• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Switchable down-,up-and dual-chirped microwave waveform generation with improved time–bandwidth product based on polarization modulation and phase encoding

    2022-08-01 06:02:54YuxiaoGuo郭玉簫MuguangWang王目光HongqianMu牟宏謙andGuofangFan范國芳
    Chinese Physics B 2022年7期
    關(guān)鍵詞:目光

    Yuxiao Guo(郭玉簫), Muguang Wang(王目光), Hongqian Mu(牟宏謙), and Guofang Fan(范國芳)

    Institute of Lightwave Technology,Key Laboratory of All Optical Network and Advanced Telecommunication Network,Ministry of Education,Beijing Jiaotong University,Beijing 100044,China

    Keywords: microwave photonics,linearly chirped waveform generation,time–bandwidth product

    1. Introduction

    Linearly chirped microwave waveforms have been widely used in modern radar systems. Due to the superior pulse compression capability of linearly chirped waveform, the detection range and range resolution can be increased greatly.[1,2]As the pulse compression performance is proportional to the time–bandwidth product(TBWP),linearly chirped waveforms with large TBWP are highly preferred in pulse compression radar systems.However,the conventional methods to generate linearly chirped waveforms by using the electrical techniques suffer from low central frequency and narrow bandwidth due to the electronic bottleneck,which may be not suitable for future high precision radar systems. The linearly chirped waveform generated by modern photonic technique is a promising method to solve the problems in electronic systems,due to the advantages of low insertion loss,wide bandwidth,and immunity to electromagnetic interference.[3]

    A number of efforts have been made to generate linearly chirped waveform with photonic technique. These methods can be mainly divided into two kinds according to the types of generated signals. The first one is the singlechirped waveform generation, including direct space-to-time mapping,[4,5]frequency-to-time mapping,[6–8]optically injected semiconductor laser,[9,10]Fourier domain mode locked optoelectronic oscillator[11]and heterodyning method.[12–14]One of the application limitations of single-chirped waveform is its knife-edge-type ambiguity function,which reduces the range-Doppler resolution. The dual-chirped waveform that consists of an up-chirped waveform and a down-chirped waveform can be used to improve the range-Doppler resolution. Photonic generation of dual-chirped waveform has been widely studied in recent years. The common methods include integrated optical modulator based methods,[15–19]cascading modulators based methods,[20–23]sweeping laser based methods,[24]and optically injected semiconductor laser based methods.[25,26]All methods mentioned above can only generate one kind of linearly chirped waveform, which cannot meet the requirements of multifunctional radar systems.Luckily, a flexible linearly chirped generator which can generate switchable down-chirped, up-chirped and dual-chirped waveforms has been proposed recently.[27]However,the central frequency and bandwidth of the generated waveform are equal to the frequency of local oscillator(LO)and bandwidth of arbitrary waveform generator(AWG),which indicates the central frequency and bandwidth as well as the TBWP are still limited by the electrical systems.

    In this paper, a switchable down-, up-, dual-chirped microwave waveform generation technique is proposed by using a dual-polarization dual-parallel Mach–Zehnder modulator (DP-DPMZM) cascaded with a polarization modulator(PolM).By controlling the phase shifts of the radio frequency(RF)signals applied to the DP-DPMZM followed by a PolM driven by a parabolic signal,the down-,up-,dual-chirped microwave waveform with simultaneous frequency and bandwidth doubling can be generated and switched. Moreover,the bandwidth of the generated waveform can be enhanced by replacing the conventional parabolic signal with a splitting parabolic signal. Also, the time duration can be increased by using the phase-encoding technique.Hence,the TBWP can be increased significantly. Simulation experiments are conducted and the switchable down-,up-,dual-chirped microwave waveforms with TBWP of 8, 160 and 10240 are generated. The TBWP can be enlarged further by splitting parabolic signal into more pieces and using a longer length sequence to encode the phase.

    2. Principle

    Figure 1(a)shows the structure of the switchable down-,up-and dual-chirped microwave waveform generator. A lightwave emitted from a laser diode(LD) is launched into a DPDPMZM. As shown in Fig. 1(b), the DP-DPMZM is an integrated device which includes two DPMZMs, a 90°polarization rotator and a polarization beam combiner(PBC).The DPMZM consists of two sub-MZMs which operate in pushpull mode and a main MZM.Vb1,Vb2,Vb4andVb5are the direct current (DC) bias voltages of the four sub-MZMs, respectively. Similarly, the DC bias voltages of the two main-MZMs are represented byVb3andVb6. An RF signal from an LO is split into four paths to drive the four sub-MZMs of the DP-DPMZM with each path undergoing different phase shiftθi(i=1,2,3,4). The phase shifts are controlled by using adjustable phase shifters. All the sub-MZMs are biased at minimum transmission point(MITP)and the two main MZMs are biased at quadrature transmission point(QTP)by adjusting the DC biasesVbi. The principal axes of PBC in the DP-DPMZM is aligned with those of the PolM by a polarization controller(PC).In the PolM,the complimentary parabolic phase modulation in the two polarization states is achieved. Next,PC2 is employed to make sure one of the polarization directions of the optical signal from the PolM is 45°relative to one of the principal axes of the polarization beam splitter(PBS).After passing the PBS, the optical signal is transmitted into a balanced photodetector(BPD)for optical to electrical conversion.

    Fig.1. (a)The structure of the generator. (b)The diagram of the DP-DPMZM.

    The optical field of the linearly polarized lightwave emitted from the LD can be expressed asE(t)=E0ejω0t, whereE0andω0are the amplitude and angular frequency of the lightwave, respectively. The four driving microwave signals can be written asVicos(ωmt+θi),(i=1,2,3,4),whereVidenotes the amplitude of each RF signal,ωmdenotes the angular frequency, andθidenotes the initial phase of each RF signal,which can be controlled by adjustable phase shifter. Without loss of generality,θ1can be fixed to 0. By controlling the DC biases,all the four sub-MZMs are biased at MITP and the two main-MZMs are biased at QTP.Hence the optical field at the output of the DP-DPMZM is given by

    wheremi=πVi/Vπis the modulation index of each sub-MZM andVπis the half-wave voltage of each sub-MZM. Here we assume that the modulation indices of the sub-MZMs are identical,i.e.,m1=m2=m3=m4=m. Under small signal conditions,Eq.(1)can be simplified as

    whereJ1(·)is the first kind of Bessel function of the first order. Next,the principal axes of PBC in the DP-DPMZM are aligned with those of the PolM by PC1. A parabolic signal denoted asVss(t)is generated by an AWG and used to drive the PolM.The output of the PolM can be given by

    wherems=πVs/VπPolMis the modulation index of the PolM,andVπPolMis the half-wave voltage of the PolM.By controlling the phase shifts of the four driving RF signals applied to the DP-DPMZM,Eq.(3)can be divided into three cases. The detailed expressions are given by

    Then the modulated signal is controlled by PC2 to adjust the polarization state ofEXsorEYsat an angle of 45°with respect to one principal axis of the PBS.Thus the optical field at outport 1 and outport 2 of the PBS can be expressed as

    Hence the optical current output from the BPD is given by

    Hereθ3is always set to be 0. Whenθ2=π/2,andθ4=3π/2,the generator operates in down-chirped waveform generation mode and a down-chirped waveform is generated. Whenθ2andθ4are set to be 3π/2 andπ/2,respectively,the generator operates in up-chirped waveform generation mode and an upchirped waveform is generated. When there is no phase shift,the generator operates in dual-chirped waveform generation mode,and a dual-chirped waveform is generated along with a baseband component that cannot be radiated by the antenna.Note that the frequency and bandwidth doubling operation are achieved simultaneously without any filters.

    Mathematically, the parabolic signals(t) can be written as

    wherek=4/T20is the parabolic coefficient,T0is the temporal duration. According to Eq.(7),when the generator operates in down-chirped waveform generation mode, the instantaneous angular frequency of the generated waveform can be expressed as

    When the generator operates in up-chirped waveform generation mode, the instantaneous angular frequency of the generated waveform can be expressed as

    When the generator operates in dual-chirped waveform generation mode,the instantaneous angular frequency of the generated waveform can be expressed as

    For all these three cases, the bandwidths and time durations of the generated signals are all 8ms/(πT0)andT0. Hence the TBWP can be calculated as

    As can be seen,the TBWP of the generated waveform is proportional to the modulation index of the PolM. However, the limited modulation index of the PolM limits the bandwidth of the generated waveform and results in a low TBWP. To further improve the TBWP, the splitting parabolic signal can be used to replace the conventional parabolic signal to drive the PolM.[28]The splitting parabolic signal is obtained by splitting the conventional parabolic signal intoNpieces within one temporal duration. The splitting parabolic signal can be mathematically expressed as

    whereNis the number of the pieces andan(n=1,2,...,N)is the value to make the peak amplitude of each piece equal.It is well-known that the constant item has no influence to the differential operation. Therefore,the bandwidths of the generated chirp waveforms are greatly increased and can be denoted as 4Nms/(πT0). Hence the corresponding TBWP is

    Obviously,the TBWP increasesN/2 times compared with the original parabolic phase modulation. Besides the splitting parabolic phase modulation, the TBWP can be further improved by phase-encoding technique.[29]The pseudo-random binary sequence(PRBS)is used to encode the phase,which is given by

    whereMis the length of the PRBS,andci=±1 is the value of theith bit. Thus the phase-encoding splitting parabolic function can be expressed as

    where?represents convolution operation. By usings3(t) to drive the PolM, the time duration of the generated waveform increasesMtimes. Hence the TBWP can be expressed as

    As can be seen,the TBWP is further increasedMtimes. Compared with the original parabolic phase modulation,the TBWP increasesMN/2 times in total by using the splitting parabolic signal modulation and phase-encoding technique.

    3. Simulation and discussion

    Numerical simulation experiments based on the schematic diagram as shown in Fig.1 are conducted to verify the feasibility of the proposed technique.A lightwave with the power of 12 dBm is emitted from an LD with the linewidth of 10 MHz and center wavelength of 1550 nm. Then the lightwave is transmitted into a DP-DPMZM driven by four RF signals which are generated by splitting a RF signal with frequency of 20 GHz into four paths with each path undergoing a phase shift by phase shifter. The half-wave voltage and inserted loss of all the sub-MZMs are 4 V and 5 dB.The extinction ratios of the sub-MZMs are set to be 30 dB.All the sub-MZMs are biased at MITP and the two main MZMs are biased at QTP.The half-wave voltage of the PolM is set to be 3.3 V and the modulation index of PolM is set to beπ,which means the peak voltage of the driving signal is 3.3 V.

    Fig.2. (a)The conventional parabolic signal s(t). (b)The splitting parabolic signal s2(t). The phase-encoding splitting parabolic signal s3(t).

    Firstly, the generator is controlled to operate in downchirped waveform generation mode (θ2=π/2 andθ4=3π/2). The driving signal of the PolM is conventional parabolic signals(t)whose profile is shown in Fig.2(a). The time duration is set to be 12.8 ns. Figures 3(a), 3(b)and 3(c)show the generated waveform, frequency-time diagram and corresponding spectrum, respectively. The frequency-time diagram is calculated by using the short-time Fourier transform (STFT). It is used to show the instantaneous frequency of the signal. For the down-chirped waveform, the slope of the frequency-time curve is negative,which means the instantaneous frequency of the generated waveforms is decreasing with time. While for the up-chirped waveform, the slope of the frequency-time curve is positive,which means the instantaneous frequency of the generated waveforms is increasing with time. As can be seen from Fig.3(c),the bandwidth of the generated signal is approximately 0.625 GHz, which means the TBWP is only 8 due to the time duration is 12.8 ns.The autocorrelation is shown in Fig.3(d),from which we can see the full width at half maximum(FWHM)of the compressed pulse is approximately 1.927 ns,corresponding to a pulse compression ratio (PCR) of 6.642. Also, the peak-to-side lobe ratio(PSLR)is 7.70 dB.

    The driving signal of PolM is then changed into a splitting parabolic signals2(t) which is shown in Fig. 2(b). The splitting number is set to be 40. Figures 4(a), 4(b), 4(c) and 4(d) show the generated waveform, frequency-time diagram,spectrum and autocorrelation,respectively. It can be seen that a down-chirped waveform with central frequency and bandwidth of 40 GHz and of 12.5 GHz is generated and the time duration is 12.8 ns. Hence the TBWP is 160. From Fig.4(d),the FWHM is approximately 0.0804 ns,so the PCR increases to 159.2. The PSLR of the compressed pulse is 6.77 dB.

    Fig. 3. The generated waveform and corresponding performance when the generator is in down-chirped waveform generation mode and the driving signal is s(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)autocorrelation.

    Fig. 4. The generated waveform and corresponding performance when the generator is in down-chirped waveform generation mode and the driving signal is s2(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)autocorrelation.

    To improve the TBWP further,the driving signal of PolM is changed into phase-encoding splitting parabolic signals3(t),which is shown in Fig. 2(c). A 64-bit binary code is used to encode the phase. Figure 5(a)shows the generated waveform.The instantaneous frequency of the signal in the red dashed box of Fig. 5(a) is shown in Fig. 5(b). Figures 5(c) and 5(d)show the corresponding spectrum and autocorrelation,respectively. The time duration is extended to 819.2 ns while the bandwidth is still 12.5 GHz. Therefore, the TBWP increases to 10240. Even though the FWHM of the compressed pulse is still about 0.0804 ns,the PCR is up to 10189.05 thanks to the increasing time duration. The PSLR of the compressed pulse is 6.74 dB. It should be noted that in theory the TBWP can be potentially increased further by splitting the parabolic signal into more pieces and using longer sequence to encode the phase.

    Fig. 5. The generated waveform and corresponding performance when the generator is in down-chirped waveform generation mode and the driving signal is s3(t):(a)the temporal waveform,(b)frequency-time diagram of the signal in red dashed box,(c)spectrum,(d)autocorrelation.

    Fig. 6. The generated waveform and corresponding performance when the generator is in up-chirped waveform generation mode and the driving signal is s(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)autocorrelation.

    Fig. 7. The generated waveform and corresponding performance when the generator is in up-chirped waveform generation mode and the driving signal is s2(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)autocorrelation.

    Then the phase shifts are changed to control the generator in the up-chirped waveform generation mode (θ2=3π/2 andθ4=π/2). Analogously, the conventional parabolic signals(t) shown in Fig. 2(a) is firstly used to drive the PolM.The generated waveform, instantaneous frequency-time diagram, spectrum and autocorrelation are shown in Figs. 6(a),6(b),6(c)and 6(d).As expected,an up-chirped waveform with a duration and central frequency of 12.8 ns and 40 GHz is obtained. The bandwidth is 0.625 GHz,and hence the TBWP is 8.The FWHM of the compressed pulse is 1.927 ns,so the PCR is also approximately 6.642. The PSLR of the compressed pulse is about 7.66 dB. Then the splitting parabolic signal with 40 pieces shown in Fig. 2(b) is used to drive the PolM.Figures 7(a), 7(b), 7(c) and 7(d) show the generated temporal waveform,frequency-time diagram,spectrum and autocorrelation, respectively. Similar to the down-chirped waveform generation mode with splitting parabolic driving signal,an upchirped waveform with the instantaneous frequency increasing from 33.75 GHz to 46.25 GHz in the duration of 12.8 ns is generated. Therefore, the TBWP is 160. From Fig.7(d), we can see that the FWHM of the compressed pulse is 0.0804 ns, so the PCR is 159.2. The PSLR of the compressed pulse is about 6.74 dB. Next, the phase-encoding splitting parabolic signal shown in Fig.2(c)is employed to improve the TBWP further and the reciprocal results are shown in Fig. 8. Figure 8(a)shows the temporal waveform of the generated signal. As can be seen, the time duration increases to 819.2 ns. Figure 8(b)shows the instantaneous frequency of the waveform in the red dashed box of Fig.8(a). The spectrum of the generated signal is shown in Fig. 8(c), from which we can see the bandwidth is still 12.5 GHz. Hence the TBWP is 10240. The autocorrelation is shown in Fig. 8(d). The FWHM of the compressed pulse is still 0.0804 ns,which indicates the PCR is 10189.05.The PSLR of the compressed pulse is about 6.75 dB.

    Finally, we simulate the case when the generator operates in dual-chirped waveform generation mode (θ2=0 andθ4=0). As analyzed above, the conventional parabolic signals(t) shown in Fig. 2(a) is firstly used to drive the PolM.The generated waveform, frequency-time diagram and spectrum are shown in Figs. 9(a), 9(b) and 9(c) respectively. It can be seen that a dual-chirped waveform with central frequency and bandwidth of 40 GHz and 0.625 GHz is generated while a component at baseband is also generated. However,the component at baseband cannot be radiated to free space by the antenna or can be easily filtered out by an electrical high pass filter (HPF). Figure 9(d) shows the waveform after filtered by an HPF. The TBWP of the generated waveform is only 8. Figure 12(a) presents the autocorrelation of the generated dual-chirped waveform when the driving signal of the PolM iss(t). The FWHM of the compressed pulse is only 2.075 ns,corresponding to a little PCR of 6.169. The PSLR of the compressed pulse is about 6.50 dB.

    As can be seen in Fig. 9, the bandwidth of the generated dual-chirped waveform is very narrow, only approach to 0.625 GHz. To improve the bandwidth,the splitting parabolic signal shown in Fig. 2(b) is used to drive the PolM. Figures 10(a)–10(c)correspond to the waveform output from the BPD and its frequency-time diagram as well as the spectrum.Figure 10(d) shows the waveform after an HPF. Clearly, a dual-chirped waveform with bandwidth of 12.5 GHz and duration of 12.8 ns is generated, which means the TBWP increases to 160. Figure 12(b) presents the autocorrelation of the generated dual-chirped waveform when the driving signal of the PolM iss2(t). As can be seen, the FWHM decreases to 0.0806 ns, resulting in a PCR of 158.81. The PSLR of the compressed pulse is about 7.80 dB.

    Fig.8.The generated waveform and corresponding performance when the generator is in up-chirped waveform generation mode and the driving signal is s3(t): (a)the temporal waveform,(b)frequency-time diagram of the signal in red dashed box,(c)spectrum,(d)autocorrelation.

    Fig. 9. The generated waveform and corresponding performance when the generator is in dual-chirped waveform generation mode and the driving signal is s(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)the generated waveform after an HPF.

    Fig. 10. The generated waveform and corresponding performance when the generator is in dual-chirped waveform generation mode and the driving signal is s2(t): (a)the temporal waveform,(b)frequency-time diagram,(c)spectrum,(d)the generated waveform after an HPF.

    At last,the phase-encoding splitting parabolic signals3(t)shown in Fig. 2(c) is employed. Figure 11(a) shows the generated waveform. The frequency-time diagram shown in Fig. 11(b) is the STFT of waveform in the red dashed box of Fig. 11(a). Figure 11(c) shows the spectrum of the generated waveform. A phase-encoding dual-chirped waveform with central frequency of 40 GHz and bandwidth of 12.5 GHz is generated even though a baseband component exists. Figure 11(d)shows the generated dual-chirped waveform after an HPF. The TBWP approaches to 10240 and can be increased further. Figure 12(c) presents the autocorrelation of the generated dual-chirped waveform when the driving signal of the PolM iss3(t). The FWHM is still 0.0806 ns while the temporal duration of the waveform reaches 819.2 ns,leading to a PCR of 10163.77. The PSLR of the compressed pulse is about 7.79 dB.

    Fig. 11. The generated waveform and corresponding performance when the generator is in dual-chirped waveform generation mode and the driving signal is s3(t): (a)the temporal waveform,(b)frequency-time diagram of the signal in red dashed box,(c)spectrum,(d)the generated waveform after an HPF.

    Fig.12. The autocorrelations of the generated dual-chirped waveforms when the driving signal is(a)s(t),(b)s2(t)and(c)s3(t).

    It should be noted that although the proposed method can generate the switchable down-, up- and dual-chirped waveform with significantly increased bandwidth by splitting the parabolic signal into some pieces,the maximum splitting number is limited by the sampling rate of the AWG and the maximum bandwidth of the generated waveform is also limited by the bandwidth of the optical devices such as the modulators and photodetectors. In addition, the length of the PRBS which is used to encode the phase is also limited by the memory length of the AWG.Hence,the TBWP can not be enlarged arbitrarily and will be restricted by the sampling rate and memory length of the AWG as well as the bandwidth of the optical devices.

    4. Conclusions

    A switchable down-, up- and dual-chirped microwave waveform generation technique has been proposed and numerically demonstrated by simply controlling the phase shifts of RF signals applied to the DP-DPMZM.The TBWP can be enhanced by splitting the parabolic signal into more pieces and using the phase-encoding technique. Simulation results indicate our method can generate switchable down-,up-and dualchirped waveform with TBWP of 8, 160 and 10240. In addition, the proposed method features advantages of filter-free structure and high flexibility,which may find promising applications in future multifunctional radar systems.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant Nos. U2006217, 61775015, and 62101027)and the Fundamental Research Funds for the Central Universities(Grant Nos.2021JBZ103 and 2021YJS002).

    猜你喜歡
    目光
    會變的目光
    在水邊
    詩歌月刊(2022年1期)2022-01-28 21:43:36
    您的目光 我的成長
    故鄉(xiāng)的目光
    青年歌聲(2020年8期)2020-09-12 03:15:04
    父親的目光
    文苑(2020年8期)2020-09-09 09:30:34
    請別告訴她
    背后的目光
    老師的目光
    草原歌聲(2019年1期)2019-07-25 07:30:58
    目光
    趣味(語文)(2018年6期)2018-06-26 09:07:31
    給流動人口更多關(guān)注目光
    女警被强在线播放| 亚洲av第一区精品v没综合| 午夜福利18| 人妻夜夜爽99麻豆av| 欧美日韩黄片免| 妹子高潮喷水视频| 欧美性长视频在线观看| 国产探花在线观看一区二区| 精品国产乱子伦一区二区三区| 日本在线视频免费播放| 婷婷丁香在线五月| 色综合欧美亚洲国产小说| 国产麻豆成人av免费视频| 欧美人与性动交α欧美精品济南到| 男插女下体视频免费在线播放| 丝袜人妻中文字幕| 国模一区二区三区四区视频 | 搡老岳熟女国产| 精品久久久久久,| 精品人妻1区二区| 最好的美女福利视频网| 人人妻人人澡欧美一区二区| 好男人电影高清在线观看| 人妻夜夜爽99麻豆av| 精品一区二区三区视频在线观看免费| 久久精品91蜜桃| 日韩中文字幕欧美一区二区| 91在线观看av| 欧美日韩国产亚洲二区| 色综合婷婷激情| 真人做人爱边吃奶动态| 啦啦啦韩国在线观看视频| 亚洲精品av麻豆狂野| 丁香六月欧美| 国产在线精品亚洲第一网站| 99久久综合精品五月天人人| 亚洲男人的天堂狠狠| 久久伊人香网站| 中文字幕最新亚洲高清| 黄色丝袜av网址大全| 美女扒开内裤让男人捅视频| 蜜桃久久精品国产亚洲av| 国产片内射在线| 观看免费一级毛片| 50天的宝宝边吃奶边哭怎么回事| 日本一本二区三区精品| 91老司机精品| 日韩精品免费视频一区二区三区| 国产亚洲精品久久久久久毛片| 又黄又爽又免费观看的视频| 午夜日韩欧美国产| 亚洲中文日韩欧美视频| 韩国av一区二区三区四区| 国产成+人综合+亚洲专区| 久久精品亚洲精品国产色婷小说| 欧美精品啪啪一区二区三区| 婷婷亚洲欧美| 一二三四在线观看免费中文在| 成人特级黄色片久久久久久久| 久久国产精品影院| 欧美成人午夜精品| 亚洲中文字幕日韩| 人妻夜夜爽99麻豆av| 精品人妻1区二区| 精华霜和精华液先用哪个| 国产区一区二久久| 美女 人体艺术 gogo| 两人在一起打扑克的视频| e午夜精品久久久久久久| 久久精品国产99精品国产亚洲性色| 亚洲第一欧美日韩一区二区三区| 蜜桃久久精品国产亚洲av| 亚洲国产中文字幕在线视频| 国产v大片淫在线免费观看| 亚洲精品国产一区二区精华液| 久久久久精品国产欧美久久久| 久久热在线av| 真人做人爱边吃奶动态| 欧美日本视频| 欧美激情久久久久久爽电影| 国产精品亚洲一级av第二区| 国产爱豆传媒在线观看 | 丝袜人妻中文字幕| 成人av在线播放网站| 最近在线观看免费完整版| 午夜精品在线福利| 在线观看免费午夜福利视频| 最新在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 久久热在线av| 男男h啪啪无遮挡| netflix在线观看网站| 亚洲欧美日韩东京热| 一二三四在线观看免费中文在| 国产爱豆传媒在线观看 | 99在线视频只有这里精品首页| 操出白浆在线播放| 国产69精品久久久久777片 | e午夜精品久久久久久久| 狂野欧美激情性xxxx| 色尼玛亚洲综合影院| 99热这里只有是精品50| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 全区人妻精品视频| 97碰自拍视频| 97人妻精品一区二区三区麻豆| 婷婷六月久久综合丁香| 88av欧美| 国产伦人伦偷精品视频| 99riav亚洲国产免费| 桃红色精品国产亚洲av| 成年免费大片在线观看| 久久伊人香网站| 怎么达到女性高潮| 一级毛片精品| 手机成人av网站| 国产精品久久久久久久电影 | 国产一区二区在线av高清观看| 美女扒开内裤让男人捅视频| 一级毛片精品| 成人国产综合亚洲| 日韩三级视频一区二区三区| 日本 av在线| 美女高潮喷水抽搐中文字幕| 国产精品自产拍在线观看55亚洲| 日韩av在线大香蕉| 一级作爱视频免费观看| 国产v大片淫在线免费观看| 国产精品永久免费网站| 在线观看舔阴道视频| 中文亚洲av片在线观看爽| 国产爱豆传媒在线观看 | 在线观看免费午夜福利视频| 99久久综合精品五月天人人| 亚洲欧美日韩高清在线视频| 久久精品亚洲精品国产色婷小说| 日本成人三级电影网站| 亚洲乱码一区二区免费版| 亚洲熟妇中文字幕五十中出| 欧美不卡视频在线免费观看 | 亚洲精品国产精品久久久不卡| 中亚洲国语对白在线视频| 很黄的视频免费| 欧美成人免费av一区二区三区| www.精华液| 国产成人精品久久二区二区免费| 老熟妇乱子伦视频在线观看| 黄色 视频免费看| av在线播放免费不卡| 亚洲精品美女久久av网站| 亚洲av第一区精品v没综合| 欧美成狂野欧美在线观看| 老司机午夜十八禁免费视频| 一卡2卡三卡四卡精品乱码亚洲| 精品国内亚洲2022精品成人| 日韩国内少妇激情av| 一级黄色大片毛片| 免费看a级黄色片| 五月玫瑰六月丁香| 狠狠狠狠99中文字幕| 国产熟女午夜一区二区三区| 欧美3d第一页| 观看免费一级毛片| 亚洲专区字幕在线| 悠悠久久av| 亚洲精品久久成人aⅴ小说| 久久久久久久午夜电影| 日本 欧美在线| av片东京热男人的天堂| 精品久久久久久久久久久久久| 成人一区二区视频在线观看| 日本熟妇午夜| 日韩精品青青久久久久久| 免费电影在线观看免费观看| 免费看十八禁软件| 亚洲一区高清亚洲精品| 久久久精品大字幕| 欧美日韩瑟瑟在线播放| 又粗又爽又猛毛片免费看| 他把我摸到了高潮在线观看| 精品国产乱码久久久久久男人| 成年人黄色毛片网站| 中出人妻视频一区二区| 精品高清国产在线一区| 亚洲一区二区三区色噜噜| 久久精品国产亚洲av香蕉五月| 麻豆国产97在线/欧美 | 亚洲免费av在线视频| 久久久精品大字幕| 欧美精品亚洲一区二区| 日韩欧美精品v在线| 久久久久久国产a免费观看| 久久久久九九精品影院| 成年女人毛片免费观看观看9| 一级毛片女人18水好多| 国产精品一区二区精品视频观看| 国产av在哪里看| 波多野结衣高清作品| 亚洲人成77777在线视频| 久久性视频一级片| 亚洲国产中文字幕在线视频| 久久精品国产综合久久久| 人妻夜夜爽99麻豆av| 搡老岳熟女国产| 一个人免费在线观看的高清视频| 禁无遮挡网站| 日本三级黄在线观看| 欧美精品啪啪一区二区三区| 999久久久国产精品视频| 国产成年人精品一区二区| 国产精品久久久久久人妻精品电影| 在线看三级毛片| 国产成人av激情在线播放| 三级男女做爰猛烈吃奶摸视频| 最好的美女福利视频网| 久久久水蜜桃国产精品网| 高清毛片免费观看视频网站| 欧美中文综合在线视频| 久久久久免费精品人妻一区二区| 人妻夜夜爽99麻豆av| 国产精品一及| 日日干狠狠操夜夜爽| 欧美丝袜亚洲另类 | 久久精品综合一区二区三区| 久久久久九九精品影院| 国产精品久久电影中文字幕| 亚洲专区字幕在线| 好男人电影高清在线观看| 岛国视频午夜一区免费看| 国产精品 国内视频| 国产视频内射| 国产精品电影一区二区三区| 久久国产精品影院| 国产三级中文精品| 久久精品影院6| 1024视频免费在线观看| 亚洲成a人片在线一区二区| 精品国产乱子伦一区二区三区| 欧美三级亚洲精品| 久久精品aⅴ一区二区三区四区| 91成年电影在线观看| 国产熟女午夜一区二区三区| 两个人看的免费小视频| 在线观看免费视频日本深夜| 国产不卡一卡二| 欧美日韩乱码在线| 日本撒尿小便嘘嘘汇集6| 怎么达到女性高潮| 亚洲 欧美 日韩 在线 免费| 1024香蕉在线观看| 一级片免费观看大全| 亚洲国产中文字幕在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成电影免费在线| 人妻久久中文字幕网| 欧美日韩瑟瑟在线播放| 亚洲欧美日韩无卡精品| 岛国视频午夜一区免费看| 中国美女看黄片| 欧美中文综合在线视频| 国产伦在线观看视频一区| 亚洲成人精品中文字幕电影| 国产一区二区三区在线臀色熟女| 在线观看日韩欧美| 黄色a级毛片大全视频| 国产亚洲精品久久久久久毛片| 少妇被粗大的猛进出69影院| 久久亚洲真实| 色av中文字幕| 老司机在亚洲福利影院| 亚洲美女黄片视频| 国产精品自产拍在线观看55亚洲| 99热6这里只有精品| 亚洲专区字幕在线| 日本五十路高清| 午夜亚洲福利在线播放| 久久精品国产99精品国产亚洲性色| 国产免费男女视频| 午夜福利欧美成人| 国产伦人伦偷精品视频| 校园春色视频在线观看| 亚洲色图av天堂| 国产免费av片在线观看野外av| 久久精品成人免费网站| 一本精品99久久精品77| 久热爱精品视频在线9| 美女高潮喷水抽搐中文字幕| 亚洲色图 男人天堂 中文字幕| 精品国内亚洲2022精品成人| 好男人电影高清在线观看| 淫秽高清视频在线观看| 老司机午夜十八禁免费视频| 成人永久免费在线观看视频| 日韩成人在线观看一区二区三区| 国产亚洲精品久久久久5区| 国产v大片淫在线免费观看| 欧美激情久久久久久爽电影| 啦啦啦免费观看视频1| а√天堂www在线а√下载| √禁漫天堂资源中文www| 麻豆成人av在线观看| 亚洲精品色激情综合| 欧美日韩福利视频一区二区| 99国产精品99久久久久| 少妇粗大呻吟视频| 亚洲国产欧美人成| 两人在一起打扑克的视频| 欧美乱码精品一区二区三区| 无遮挡黄片免费观看| 香蕉丝袜av| 91麻豆av在线| 在线观看66精品国产| 国产精品免费一区二区三区在线| 制服诱惑二区| 丁香六月欧美| 日韩精品青青久久久久久| 一夜夜www| 国产精品久久电影中文字幕| 在线a可以看的网站| 亚洲,欧美精品.| 亚洲成人久久爱视频| 国产精品乱码一区二三区的特点| 在线观看一区二区三区| 这个男人来自地球电影免费观看| 日本一本二区三区精品| 天天躁夜夜躁狠狠躁躁| 午夜亚洲福利在线播放| 亚洲国产中文字幕在线视频| 小说图片视频综合网站| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器 | 国产三级黄色录像| 免费在线观看成人毛片| 不卡av一区二区三区| 亚洲国产看品久久| 亚洲黑人精品在线| 精品第一国产精品| 波多野结衣高清无吗| 国产伦人伦偷精品视频| www.精华液| 国产一区在线观看成人免费| 亚洲欧美一区二区三区黑人| 成人三级做爰电影| av免费在线观看网站| 欧美黄色片欧美黄色片| 久9热在线精品视频| 搡老熟女国产l中国老女人| 日本 av在线| 夜夜爽天天搞| 丁香六月欧美| 在线视频色国产色| 国产成人精品久久二区二区91| 在线播放国产精品三级| 成人国产综合亚洲| 五月玫瑰六月丁香| 欧美丝袜亚洲另类 | 欧美成人免费av一区二区三区| 欧美精品亚洲一区二区| 中文字幕人妻丝袜一区二区| 97超级碰碰碰精品色视频在线观看| 亚洲午夜精品一区,二区,三区| 国产高清视频在线观看网站| 久久久久久亚洲精品国产蜜桃av| 亚洲国产精品合色在线| 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 激情在线观看视频在线高清| 免费av毛片视频| 很黄的视频免费| 国产精品免费视频内射| 久久久久久久午夜电影| 欧美另类亚洲清纯唯美| 国产高清视频在线播放一区| 在线观看美女被高潮喷水网站 | 亚洲成a人片在线一区二区| 一二三四在线观看免费中文在| 久久久水蜜桃国产精品网| 亚洲一区高清亚洲精品| av片东京热男人的天堂| 亚洲色图av天堂| 亚洲国产欧美人成| 色av中文字幕| 久久久久久人人人人人| 国产成人精品无人区| 亚洲欧洲精品一区二区精品久久久| 此物有八面人人有两片| 国产精品 国内视频| 精品高清国产在线一区| 两个人免费观看高清视频| 操出白浆在线播放| 国产精品98久久久久久宅男小说| 亚洲精品粉嫩美女一区| 成人三级做爰电影| 不卡一级毛片| 狠狠狠狠99中文字幕| 两个人看的免费小视频| 国产三级中文精品| 老鸭窝网址在线观看| 日日爽夜夜爽网站| 久久99热这里只有精品18| 99久久国产精品久久久| 国产精品免费视频内射| 色综合站精品国产| 国内久久婷婷六月综合欲色啪| 日本免费一区二区三区高清不卡| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 巨乳人妻的诱惑在线观看| 久久香蕉激情| 欧美 亚洲 国产 日韩一| 欧美黑人欧美精品刺激| 久久精品国产99精品国产亚洲性色| 国产一区二区三区视频了| 黄频高清免费视频| 精品一区二区三区av网在线观看| 日韩欧美精品v在线| 欧美色视频一区免费| 亚洲va日本ⅴa欧美va伊人久久| 免费高清视频大片| 99热这里只有精品一区 | 不卡av一区二区三区| 88av欧美| 99久久综合精品五月天人人| 一进一出抽搐gif免费好疼| 午夜福利在线观看吧| 一本大道久久a久久精品| 精品乱码久久久久久99久播| 99久久精品国产亚洲精品| 999久久久精品免费观看国产| 51午夜福利影视在线观看| 一级毛片女人18水好多| 国产一区二区在线观看日韩 | 亚洲最大成人中文| 琪琪午夜伦伦电影理论片6080| 中文字幕最新亚洲高清| 亚洲自拍偷在线| 国产欧美日韩一区二区精品| av福利片在线观看| 国产一区二区激情短视频| 丰满人妻熟妇乱又伦精品不卡| 日韩大码丰满熟妇| 国产成人av激情在线播放| 精品人妻1区二区| 青草久久国产| 婷婷亚洲欧美| 91av网站免费观看| 一级毛片女人18水好多| 国产免费av片在线观看野外av| 成人国语在线视频| 国产爱豆传媒在线观看 | 亚洲精品一卡2卡三卡4卡5卡| 久久久精品欧美日韩精品| 窝窝影院91人妻| 宅男免费午夜| 国产区一区二久久| 少妇粗大呻吟视频| 日韩大码丰满熟妇| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 精品久久久久久久久久免费视频| 国产不卡一卡二| 国产69精品久久久久777片 | 此物有八面人人有两片| 男人的好看免费观看在线视频 | 99国产综合亚洲精品| 精品一区二区三区av网在线观看| 男女下面进入的视频免费午夜| 在线看三级毛片| 麻豆久久精品国产亚洲av| 老鸭窝网址在线观看| 一本综合久久免费| 琪琪午夜伦伦电影理论片6080| 最近最新中文字幕大全电影3| 天天躁狠狠躁夜夜躁狠狠躁| 三级毛片av免费| 夜夜看夜夜爽夜夜摸| 亚洲黑人精品在线| 欧美乱色亚洲激情| 亚洲无线在线观看| 精品久久久久久久久久免费视频| 国产一区二区在线观看日韩 | 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av| 国产亚洲精品综合一区在线观看 | 看免费av毛片| 免费av毛片视频| www.精华液| 国产成人系列免费观看| 日本撒尿小便嘘嘘汇集6| 天天躁夜夜躁狠狠躁躁| 久久久久国内视频| 国产精品1区2区在线观看.| 国产成人精品无人区| 国产精品亚洲美女久久久| 亚洲国产欧美人成| 欧美一级a爱片免费观看看 | 日韩欧美国产在线观看| 亚洲片人在线观看| 99久久综合精品五月天人人| 久久久国产欧美日韩av| bbb黄色大片| 一区二区三区高清视频在线| 久久天躁狠狠躁夜夜2o2o| 777久久人妻少妇嫩草av网站| 大型av网站在线播放| 天天一区二区日本电影三级| or卡值多少钱| av在线播放免费不卡| 麻豆成人午夜福利视频| 欧美三级亚洲精品| 久久久久国内视频| 在线观看66精品国产| 成人午夜高清在线视频| 国产亚洲精品一区二区www| 国产黄a三级三级三级人| 精品一区二区三区av网在线观看| 久久99热这里只有精品18| 美女扒开内裤让男人捅视频| 91九色精品人成在线观看| 国产精品免费一区二区三区在线| 国产人伦9x9x在线观看| 他把我摸到了高潮在线观看| 国产久久久一区二区三区| 色噜噜av男人的天堂激情| 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 亚洲五月婷婷丁香| 免费无遮挡裸体视频| 亚洲国产精品成人综合色| 久久久久国产精品人妻aⅴ院| 国产伦人伦偷精品视频| 熟妇人妻久久中文字幕3abv| 亚洲九九香蕉| 好看av亚洲va欧美ⅴa在| 国产三级黄色录像| 日日爽夜夜爽网站| 亚洲av日韩精品久久久久久密| 可以在线观看毛片的网站| 一二三四社区在线视频社区8| 高潮久久久久久久久久久不卡| 他把我摸到了高潮在线观看| 久久伊人香网站| 久久精品夜夜夜夜夜久久蜜豆 | 搡老熟女国产l中国老女人| 国产精品爽爽va在线观看网站| 色综合婷婷激情| 俄罗斯特黄特色一大片| 亚洲一区二区三区不卡视频| 日韩欧美免费精品| 超碰成人久久| 亚洲精品中文字幕一二三四区| 欧美激情久久久久久爽电影| 69av精品久久久久久| 国语自产精品视频在线第100页| 日韩av在线大香蕉| 国产精品免费视频内射| 母亲3免费完整高清在线观看| 白带黄色成豆腐渣| av视频在线观看入口| 国语自产精品视频在线第100页| 久久精品91无色码中文字幕| 久热爱精品视频在线9| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 中国美女看黄片| 全区人妻精品视频| 青草久久国产| 一区二区三区高清视频在线| 狂野欧美白嫩少妇大欣赏| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 色在线成人网| 精品久久蜜臀av无| 一区福利在线观看| 成人18禁在线播放| 国产私拍福利视频在线观看| 高潮久久久久久久久久久不卡| 亚洲精品粉嫩美女一区| 久久久久久久久中文| 亚洲九九香蕉| 天天一区二区日本电影三级| 免费搜索国产男女视频| 女同久久另类99精品国产91| 黄片大片在线免费观看| 两个人的视频大全免费| 操出白浆在线播放| 午夜福利18| √禁漫天堂资源中文www| 亚洲,欧美精品.| 成人欧美大片| 亚洲性夜色夜夜综合| 无限看片的www在线观看| 夜夜爽天天搞| 在线观看免费视频日本深夜| 一边摸一边抽搐一进一小说| 亚洲成人免费电影在线观看| 制服诱惑二区| 日韩欧美国产一区二区入口| 国产成人欧美在线观看| 久久精品aⅴ一区二区三区四区| 国产久久久一区二区三区| 日韩欧美三级三区| 亚洲av中文字字幕乱码综合| 精品国产乱码久久久久久男人| 天天一区二区日本电影三级| 中亚洲国语对白在线视频| 国产一区二区三区视频了| 精品一区二区三区四区五区乱码| 久久久国产欧美日韩av| 国产激情久久老熟女| 丰满人妻一区二区三区视频av | 国产一区在线观看成人免费| 在线播放国产精品三级| 日韩三级视频一区二区三区|