟女@视频| 午夜福利欧美成人| 熟女少妇亚洲综合色aaa.| 99国产极品粉嫩在线观看| 国产欧美日韩一区二区精品| 一进一出抽搐gif免费好疼 | 午夜两性在线视频| 91国产中文字幕| 侵犯人妻中文字幕一二三四区| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费 | 久久久久国内视频| 久久精品91蜜桃| 午夜免费激情av| 国产高清视频在线播放一区| 国产成人一区二区三区免费视频网站| 99国产极品粉嫩在线观看| 十分钟在线观看高清视频www| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| av视频免费观看在线观看| 精品久久久久久久久久免费视频 | 亚洲一卡2卡3卡4卡5卡精品中文| 国产99白浆流出| 中文欧美无线码| 久久婷婷成人综合色麻豆| 免费在线观看黄色视频的| 亚洲全国av大片| 97超级碰碰碰精品色视频在线观看| 日韩成人在线观看一区二区三区| 人妻久久中文字幕网| 免费av毛片视频| 黄片播放在线免费| 女性生殖器流出的白浆| 超碰成人久久| 麻豆av在线久日| 国产99白浆流出| 18禁黄网站禁片午夜丰满| 久久久国产欧美日韩av| 色尼玛亚洲综合影院| 免费av毛片视频| 久久久久久久久免费视频了| 人人妻人人爽人人添夜夜欢视频| 丰满迷人的少妇在线观看| 亚洲,欧美精品.| 精品第一国产精品| 免费在线观看完整版高清| 亚洲在线自拍视频| 国产精品日韩av在线免费观看 | 午夜福利影视在线免费观看| 国产成人精品久久二区二区91| 水蜜桃什么品种好| 一级作爱视频免费观看| 国产男靠女视频免费网站| 老司机午夜福利在线观看视频| avwww免费| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 久久国产亚洲av麻豆专区| 99精国产麻豆久久婷婷| 欧美日韩瑟瑟在线播放| 麻豆av在线久日| 欧美日韩亚洲高清精品|