• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device*

    2021-11-23 07:32:54JinLongJiao焦金龍QiuHongGan甘秋宏ShiCheng程實YeLiao廖曄ShaoYingKe柯少穎WeiHuang黃巍JianYuanWang汪建元ChengLi李成andSongYanChen陳松巖
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李成

    Jin-Long Jiao(焦金龍) Qiu-Hong Gan(甘秋宏) Shi Cheng(程實) Ye Liao(廖曄) Shao-Ying Ke(柯少穎)Wei Huang(黃巍) Jian-Yuan Wang(汪建元) Cheng Li(李成) and Song-Yan Chen(陳松巖)

    1Department of Physics and Jiujiang Research Institute,Xiamen University,Xiamen 361005,China

    2College of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China

    Keywords: filament,memory,resistive switching

    1. Introduction

    Resistive random access memory (RRAM) devices offer significant application potential in future non-volatile data storage technology[1-4]due to their fast operation speed,high storage density, and process compatibility with today’s silicon technology.[5-7]In previous research of RRAM,the resistive switching modes are generally classified as unipolar resistive switching(URS)mode and bipolar resistive switching(BRS)[8]mode. If the URS can symmetrically occur at both positive and negative voltages, it is also referred to as nonpolar resistive switching mode.[9,10]In recent years, coexistence of URS and BRS was also studied.[11-17]According to our previous study on Pt/LATP/Pt devices, the stable conversion between the unipolar mode and the bipolar mode is named any-polar resistive switching mode.[18]The crystalline channel structure of the LATP(Li1?xAlxTi2?x(PO4)3)[19-21]benefits the easy movement and effective storage of the oxygen ion when used as a resistive switching layer,and thus contributing to the any-polar resistive switching mode.

    Titanium (Ti), as a metal with high affinity with oxygen, is naturally regarded as an ideal oxygen storage material. Using Ti as an electrode or additional interfacial layer to improve the performance of RRAM device has been extensively studied.[22,23]For the widely studied HfO2RRAM,with a thin Ti layer serving as a reactive buffer layer,the TiN/Ti/HfO2/TiN device demonstrated excellent memory performance and satisfactory switching endurance over 106cycles.[23]

    In this work,the effect of Ti intercalation on the conventional HfO2resistive switching device is restudied. The Ti intercalation can be at one side of the HfO2film,or be at each side of the HfO2film.With various device structures,different resistive switching modes are found.When the Ti intercalation layers are inserted at both sides of the HfO2film,the resulting Pt/Ti/HfO2/Ti/Pt device shows the stable any-polar resistive switching behavior.This phenomenon gives a new insight into the fundamental working mechanism of the any-polar resistive switching mode.

    2. Results and discussion

    To fabricate HfO2RRAMs, the Pt-substrate is used as a bottom electrode. The Pt-substrate contains a structure of Pt(100 nm)/Ti(50 nm)/Si(100), which is prepared by successive direct current(DC)magnetron sputtering of Ti and Pt on a Si(100)substrate. The resistive HfO2layer is then grown by atomic layer deposition (ALD) at 275°C with using tetrakis(sthylmethylamido) hafnium (TEMAH) and H2O as precursors.A 5-nm-thick Ti layer is sputtered at the front side and/or at the back side of the HfO2film as an intercalation layer.The Pt top electrodes with a diameter of 800μm are sputtered through a mechanical mask.

    As shown in Fig. 1(a), three types of resistive memory devices are prepared in the present investigation, which are Pt/HfO2(10 nm)/Pt, Pt/HfO2(10 nm)/Ti(5 nm)/Pt, and Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt. For basic DCI-Vmeasurements, an external bias is applied to the top Pt electrode, and the bottom Pt electrode is grounded by a Keithley 4200 semiconductor parameter analyzer. All measurements are performed respectively at room temperature,in ambient condition,and in a dark chamber. Transmission electron microscope (TEM) is used to image the cross-section of the Pt/Ti/HfO2/Ti/Pt-substrate device as shown in Fig. 1(b). The TEM samples are prepared by applying thein situfocused ion beam lift-out technique to a dual beam, for focused ion beam/scanning electron microscopy(FEI Company,UK).

    Fig.1. (a)Schematic diagram of RRAM devices with Ti intercalation layers,and(b)cross-section of the Pt/Ti/HfO2/Ti/Pt device.

    The simplest RRAM can be finished by a simple sandwich structure of metal/oxide/metal such as Pt/HfO2/Pt. The Pt/HfO2/Pt RRAM works in URS switching mode. However, the Pt/HfO2/Pt RRAM suffers poor endurance property.After limited switching cycles, the device tends to be break down.[24]Figure 2(a)shows the current-voltage(I-V)switching property of our Pt/HfO2/Pt RRAM.The initial high resistance state(HRS)of the as-fabricated device is about 1010Ω.After electroforming,the RESET voltage is around 0.5 V,and the SET voltages are in a range between 1.5 V and 4.3 V for the following cycles. The on-off ratio at a read voltage of 0.2 V is generally larger than 103. But after 10 cycles,the device fails,ending up with final permanent low resistance state(LRS).The limited switching cycles lie in the oxygen ions migrating towards and escaping from the anode electrode during the switching. This was also confirmed by the observation of gas bubbles at the anode in early studies.[2]

    To improve the switching property of the Pt/HfO2/Pt RRAM, titanium electrode or titanium intercalation layer is introduced. Considering that the oxygen ion is the moving species under switching operations and with the titanium layer acting as the oxygen reservoir, the duration property of the HfO2RRAM device is prominently improved.[23]Once the titanium is introduced, the Ti/HfO2/Pt or the Pt/HfO2/Ti/Pt RRAM device shows bipolar switching mode.[25]When positive bias is exerted on the Ti or the Ti intercalated electrode,the oxygen ions are driven towards and captured by Ti under the action of electric field and the high oxygen density of Ti.Oxygen vacancies accumulate in the HfO2layer, forming a conductive filament. When the applied bias is negative, the oxygen ions are released from Ti and annihilate the filament,finishing the RESET operation.

    Figure 2(b) shows the typical electrical switching property of our Pt/HfO2/Ti(5 nm)/Pt RRAM device. The electroforming occurs at?3.7-V bias. A compliance current(IC)of 1 mA is applied during the following SET operations.A stable bipolar resistive switching is demonstrated(negative SET,positive RESET).The device in Fig.2(b)experiences 65 switching cycles without degradation. The RESET voltages varies around +0.5 V, and the SET voltages spread in a range from?2.4 V to?1.5 V.

    The above BRS mode bring the Pt/HfO2/Ti(5 nm)/Pt into stable and robust switching behavior. But on the other hand,if we change the polarities of the BRS operation,i.e.,negative RESET and positive SET, the device is corrupted soon after only a few cycles. This phenomenon can be understood by the asymmetric structure of the device, which means that the drifting oxygen ions in HfO2can be stored only at the Ti intercalated electrode rather than the counter pure Pt electrode.Obviously, the polarity of the BRS operation in the device of Pt/HfO2/Ti(5 nm)/Pt is unchangeable.

    To implement the so-called any-polar resistive switching properties, the RRAM device needs to possess both the BRS and the URS properties simultaneously. Secondly,the polarities of both operations must be changeable.Finally,each operation mode and each polarity can be exchanged freely,which is independent of their operation history. Up to now,neither of the above two devices(Pt/HfO2/Pt and Pt/HfO2/Ti/Pt)can be called any-polar resistive switching device.

    To implement the any-polar resistive switching mode,the key issue is the ability of the oxygen ions to be stored at both electrode sides of the resistive layer, considering that oxygen vacancy is the species to set up the filament. In the device of the Pt/HfO2/Ti/Pt, oxygen ions can be stored only at the bottom electrode. So,adding another Ti intercalation layer to the top Pt electrode can straightforwardly improve the storage of oxygen. This idea leads to the symmetric device structure of Pt/Ti/HfO2/Ti/Pt. A TEM cross-section image of the fabricated device is shown in Fig.1(b).

    For the symmetric Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt RRAM device, the resistive switching property is shown in Fig. 2(c). An electroforming process occurs at?3.725 V to active the device. After forming, 120 uniform operation cycles are captured without any degradation. By recognizing the voltage polarity for each of the SET and the RESET process, all the switching operations can be grouped into four different resistive switching sub-modes, which are named as URS+, URS-, BRS+, and BRS- as shown in Fig. 2(d), respectively. In each conversion process,the conversion of two sub-switching modes is realized by changing the applied voltage polarity of one of the SET and the RESET process, with the voltage polarity of the other process remaining unchanged.In URS+, the SET and the RESET processes are both completed at positive voltages. For URS-, the SET and the RESET processes are both executed under negative voltages. For BRS+, the SET process is completed with negative bias, and the RESET process is completed with positive bias. For BRS-, opposite polarities of the SET and the RESET process may be determined by referring to the BRS+mode.

    The test in Fig.2(c)starts from BRS+mode. After 5-10 BRS+cycles, the operation changes into the URS+mode for another 5-10 cycles. The device subsequently undergoes the BRS-and URS-modes and finally comes back to the BRS+mode. The above transition following the sequence of BRS+,URS+, BRS-, URS-is called a big-loop cycle. The device can also well follow the opposite big-loop cycle with the sequence of BRS+,URS-,BRS-,and URS+.Whether the mode is URS+(or URS-)or BRS+(or BRS-),the on-off ratio is always higher than 100, the absolute value of the SET and the RESET operation are both around 2.0 V and 0.5 V, respectively.

    A comparison among the above three devices is shown in Fig. 3. The resistance distributions of both the HRS and the LRS at±0.2 V for the three devices are shown in Fig. 3(a).Larger memory windows are observed for the Pt/HfO2/Pt device without Ti intercalation than for the other two devices. But as already known, the Pt/HfO2/Pt device suffers poor endurance. For the Pt/HfO2/Ti/Pt device and the Pt/Ti/HfO2/Ti/Pt device, both have stable distributions of the HRS and LRS resistances.The switching ratio of HRS to LRS for each device is generally larger than 100. A comparison of SET/RESET voltage distributions among the three devices is shown in Fig. 3(b). It is found that the SET/RESET voltage distributions of the bipolar Pt/HfO2/Ti/Pt device fall well into those of the any-polar Pt/HfO2/Ti/Pt device,which means that when the any-polar Pt/Ti/HfO2/Ti/Pt device works in its BRSsub-mode, its behavior is similar to that of the Pt/HfO2/Ti/Pt device.

    The migration of ions driven by electric field is the main motivation for resistive switching. Joule heating is another factor to redistribute ions. According to the type of the migration ions, electrochemical metallization memory and valance change memory are sorted. In the former,the conducting filaments are comprised of reduced active metal ions such as Ag+or Cu+, which may drift, forming a metal electrode.[26-30]In the latter, the filaments are formed by oxygen vacancies.[6]The oxygen vacancy model is applicable for all the three devices in this work.

    The Pt/HfO2/Pt also has a symmetric device structure. Its URS property can also be observed with negative bias (denoted as URS-). The symmetric occurrence of URS+ and URS- is also called non-polar resistive switching mode.[9]However, further study finds that the conversion between the two URS modes is impossible. Frequently changing between the URS+and the URS-causes the device to break down immediately.

    Fig.2.Typical I-V switching characteristics based on HfO2 RRAM with different Ti intercalation layers.(a)Unipolar resistive switching mode of Pt/HfO2/Pt RRAM,(b)bipolar resistive switching mode of Pt/HfO2/Ti(5 nm)/Pt RRAM,(c)any-polar resistive switching mode of Pt/Ti(5 nm)/HfO2/Ti(5 nm)/Pt RRAM,and(d)four resistive switching sub-modes extracted from curves in panel(c).

    Fig.3. (a)Switching resistance distributions of three devices of Pt/HfO2/Pt,Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt at±0.2 V.(b)SET and RESET voltage distributions of these devices.

    The working mechanism of the bipolar Pt/HfO2/Ti/Pt RRAM is depicted in Fig. 4(a). The restoring and releasing of oxygen ions by the Ti intercalation prevent oxygen ions from vanishing during the switching. Thus,the Pt/HfO2/Ti/Pt device possesses a satisfactory endurance property. When adding Ti intercalation to both sides of the HfO2layer, both BRS+ and BRS- operations are now possible. The working mechanism of the Pt/Ti/HfO2/Ti/Pt RRAM is depicted in Fig.4(b).

    When studying the RESET switches of the bipolar Pt/HfO2/Ti/Pt device,Joule heating effect and the electric migration effect are difficult to clearly separate. Both are believed to contribute to the annihilation of the filaments. When considering the BRS+and URS+sub-modes in the any-polar device of Pt/Ti/HfO2/Ti/Pt,it is comprehended that the migration effect may be helpful in implementing the operation of BRS+,but undoubtedly useless in the operation of UPS+. But in Fig. 2(d), the RESET curves of the BRS+ and URS+ submodes are nearly identical.Considering the similarity between the RESET curves of BRS+ and URS-, Joule heating effect rather than the migration effect should be the main mechanism during all the RESET switches for the Pt/Ti/HfO2/Ti/Pt device,including all four sub-modes.

    The any-polar resistive switching property was first proposed in the study of Pt/LATP/Pt.[18]The special switching property is ascribed to the unique crystalline structure of the LATP,which provides the abundant transport routes and storage sites for oxygen ions. In this study,the any-polar switching property is discovered in the Pt/Ti/HfO2/Ti/Pt device. A comparison between both devices indicates that to fulfill the requirement for the any-polar resistive switching,the transport routes and the storage medium for oxygen ions do not have to be in the same layer. In the case of Pt/Ti/HfO2/Ti/Pt,the HfO2acts as the transport route while the Ti intercalations serve as the storage medium.In this sense,if the HfO2layer is replaced by other conventional resistive oxides, such as Ta2O5[31]or TiO2,[32]the any-polar resistance switching property can still be implemented.

    Finally, the current transportation mechanisms of these types of devices are explored. TypicalI-Vcurves of the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt are re-plotted on a log-log scale as shown in Fig.5. Whether they are in LRS or HRS,the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt devices have the slopes of log(|I|)versuslog(|V|)that are both close to unity,indicating that the ohmic conduction[33]is the dominant mechanism in LRS or HRS region.

    Fig.4. Working mechanism of(a)Pt/HfO2/Ti/Pt device and(b)Pt/Ti/HfO2/Ti/Pt device. Notice that most of oxygen ions are stored in Ti intercalation layer.The four sub operation modes are URS+,URS-,BRS+,and BRS-.

    Fig. 5. Current fitting and current transportation mechanism of resistive switching properties,with blue and red lines representing Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt.

    3. Conclusions

    In summary, we demonstrate any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device. The any-polar resistive switching comprised of four sub-modes which are BRS+, URS+, BRS-, and URS-. The filaments formed by oxygen vacancies explain the switching mechanism. During switching, the HfO2acts as the transport route while the Ti intercalation layers serve as the storage medium.The investigation of the Pt/Ti/HfO2/Ti/Pt RRAM presents a new insight into the fundamental working mechanism of the any-polar resistive switching device.

    猜你喜歡
    李成
    Dynamics of bubble-shaped Bose–Einstein condensates on two-dimensional cross-section in micro-gravity environment
    書法欣賞
    祖國(2023年23期)2023-02-25 06:14:50
    懷念李成章教授
    Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images
    李成海就200兆瓦農(nóng)牧光互補項目選址現(xiàn)場辦公
    春燕
    北方音樂(2018年17期)2018-10-31 01:21:04
    杜鵑
    北方音樂(2018年17期)2018-10-31 01:21:04
    莊玉庭先負李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    Effect of vegetation on flow structure and dispersion in strongly curved channels*
    18禁在线播放成人免费| 久久国内精品自在自线图片| 国产精品精品国产色婷婷| 热99在线观看视频| 亚洲精品日韩在线中文字幕 | 国产精华一区二区三区| 色播亚洲综合网| 男女视频在线观看网站免费| 狠狠狠狠99中文字幕| 亚洲av成人av| 少妇被粗大猛烈的视频| 神马国产精品三级电影在线观看| 12—13女人毛片做爰片一| 高清午夜精品一区二区三区 | 啦啦啦韩国在线观看视频| 久久久久精品国产欧美久久久| 女人被狂操c到高潮| 成人av在线播放网站| 1024手机看黄色片| 日韩亚洲欧美综合| 日韩亚洲欧美综合| 午夜激情欧美在线| 国产麻豆成人av免费视频| 国内精品宾馆在线| 最近手机中文字幕大全| 国产亚洲精品久久久com| 亚洲欧美清纯卡通| 日韩高清综合在线| 亚洲高清免费不卡视频| 欧美在线一区亚洲| 成人午夜高清在线视频| 亚洲精品影视一区二区三区av| 亚洲精品国产av成人精品 | 午夜日韩欧美国产| 亚洲三级黄色毛片| 99精品在免费线老司机午夜| 午夜视频国产福利| 赤兔流量卡办理| 欧美高清成人免费视频www| 午夜精品一区二区三区免费看| 九九爱精品视频在线观看| 久久精品国产99精品国产亚洲性色| 非洲黑人性xxxx精品又粗又长| 麻豆精品久久久久久蜜桃| 亚洲精品456在线播放app| 国产精品伦人一区二区| 一级av片app| 国产单亲对白刺激| 男人狂女人下面高潮的视频| 性欧美人与动物交配| 99热全是精品| 欧美色欧美亚洲另类二区| 欧美色欧美亚洲另类二区| 老司机午夜福利在线观看视频| 国产精品久久久久久久久免| 欧美丝袜亚洲另类| 1024手机看黄色片| 久久久久性生活片| 日本黄色片子视频| 午夜福利成人在线免费观看| 亚洲国产精品久久男人天堂| 人妻制服诱惑在线中文字幕| 校园春色视频在线观看| 麻豆精品久久久久久蜜桃| 一级av片app| 99久久成人亚洲精品观看| 亚洲av成人精品一区久久| 成人欧美大片| 黄色欧美视频在线观看| 精品久久久久久久久久免费视频| 精品久久久久久久久久免费视频| 欧美最黄视频在线播放免费| 国产精品人妻久久久久久| 欧美+日韩+精品| 三级经典国产精品| 精品熟女少妇av免费看| 波野结衣二区三区在线| 插逼视频在线观看| 亚洲国产高清在线一区二区三| 午夜福利在线观看免费完整高清在 | 在线观看美女被高潮喷水网站| 乱人视频在线观看| 最近中文字幕高清免费大全6| 国产精品久久视频播放| 久久午夜亚洲精品久久| 久久久久性生活片| 校园春色视频在线观看| 久久久久久久亚洲中文字幕| 99精品在免费线老司机午夜| 成人永久免费在线观看视频| 色综合色国产| 亚洲第一区二区三区不卡| 亚洲成人精品中文字幕电影| 搡老岳熟女国产| 久久精品夜夜夜夜夜久久蜜豆| 久久中文看片网| 深夜精品福利| 国产精品爽爽va在线观看网站| 日本爱情动作片www.在线观看 | 中国美白少妇内射xxxbb| 亚洲色图av天堂| 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区精品小视频在线| 97碰自拍视频| 国产一区二区在线观看日韩| 我的女老师完整版在线观看| 亚洲一级一片aⅴ在线观看| 色哟哟·www| 日韩成人av中文字幕在线观看 | 熟妇人妻久久中文字幕3abv| 国产白丝娇喘喷水9色精品| 久久精品91蜜桃| 国产av在哪里看| 3wmmmm亚洲av在线观看| 亚洲18禁久久av| 美女xxoo啪啪120秒动态图| 免费搜索国产男女视频| 好男人在线观看高清免费视频| 久久精品国产亚洲网站| 美女 人体艺术 gogo| 成年免费大片在线观看| 欧美成人免费av一区二区三区| 久久人妻av系列| 国产亚洲精品综合一区在线观看| 国产精品乱码一区二三区的特点| 免费观看在线日韩| 亚洲精品一区av在线观看| 久久99热这里只有精品18| 天堂√8在线中文| 日韩av在线大香蕉| 成人av在线播放网站| 国产精品伦人一区二区| 亚洲精品乱码久久久v下载方式| 淫妇啪啪啪对白视频| 国产精品不卡视频一区二区| 人妻制服诱惑在线中文字幕| 国产高潮美女av| 亚洲欧美成人综合另类久久久 | 国产激情偷乱视频一区二区| 日韩国内少妇激情av| 欧美最新免费一区二区三区| 悠悠久久av| av国产免费在线观看| 久久中文看片网| 午夜亚洲福利在线播放| 午夜福利视频1000在线观看| 国产精品一二三区在线看| 在线播放国产精品三级| 国产精品电影一区二区三区| 久久久久国产网址| 老熟妇仑乱视频hdxx| 亚洲精品日韩av片在线观看| АⅤ资源中文在线天堂| 嫩草影院新地址| 亚洲欧美日韩高清专用| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 搡老熟女国产l中国老女人| 日本黄色视频三级网站网址| 日日啪夜夜撸| 99久久中文字幕三级久久日本| 在线观看美女被高潮喷水网站| 精品欧美国产一区二区三| 夜夜夜夜夜久久久久| 久久人妻av系列| 免费电影在线观看免费观看| 国国产精品蜜臀av免费| 岛国在线免费视频观看| 久久久国产成人免费| 午夜精品国产一区二区电影 | 久久欧美精品欧美久久欧美| 一a级毛片在线观看| 哪里可以看免费的av片| 欧美zozozo另类| 狂野欧美白嫩少妇大欣赏| 中文在线观看免费www的网站| 精品少妇黑人巨大在线播放 | 夜夜爽天天搞| 亚洲成人久久爱视频| 久久久久久久久久久丰满| 亚洲欧美成人精品一区二区| 日本黄大片高清| 男人舔女人下体高潮全视频| 国产精品爽爽va在线观看网站| 亚洲va在线va天堂va国产| 中出人妻视频一区二区| 欧美最黄视频在线播放免费| 国产毛片a区久久久久| 亚洲精品日韩在线中文字幕 | 香蕉av资源在线| 日本a在线网址| 久99久视频精品免费| 中文字幕人妻熟人妻熟丝袜美| 久久久久久久久久成人| 精品一区二区三区人妻视频| 国产高清激情床上av| 国产黄色小视频在线观看| 麻豆成人午夜福利视频| 免费看日本二区| 欧美最黄视频在线播放免费| 国产精品1区2区在线观看.| 日本色播在线视频| 床上黄色一级片| 成人无遮挡网站| 久久草成人影院| 成人精品一区二区免费| 亚洲中文字幕日韩| 深夜a级毛片| 国产一区二区亚洲精品在线观看| 午夜老司机福利剧场| 亚洲精品456在线播放app| a级一级毛片免费在线观看| 夜夜看夜夜爽夜夜摸| www日本黄色视频网| 我要搜黄色片| 一进一出抽搐动态| 国产aⅴ精品一区二区三区波| 亚洲精品在线观看二区| 插逼视频在线观看| 久久人人精品亚洲av| 久久久久久久久中文| 插逼视频在线观看| 少妇丰满av| 淫秽高清视频在线观看| 成人av在线播放网站| 联通29元200g的流量卡| 不卡一级毛片| 免费av毛片视频| 性色avwww在线观看| 久久精品国产鲁丝片午夜精品| 天天一区二区日本电影三级| 久久人人精品亚洲av| a级毛片a级免费在线| 亚洲国产色片| 精品久久久久久久久久免费视频| 在线观看66精品国产| 久久亚洲精品不卡| 69人妻影院| 久久精品国产99精品国产亚洲性色| 99精品在免费线老司机午夜| av.在线天堂| 久久婷婷人人爽人人干人人爱| av在线播放精品| 久久精品国产99精品国产亚洲性色| 久久久欧美国产精品| 亚洲av中文av极速乱| 久久久久久大精品| 国产淫片久久久久久久久| 久久人妻av系列| 成人特级黄色片久久久久久久| 亚洲av.av天堂| videossex国产| 国内久久婷婷六月综合欲色啪| 网址你懂的国产日韩在线| 深夜a级毛片| 在线观看美女被高潮喷水网站| 桃色一区二区三区在线观看| 免费av观看视频| 亚洲精品在线观看二区| a级毛片免费高清观看在线播放| 国产片特级美女逼逼视频| 国产高清三级在线| 全区人妻精品视频| 免费电影在线观看免费观看| 日本一二三区视频观看| 国产大屁股一区二区在线视频| 精品不卡国产一区二区三区| 久久久久久久久大av| 在线观看午夜福利视频| 亚洲久久久久久中文字幕| 伦理电影大哥的女人| 久久精品夜夜夜夜夜久久蜜豆| 99国产精品一区二区蜜桃av| 中文字幕免费在线视频6| 少妇熟女aⅴ在线视频| 亚洲成人中文字幕在线播放| 亚洲av第一区精品v没综合| 成年免费大片在线观看| 亚洲欧美精品综合久久99| 不卡视频在线观看欧美| 18禁黄网站禁片免费观看直播| 91久久精品国产一区二区成人| 日本在线视频免费播放| 寂寞人妻少妇视频99o| 丰满乱子伦码专区| 99热6这里只有精品| 波多野结衣巨乳人妻| 国产男靠女视频免费网站| 狂野欧美激情性xxxx在线观看| 日本a在线网址| 国产v大片淫在线免费观看| 亚洲三级黄色毛片| 在线天堂最新版资源| 亚洲18禁久久av| 亚洲国产色片| 18+在线观看网站| 99国产极品粉嫩在线观看| 一个人观看的视频www高清免费观看| 久久久a久久爽久久v久久| 自拍偷自拍亚洲精品老妇| 人妻少妇偷人精品九色| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 日韩,欧美,国产一区二区三区 | 看非洲黑人一级黄片| 桃色一区二区三区在线观看| 久久热精品热| 国产片特级美女逼逼视频| 99视频精品全部免费 在线| 亚洲aⅴ乱码一区二区在线播放| 中文资源天堂在线| 亚洲性夜色夜夜综合| 青春草视频在线免费观看| 高清日韩中文字幕在线| 欧美国产日韩亚洲一区| 婷婷六月久久综合丁香| 欧美成人精品欧美一级黄| 国产av在哪里看| 可以在线观看的亚洲视频| 国产成人精品久久久久久| 精品久久久久久久末码| 变态另类成人亚洲欧美熟女| 卡戴珊不雅视频在线播放| 欧美日韩国产亚洲二区| 最近视频中文字幕2019在线8| av专区在线播放| 亚洲av.av天堂| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 欧美丝袜亚洲另类| av在线观看视频网站免费| 最近的中文字幕免费完整| a级毛片免费高清观看在线播放| 一级av片app| 2021天堂中文幕一二区在线观| 能在线免费观看的黄片| 中文字幕av成人在线电影| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 国模一区二区三区四区视频| 九九在线视频观看精品| 免费观看的影片在线观看| 亚洲成人av在线免费| 性插视频无遮挡在线免费观看| 黄色配什么色好看| 女人十人毛片免费观看3o分钟| 成人永久免费在线观看视频| 男女之事视频高清在线观看| 久久久久国产网址| 国产精品久久久久久av不卡| 伦理电影大哥的女人| 亚洲av熟女| 亚洲最大成人中文| 夜夜爽天天搞| 日本成人三级电影网站| 亚洲高清免费不卡视频| 插逼视频在线观看| 99久国产av精品国产电影| 插逼视频在线观看| 亚洲四区av| 国产午夜福利久久久久久| 18禁裸乳无遮挡免费网站照片| av天堂中文字幕网| 亚洲精品国产av成人精品 | 亚洲四区av| 欧美三级亚洲精品| 精品欧美国产一区二区三| 亚洲欧美精品自产自拍| 亚洲国产色片| 嫩草影视91久久| 日韩 亚洲 欧美在线| 国产乱人视频| 桃色一区二区三区在线观看| 久久国产乱子免费精品| 成年av动漫网址| 在线观看一区二区三区| 成年av动漫网址| 搡女人真爽免费视频火全软件 | 自拍偷自拍亚洲精品老妇| 97超级碰碰碰精品色视频在线观看| 欧美又色又爽又黄视频| 干丝袜人妻中文字幕| 成人三级黄色视频| 人妻久久中文字幕网| 色噜噜av男人的天堂激情| 99热这里只有精品一区| 日日撸夜夜添| 大又大粗又爽又黄少妇毛片口| 久久人人爽人人爽人人片va| 真人做人爱边吃奶动态| 深爱激情五月婷婷| 天天一区二区日本电影三级| 六月丁香七月| 亚洲人成网站在线播放欧美日韩| 久久国内精品自在自线图片| 国内少妇人妻偷人精品xxx网站| 国产精品美女特级片免费视频播放器| 又粗又爽又猛毛片免费看| 一级黄片播放器| 免费看a级黄色片| 久久久国产成人精品二区| 美女免费视频网站| 亚洲国产精品国产精品| 亚洲自偷自拍三级| 国产av麻豆久久久久久久| 色综合站精品国产| 日韩成人伦理影院| 女人十人毛片免费观看3o分钟| 国产毛片a区久久久久| 欧美在线一区亚洲| 欧美日韩一区二区视频在线观看视频在线 | 看非洲黑人一级黄片| 99热这里只有精品一区| 免费电影在线观看免费观看| 欧美最黄视频在线播放免费| 我要看日韩黄色一级片| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 亚洲欧美精品自产自拍| 午夜激情欧美在线| 亚洲欧美日韩无卡精品| 日本在线视频免费播放| 亚洲av美国av| 亚洲中文日韩欧美视频| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 亚洲婷婷狠狠爱综合网| 成人特级黄色片久久久久久久| 99在线视频只有这里精品首页| 久久精品人妻少妇| 老司机午夜福利在线观看视频| avwww免费| 老师上课跳d突然被开到最大视频| 久久久久久久久久黄片| 亚洲人成网站在线观看播放| 欧美日韩乱码在线| 变态另类成人亚洲欧美熟女| 欧美色视频一区免费| 97碰自拍视频| 欧美成人精品欧美一级黄| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 波多野结衣高清作品| 精品久久久久久久人妻蜜臀av| 偷拍熟女少妇极品色| 婷婷亚洲欧美| 日本欧美国产在线视频| 人人妻,人人澡人人爽秒播| 91精品国产九色| 久久精品国产亚洲av香蕉五月| 久久久久久久亚洲中文字幕| 亚洲内射少妇av| 毛片一级片免费看久久久久| 国产极品精品免费视频能看的| 亚洲无线观看免费| 我要搜黄色片| 日本熟妇午夜| 嫩草影院入口| 成人亚洲欧美一区二区av| 国产精品久久久久久av不卡| 熟女电影av网| 午夜精品在线福利| 精品人妻偷拍中文字幕| 美女 人体艺术 gogo| 国产av在哪里看| 亚洲欧美精品综合久久99| 久久久久久伊人网av| 99热精品在线国产| 日本免费a在线| 婷婷精品国产亚洲av| 美女内射精品一级片tv| 老熟妇仑乱视频hdxx| 午夜激情欧美在线| 色噜噜av男人的天堂激情| 久久久a久久爽久久v久久| 久久久久久国产a免费观看| 久久精品国产亚洲av涩爱 | 国产精品嫩草影院av在线观看| 亚洲中文字幕日韩| 成人性生交大片免费视频hd| 婷婷精品国产亚洲av在线| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲| 精品久久久久久久久久久久久| 在线免费观看的www视频| 国产探花在线观看一区二区| 日韩强制内射视频| 天天一区二区日本电影三级| 午夜福利在线观看吧| 国产亚洲精品久久久久久毛片| 禁无遮挡网站| 悠悠久久av| 国产中年淑女户外野战色| 人人妻人人澡欧美一区二区| 精品日产1卡2卡| 国产蜜桃级精品一区二区三区| 又黄又爽又刺激的免费视频.| АⅤ资源中文在线天堂| 91在线观看av| 99国产精品一区二区蜜桃av| 熟女电影av网| 人妻少妇偷人精品九色| 亚洲美女黄片视频| 蜜桃久久精品国产亚洲av| 美女黄网站色视频| 免费一级毛片在线播放高清视频| 欧美一区二区亚洲| 国语自产精品视频在线第100页| 男人的好看免费观看在线视频| 免费在线观看影片大全网站| 欧美丝袜亚洲另类| 亚洲成人中文字幕在线播放| 精品人妻一区二区三区麻豆 | 毛片女人毛片| 久久热精品热| 男人狂女人下面高潮的视频| 免费av毛片视频| 人人妻人人看人人澡| 男女视频在线观看网站免费| 天天躁夜夜躁狠狠久久av| 亚洲av不卡在线观看| 亚洲av免费在线观看| 久久久久免费精品人妻一区二区| 插阴视频在线观看视频| 亚洲精品日韩在线中文字幕 | av天堂中文字幕网| 少妇人妻精品综合一区二区 | 欧美精品国产亚洲| 日韩欧美在线乱码| 在线观看午夜福利视频| 亚洲真实伦在线观看| 99久久成人亚洲精品观看| 九九热线精品视视频播放| 亚洲av二区三区四区| 最近2019中文字幕mv第一页| 亚洲欧美成人综合另类久久久 | 观看免费一级毛片| 我要搜黄色片| 亚洲中文字幕一区二区三区有码在线看| 亚洲一区高清亚洲精品| 国产精品免费一区二区三区在线| 欧美日本视频| 亚洲精品国产av成人精品 | 久久久久精品国产欧美久久久| 淫秽高清视频在线观看| 女同久久另类99精品国产91| 久久久久性生活片| 精品乱码久久久久久99久播| 国产伦在线观看视频一区| 午夜老司机福利剧场| 国产男靠女视频免费网站| 久久人妻av系列| 在线观看美女被高潮喷水网站| 免费观看在线日韩| 极品教师在线视频| 亚洲精品粉嫩美女一区| 黄色一级大片看看| 熟女人妻精品中文字幕| 日韩制服骚丝袜av| 欧美日本视频| 久久九九热精品免费| av国产免费在线观看| 一级毛片aaaaaa免费看小| 免费搜索国产男女视频| 波多野结衣高清无吗| 亚洲天堂国产精品一区在线| 亚洲av一区综合| 精品熟女少妇av免费看| 极品教师在线视频| 成年女人永久免费观看视频| 成人亚洲欧美一区二区av| 成年免费大片在线观看| 精品午夜福利在线看| 日韩,欧美,国产一区二区三区 | 一级毛片我不卡| 国产精品无大码| 亚洲三级黄色毛片| 天天躁日日操中文字幕| 此物有八面人人有两片| 真实男女啪啪啪动态图| av在线播放精品| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 综合色丁香网| 国产精品综合久久久久久久免费| 国内久久婷婷六月综合欲色啪| av在线天堂中文字幕| 国产一级毛片七仙女欲春2| 成熟少妇高潮喷水视频| 综合色av麻豆| av.在线天堂| 女的被弄到高潮叫床怎么办| 精品久久国产蜜桃| 精品不卡国产一区二区三区| 欧美中文日本在线观看视频| 精品久久久久久久久av| 欧美日韩综合久久久久久| 夜夜夜夜夜久久久久| 国产亚洲91精品色在线| 黄色日韩在线| 欧美丝袜亚洲另类| 国产av不卡久久| 波野结衣二区三区在线| 啦啦啦啦在线视频资源| 精品久久久久久久久av| 国产老妇女一区| 极品教师在线视频| 亚洲精品国产成人久久av| 成年女人看的毛片在线观看| 亚洲av电影不卡..在线观看| a级毛片免费高清观看在线播放| 你懂的网址亚洲精品在线观看 | 99热全是精品| 亚洲18禁久久av| 婷婷精品国产亚洲av|