• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device*

    2021-11-23 07:32:54JinLongJiao焦金龍QiuHongGan甘秋宏ShiCheng程實YeLiao廖曄ShaoYingKe柯少穎WeiHuang黃巍JianYuanWang汪建元ChengLi李成andSongYanChen陳松巖
    Chinese Physics B 2021年11期
    關(guān)鍵詞:李成

    Jin-Long Jiao(焦金龍) Qiu-Hong Gan(甘秋宏) Shi Cheng(程實) Ye Liao(廖曄) Shao-Ying Ke(柯少穎)Wei Huang(黃巍) Jian-Yuan Wang(汪建元) Cheng Li(李成) and Song-Yan Chen(陳松巖)

    1Department of Physics and Jiujiang Research Institute,Xiamen University,Xiamen 361005,China

    2College of Physics and Information Engineering,Minnan Normal University,Zhangzhou 363000,China

    Keywords: filament,memory,resistive switching

    1. Introduction

    Resistive random access memory (RRAM) devices offer significant application potential in future non-volatile data storage technology[1-4]due to their fast operation speed,high storage density, and process compatibility with today’s silicon technology.[5-7]In previous research of RRAM,the resistive switching modes are generally classified as unipolar resistive switching(URS)mode and bipolar resistive switching(BRS)[8]mode. If the URS can symmetrically occur at both positive and negative voltages, it is also referred to as nonpolar resistive switching mode.[9,10]In recent years, coexistence of URS and BRS was also studied.[11-17]According to our previous study on Pt/LATP/Pt devices, the stable conversion between the unipolar mode and the bipolar mode is named any-polar resistive switching mode.[18]The crystalline channel structure of the LATP(Li1?xAlxTi2?x(PO4)3)[19-21]benefits the easy movement and effective storage of the oxygen ion when used as a resistive switching layer,and thus contributing to the any-polar resistive switching mode.

    Titanium (Ti), as a metal with high affinity with oxygen, is naturally regarded as an ideal oxygen storage material. Using Ti as an electrode or additional interfacial layer to improve the performance of RRAM device has been extensively studied.[22,23]For the widely studied HfO2RRAM,with a thin Ti layer serving as a reactive buffer layer,the TiN/Ti/HfO2/TiN device demonstrated excellent memory performance and satisfactory switching endurance over 106cycles.[23]

    In this work,the effect of Ti intercalation on the conventional HfO2resistive switching device is restudied. The Ti intercalation can be at one side of the HfO2film,or be at each side of the HfO2film.With various device structures,different resistive switching modes are found.When the Ti intercalation layers are inserted at both sides of the HfO2film,the resulting Pt/Ti/HfO2/Ti/Pt device shows the stable any-polar resistive switching behavior.This phenomenon gives a new insight into the fundamental working mechanism of the any-polar resistive switching mode.

    2. Results and discussion

    To fabricate HfO2RRAMs, the Pt-substrate is used as a bottom electrode. The Pt-substrate contains a structure of Pt(100 nm)/Ti(50 nm)/Si(100), which is prepared by successive direct current(DC)magnetron sputtering of Ti and Pt on a Si(100)substrate. The resistive HfO2layer is then grown by atomic layer deposition (ALD) at 275°C with using tetrakis(sthylmethylamido) hafnium (TEMAH) and H2O as precursors.A 5-nm-thick Ti layer is sputtered at the front side and/or at the back side of the HfO2film as an intercalation layer.The Pt top electrodes with a diameter of 800μm are sputtered through a mechanical mask.

    As shown in Fig. 1(a), three types of resistive memory devices are prepared in the present investigation, which are Pt/HfO2(10 nm)/Pt, Pt/HfO2(10 nm)/Ti(5 nm)/Pt, and Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt. For basic DCI-Vmeasurements, an external bias is applied to the top Pt electrode, and the bottom Pt electrode is grounded by a Keithley 4200 semiconductor parameter analyzer. All measurements are performed respectively at room temperature,in ambient condition,and in a dark chamber. Transmission electron microscope (TEM) is used to image the cross-section of the Pt/Ti/HfO2/Ti/Pt-substrate device as shown in Fig. 1(b). The TEM samples are prepared by applying thein situfocused ion beam lift-out technique to a dual beam, for focused ion beam/scanning electron microscopy(FEI Company,UK).

    Fig.1. (a)Schematic diagram of RRAM devices with Ti intercalation layers,and(b)cross-section of the Pt/Ti/HfO2/Ti/Pt device.

    The simplest RRAM can be finished by a simple sandwich structure of metal/oxide/metal such as Pt/HfO2/Pt. The Pt/HfO2/Pt RRAM works in URS switching mode. However, the Pt/HfO2/Pt RRAM suffers poor endurance property.After limited switching cycles, the device tends to be break down.[24]Figure 2(a)shows the current-voltage(I-V)switching property of our Pt/HfO2/Pt RRAM.The initial high resistance state(HRS)of the as-fabricated device is about 1010Ω.After electroforming,the RESET voltage is around 0.5 V,and the SET voltages are in a range between 1.5 V and 4.3 V for the following cycles. The on-off ratio at a read voltage of 0.2 V is generally larger than 103. But after 10 cycles,the device fails,ending up with final permanent low resistance state(LRS).The limited switching cycles lie in the oxygen ions migrating towards and escaping from the anode electrode during the switching. This was also confirmed by the observation of gas bubbles at the anode in early studies.[2]

    To improve the switching property of the Pt/HfO2/Pt RRAM, titanium electrode or titanium intercalation layer is introduced. Considering that the oxygen ion is the moving species under switching operations and with the titanium layer acting as the oxygen reservoir, the duration property of the HfO2RRAM device is prominently improved.[23]Once the titanium is introduced, the Ti/HfO2/Pt or the Pt/HfO2/Ti/Pt RRAM device shows bipolar switching mode.[25]When positive bias is exerted on the Ti or the Ti intercalated electrode,the oxygen ions are driven towards and captured by Ti under the action of electric field and the high oxygen density of Ti.Oxygen vacancies accumulate in the HfO2layer, forming a conductive filament. When the applied bias is negative, the oxygen ions are released from Ti and annihilate the filament,finishing the RESET operation.

    Figure 2(b) shows the typical electrical switching property of our Pt/HfO2/Ti(5 nm)/Pt RRAM device. The electroforming occurs at?3.7-V bias. A compliance current(IC)of 1 mA is applied during the following SET operations.A stable bipolar resistive switching is demonstrated(negative SET,positive RESET).The device in Fig.2(b)experiences 65 switching cycles without degradation. The RESET voltages varies around +0.5 V, and the SET voltages spread in a range from?2.4 V to?1.5 V.

    The above BRS mode bring the Pt/HfO2/Ti(5 nm)/Pt into stable and robust switching behavior. But on the other hand,if we change the polarities of the BRS operation,i.e.,negative RESET and positive SET, the device is corrupted soon after only a few cycles. This phenomenon can be understood by the asymmetric structure of the device, which means that the drifting oxygen ions in HfO2can be stored only at the Ti intercalated electrode rather than the counter pure Pt electrode.Obviously, the polarity of the BRS operation in the device of Pt/HfO2/Ti(5 nm)/Pt is unchangeable.

    To implement the so-called any-polar resistive switching properties, the RRAM device needs to possess both the BRS and the URS properties simultaneously. Secondly,the polarities of both operations must be changeable.Finally,each operation mode and each polarity can be exchanged freely,which is independent of their operation history. Up to now,neither of the above two devices(Pt/HfO2/Pt and Pt/HfO2/Ti/Pt)can be called any-polar resistive switching device.

    To implement the any-polar resistive switching mode,the key issue is the ability of the oxygen ions to be stored at both electrode sides of the resistive layer, considering that oxygen vacancy is the species to set up the filament. In the device of the Pt/HfO2/Ti/Pt, oxygen ions can be stored only at the bottom electrode. So,adding another Ti intercalation layer to the top Pt electrode can straightforwardly improve the storage of oxygen. This idea leads to the symmetric device structure of Pt/Ti/HfO2/Ti/Pt. A TEM cross-section image of the fabricated device is shown in Fig.1(b).

    For the symmetric Pt/Ti(5 nm)/HfO2(10 nm)/Ti(5 nm)/Pt RRAM device, the resistive switching property is shown in Fig. 2(c). An electroforming process occurs at?3.725 V to active the device. After forming, 120 uniform operation cycles are captured without any degradation. By recognizing the voltage polarity for each of the SET and the RESET process, all the switching operations can be grouped into four different resistive switching sub-modes, which are named as URS+, URS-, BRS+, and BRS- as shown in Fig. 2(d), respectively. In each conversion process,the conversion of two sub-switching modes is realized by changing the applied voltage polarity of one of the SET and the RESET process, with the voltage polarity of the other process remaining unchanged.In URS+, the SET and the RESET processes are both completed at positive voltages. For URS-, the SET and the RESET processes are both executed under negative voltages. For BRS+, the SET process is completed with negative bias, and the RESET process is completed with positive bias. For BRS-, opposite polarities of the SET and the RESET process may be determined by referring to the BRS+mode.

    The test in Fig.2(c)starts from BRS+mode. After 5-10 BRS+cycles, the operation changes into the URS+mode for another 5-10 cycles. The device subsequently undergoes the BRS-and URS-modes and finally comes back to the BRS+mode. The above transition following the sequence of BRS+,URS+, BRS-, URS-is called a big-loop cycle. The device can also well follow the opposite big-loop cycle with the sequence of BRS+,URS-,BRS-,and URS+.Whether the mode is URS+(or URS-)or BRS+(or BRS-),the on-off ratio is always higher than 100, the absolute value of the SET and the RESET operation are both around 2.0 V and 0.5 V, respectively.

    A comparison among the above three devices is shown in Fig. 3. The resistance distributions of both the HRS and the LRS at±0.2 V for the three devices are shown in Fig. 3(a).Larger memory windows are observed for the Pt/HfO2/Pt device without Ti intercalation than for the other two devices. But as already known, the Pt/HfO2/Pt device suffers poor endurance. For the Pt/HfO2/Ti/Pt device and the Pt/Ti/HfO2/Ti/Pt device, both have stable distributions of the HRS and LRS resistances.The switching ratio of HRS to LRS for each device is generally larger than 100. A comparison of SET/RESET voltage distributions among the three devices is shown in Fig. 3(b). It is found that the SET/RESET voltage distributions of the bipolar Pt/HfO2/Ti/Pt device fall well into those of the any-polar Pt/HfO2/Ti/Pt device,which means that when the any-polar Pt/Ti/HfO2/Ti/Pt device works in its BRSsub-mode, its behavior is similar to that of the Pt/HfO2/Ti/Pt device.

    The migration of ions driven by electric field is the main motivation for resistive switching. Joule heating is another factor to redistribute ions. According to the type of the migration ions, electrochemical metallization memory and valance change memory are sorted. In the former,the conducting filaments are comprised of reduced active metal ions such as Ag+or Cu+, which may drift, forming a metal electrode.[26-30]In the latter, the filaments are formed by oxygen vacancies.[6]The oxygen vacancy model is applicable for all the three devices in this work.

    The Pt/HfO2/Pt also has a symmetric device structure. Its URS property can also be observed with negative bias (denoted as URS-). The symmetric occurrence of URS+ and URS- is also called non-polar resistive switching mode.[9]However, further study finds that the conversion between the two URS modes is impossible. Frequently changing between the URS+and the URS-causes the device to break down immediately.

    Fig.2.Typical I-V switching characteristics based on HfO2 RRAM with different Ti intercalation layers.(a)Unipolar resistive switching mode of Pt/HfO2/Pt RRAM,(b)bipolar resistive switching mode of Pt/HfO2/Ti(5 nm)/Pt RRAM,(c)any-polar resistive switching mode of Pt/Ti(5 nm)/HfO2/Ti(5 nm)/Pt RRAM,and(d)four resistive switching sub-modes extracted from curves in panel(c).

    Fig.3. (a)Switching resistance distributions of three devices of Pt/HfO2/Pt,Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt at±0.2 V.(b)SET and RESET voltage distributions of these devices.

    The working mechanism of the bipolar Pt/HfO2/Ti/Pt RRAM is depicted in Fig. 4(a). The restoring and releasing of oxygen ions by the Ti intercalation prevent oxygen ions from vanishing during the switching. Thus,the Pt/HfO2/Ti/Pt device possesses a satisfactory endurance property. When adding Ti intercalation to both sides of the HfO2layer, both BRS+ and BRS- operations are now possible. The working mechanism of the Pt/Ti/HfO2/Ti/Pt RRAM is depicted in Fig.4(b).

    When studying the RESET switches of the bipolar Pt/HfO2/Ti/Pt device,Joule heating effect and the electric migration effect are difficult to clearly separate. Both are believed to contribute to the annihilation of the filaments. When considering the BRS+and URS+sub-modes in the any-polar device of Pt/Ti/HfO2/Ti/Pt,it is comprehended that the migration effect may be helpful in implementing the operation of BRS+,but undoubtedly useless in the operation of UPS+. But in Fig. 2(d), the RESET curves of the BRS+ and URS+ submodes are nearly identical.Considering the similarity between the RESET curves of BRS+ and URS-, Joule heating effect rather than the migration effect should be the main mechanism during all the RESET switches for the Pt/Ti/HfO2/Ti/Pt device,including all four sub-modes.

    The any-polar resistive switching property was first proposed in the study of Pt/LATP/Pt.[18]The special switching property is ascribed to the unique crystalline structure of the LATP,which provides the abundant transport routes and storage sites for oxygen ions. In this study,the any-polar switching property is discovered in the Pt/Ti/HfO2/Ti/Pt device. A comparison between both devices indicates that to fulfill the requirement for the any-polar resistive switching,the transport routes and the storage medium for oxygen ions do not have to be in the same layer. In the case of Pt/Ti/HfO2/Ti/Pt,the HfO2acts as the transport route while the Ti intercalations serve as the storage medium.In this sense,if the HfO2layer is replaced by other conventional resistive oxides, such as Ta2O5[31]or TiO2,[32]the any-polar resistance switching property can still be implemented.

    Finally, the current transportation mechanisms of these types of devices are explored. TypicalI-Vcurves of the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt are re-plotted on a log-log scale as shown in Fig.5. Whether they are in LRS or HRS,the Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt devices have the slopes of log(|I|)versuslog(|V|)that are both close to unity,indicating that the ohmic conduction[33]is the dominant mechanism in LRS or HRS region.

    Fig.4. Working mechanism of(a)Pt/HfO2/Ti/Pt device and(b)Pt/Ti/HfO2/Ti/Pt device. Notice that most of oxygen ions are stored in Ti intercalation layer.The four sub operation modes are URS+,URS-,BRS+,and BRS-.

    Fig. 5. Current fitting and current transportation mechanism of resistive switching properties,with blue and red lines representing Pt/HfO2/Ti/Pt and Pt/Ti/HfO2/Ti/Pt.

    3. Conclusions

    In summary, we demonstrate any-polar resistive switching behavior in Ti-intercalated Pt/Ti/HfO2/Ti/Pt device. The any-polar resistive switching comprised of four sub-modes which are BRS+, URS+, BRS-, and URS-. The filaments formed by oxygen vacancies explain the switching mechanism. During switching, the HfO2acts as the transport route while the Ti intercalation layers serve as the storage medium.The investigation of the Pt/Ti/HfO2/Ti/Pt RRAM presents a new insight into the fundamental working mechanism of the any-polar resistive switching device.

    猜你喜歡
    李成
    Dynamics of bubble-shaped Bose–Einstein condensates on two-dimensional cross-section in micro-gravity environment
    書法欣賞
    祖國(2023年23期)2023-02-25 06:14:50
    懷念李成章教授
    Three-Dimensional Model Reconstruction of Nonwovens from Multi-Focus Images
    李成海就200兆瓦農(nóng)牧光互補項目選址現(xiàn)場辦公
    春燕
    北方音樂(2018年17期)2018-10-31 01:21:04
    杜鵑
    北方音樂(2018年17期)2018-10-31 01:21:04
    莊玉庭先負李成蹊
    棋藝(2016年4期)2016-09-20 05:38:45
    行吟黔境
    Effect of vegetation on flow structure and dispersion in strongly curved channels*
    成人一区二区视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产精品日韩av在线免费观看| 国产精品无大码| 免费无遮挡裸体视频| 大又大粗又爽又黄少妇毛片口| 人妻久久中文字幕网| 亚洲精品456在线播放app | 99热这里只有是精品在线观看| 97热精品久久久久久| 俄罗斯特黄特色一大片| 噜噜噜噜噜久久久久久91| 亚洲国产欧洲综合997久久,| 日韩欧美精品v在线| 久久精品人妻少妇| 日本成人三级电影网站| 窝窝影院91人妻| 国产在线精品亚洲第一网站| 99热这里只有是精品在线观看| 亚洲成a人片在线一区二区| 热99re8久久精品国产| 国产精品一区www在线观看 | 日日摸夜夜添夜夜添av毛片 | 美女高潮喷水抽搐中文字幕| 色噜噜av男人的天堂激情| 午夜福利18| 美女大奶头视频| 一进一出抽搐gif免费好疼| 一区二区三区高清视频在线| 久久久午夜欧美精品| 国产av在哪里看| 一进一出抽搐gif免费好疼| 亚洲中文字幕一区二区三区有码在线看| 不卡一级毛片| 久久热精品热| 免费在线观看影片大全网站| 在线观看免费视频日本深夜| 全区人妻精品视频| 亚洲第一区二区三区不卡| .国产精品久久| 国产精品久久久久久久电影| 国产一级毛片七仙女欲春2| 国产高潮美女av| 永久网站在线| 三级男女做爰猛烈吃奶摸视频| 亚洲av五月六月丁香网| 亚洲国产精品合色在线| 亚洲色图av天堂| 欧美日韩综合久久久久久 | 国产av在哪里看| 亚洲精品日韩av片在线观看| 91av网一区二区| 久久婷婷人人爽人人干人人爱| 国产蜜桃级精品一区二区三区| 他把我摸到了高潮在线观看| 久久精品久久久久久噜噜老黄 | 人人妻,人人澡人人爽秒播| 人妻夜夜爽99麻豆av| 国产精品国产高清国产av| 午夜日韩欧美国产| 十八禁国产超污无遮挡网站| 精品午夜福利视频在线观看一区| 91麻豆av在线| 蜜桃久久精品国产亚洲av| 淫妇啪啪啪对白视频| av在线亚洲专区| 老熟妇乱子伦视频在线观看| 精品人妻偷拍中文字幕| 亚洲av一区综合| 国产精品一及| 久久精品国产清高在天天线| 久久久久久伊人网av| 久久人人爽人人爽人人片va| 亚洲精品粉嫩美女一区| 亚洲无线在线观看| 狂野欧美激情性xxxx在线观看| 日韩精品有码人妻一区| 十八禁网站免费在线| 国内少妇人妻偷人精品xxx网站| 少妇熟女aⅴ在线视频| 日韩欧美三级三区| 一进一出抽搐gif免费好疼| 日韩精品青青久久久久久| 老熟妇仑乱视频hdxx| 日本五十路高清| 日本色播在线视频| 黄片wwwwww| 亚洲综合色惰| 国产91精品成人一区二区三区| 我的女老师完整版在线观看| 88av欧美| 欧美精品国产亚洲| 国产一区二区在线av高清观看| 亚洲性夜色夜夜综合| 亚洲狠狠婷婷综合久久图片| 狂野欧美激情性xxxx在线观看| 91久久精品国产一区二区成人| 性插视频无遮挡在线免费观看| 一个人观看的视频www高清免费观看| 一本久久中文字幕| 久久午夜亚洲精品久久| 51国产日韩欧美| 性欧美人与动物交配| 亚洲美女搞黄在线观看 | 最新在线观看一区二区三区| 人妻久久中文字幕网| 亚洲久久久久久中文字幕| 精品久久久久久成人av| 国产探花在线观看一区二区| 搡老熟女国产l中国老女人| 中文字幕av在线有码专区| 欧美日韩国产亚洲二区| 看十八女毛片水多多多| 精品一区二区三区人妻视频| 国产高清视频在线播放一区| 国内少妇人妻偷人精品xxx网站| 亚洲av中文av极速乱 | 亚洲人成伊人成综合网2020| 蜜桃亚洲精品一区二区三区| 内地一区二区视频在线| 国内精品久久久久精免费| av专区在线播放| 91在线观看av| 亚洲va日本ⅴa欧美va伊人久久| 99视频精品全部免费 在线| 亚洲成人久久性| av天堂在线播放| 色综合亚洲欧美另类图片| 久久精品综合一区二区三区| 亚洲国产精品成人综合色| 午夜精品久久久久久毛片777| 特大巨黑吊av在线直播| 久久久久久久久久久丰满 | 国产一级毛片七仙女欲春2| 国产精品综合久久久久久久免费| 久久人人精品亚洲av| 久久久成人免费电影| 国产男人的电影天堂91| 18禁在线播放成人免费| 久久亚洲真实| 国产精品美女特级片免费视频播放器| 亚洲人成伊人成综合网2020| 亚洲图色成人| 日韩在线高清观看一区二区三区 | 午夜福利18| 在线免费观看的www视频| a级毛片免费高清观看在线播放| 观看美女的网站| 精品欧美国产一区二区三| 韩国av在线不卡| 国产在视频线在精品| 免费人成在线观看视频色| 久久久久久久久久成人| 伦理电影大哥的女人| 亚洲精品一区av在线观看| 久久久午夜欧美精品| 最新中文字幕久久久久| 久久久久久国产a免费观看| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 在线看三级毛片| 免费黄网站久久成人精品| 中文字幕高清在线视频| 99久久九九国产精品国产免费| 身体一侧抽搐| 深夜a级毛片| 99热网站在线观看| 亚洲国产精品sss在线观看| 免费av毛片视频| 国内毛片毛片毛片毛片毛片| 国产淫片久久久久久久久| 精品午夜福利视频在线观看一区| 中文字幕高清在线视频| .国产精品久久| 久久人人精品亚洲av| 国产高清视频在线观看网站| 亚洲av熟女| 能在线免费观看的黄片| 校园春色视频在线观看| 久久精品国产亚洲av天美| 中文字幕av在线有码专区| 小说图片视频综合网站| 欧美+亚洲+日韩+国产| 国产私拍福利视频在线观看| 国产精品国产三级国产av玫瑰| 噜噜噜噜噜久久久久久91| 少妇猛男粗大的猛烈进出视频 | 欧美色视频一区免费| 国产中年淑女户外野战色| 欧美xxxx性猛交bbbb| 国产日本99.免费观看| 亚洲av电影不卡..在线观看| 亚洲在线观看片| 亚洲中文日韩欧美视频| 亚洲av二区三区四区| 日韩精品青青久久久久久| 国产精品人妻久久久影院| 夜夜爽天天搞| aaaaa片日本免费| av在线老鸭窝| 国产在线精品亚洲第一网站| netflix在线观看网站| 人妻制服诱惑在线中文字幕| 国产乱人伦免费视频| 国产精品一区二区性色av| 婷婷色综合大香蕉| 嫩草影院精品99| 精品久久久久久久末码| 国产69精品久久久久777片| 亚洲在线自拍视频| 老司机深夜福利视频在线观看| 国产精品一区二区性色av| www.色视频.com| 日韩强制内射视频| 色播亚洲综合网| 亚洲人成伊人成综合网2020| 久久人妻av系列| 欧美不卡视频在线免费观看| 色综合色国产| 精品人妻视频免费看| 亚洲无线在线观看| 男人和女人高潮做爰伦理| 九九爱精品视频在线观看| 窝窝影院91人妻| 两性午夜刺激爽爽歪歪视频在线观看| 1000部很黄的大片| 精品久久久久久久久亚洲 | 国产色婷婷99| 亚洲国产精品合色在线| 欧美又色又爽又黄视频| 色哟哟·www| 99riav亚洲国产免费| 亚洲精品456在线播放app | 国产一区二区激情短视频| 一区二区三区四区激情视频 | av中文乱码字幕在线| 久久精品综合一区二区三区| 高清毛片免费观看视频网站| 欧美国产日韩亚洲一区| 成人永久免费在线观看视频| 成年女人看的毛片在线观看| 国产精品av视频在线免费观看| 欧美一区二区亚洲| 春色校园在线视频观看| 亚洲第一电影网av| 国产毛片a区久久久久| 日韩欧美精品v在线| 亚洲熟妇中文字幕五十中出| 午夜福利视频1000在线观看| 99热这里只有是精品在线观看| 欧美最黄视频在线播放免费| 成人国产综合亚洲| 亚洲乱码一区二区免费版| 国产精品日韩av在线免费观看| 日韩亚洲欧美综合| 乱码一卡2卡4卡精品| 又黄又爽又免费观看的视频| 欧美又色又爽又黄视频| 亚洲精品粉嫩美女一区| 一本一本综合久久| 亚洲久久久久久中文字幕| 少妇熟女aⅴ在线视频| 在线观看av片永久免费下载| 国产精品爽爽va在线观看网站| 免费搜索国产男女视频| 51国产日韩欧美| 成人综合一区亚洲| 国产精品98久久久久久宅男小说| 成人三级黄色视频| 国产精品自产拍在线观看55亚洲| 好男人在线观看高清免费视频| 又爽又黄a免费视频| 天天一区二区日本电影三级| 久久欧美精品欧美久久欧美| 亚洲av日韩精品久久久久久密| 热99re8久久精品国产| 啦啦啦韩国在线观看视频| 国产高潮美女av| 1000部很黄的大片| 久久久久久伊人网av| 一本久久中文字幕| 色尼玛亚洲综合影院| 精品福利观看| 久久亚洲精品不卡| 日日干狠狠操夜夜爽| 老司机福利观看| 亚洲经典国产精华液单| 精品国产三级普通话版| 欧美黑人巨大hd| 欧美日韩亚洲国产一区二区在线观看| 成人高潮视频无遮挡免费网站| 国产一区二区三区av在线 | 成人永久免费在线观看视频| 自拍偷自拍亚洲精品老妇| a级毛片a级免费在线| 成人av在线播放网站| 久久国产精品人妻蜜桃| 色综合色国产| 少妇被粗大猛烈的视频| 日本免费a在线| 91精品国产九色| 国产精品一区二区三区四区免费观看 | 91久久精品国产一区二区三区| 午夜精品久久久久久毛片777| 成人欧美大片| 久久人人精品亚洲av| 黄色视频,在线免费观看| 很黄的视频免费| 中文资源天堂在线| 欧美日本亚洲视频在线播放| 久久久久久国产a免费观看| 热99re8久久精品国产| 国产亚洲精品综合一区在线观看| 国产av在哪里看| 最近视频中文字幕2019在线8| 国产麻豆成人av免费视频| 中文字幕高清在线视频| 国产爱豆传媒在线观看| 搡女人真爽免费视频火全软件 | 1000部很黄的大片| 国产av不卡久久| 国产精品美女特级片免费视频播放器| 在线国产一区二区在线| 色在线成人网| 日韩av在线大香蕉| 久久精品国产亚洲av天美| 一区二区三区激情视频| 国产欧美日韩精品亚洲av| 国产美女午夜福利| 中文字幕av在线有码专区| 22中文网久久字幕| 国产一区二区在线av高清观看| 美女 人体艺术 gogo| av在线亚洲专区| 五月伊人婷婷丁香| or卡值多少钱| 亚洲欧美激情综合另类| 国产伦一二天堂av在线观看| 精品人妻视频免费看| 99久久无色码亚洲精品果冻| 91精品国产九色| 一级黄色大片毛片| 99在线人妻在线中文字幕| 桃色一区二区三区在线观看| 午夜精品一区二区三区免费看| 动漫黄色视频在线观看| 精品午夜福利在线看| 国产淫片久久久久久久久| 小蜜桃在线观看免费完整版高清| 99国产极品粉嫩在线观看| 在线观看美女被高潮喷水网站| 欧美极品一区二区三区四区| 亚洲中文字幕日韩| 国产亚洲91精品色在线| 亚洲成人久久爱视频| 亚洲中文日韩欧美视频| 国产三级在线视频| 夜夜爽天天搞| 国产成人a区在线观看| 12—13女人毛片做爰片一| 狂野欧美激情性xxxx在线观看| 成人鲁丝片一二三区免费| 国产精品1区2区在线观看.| 国产主播在线观看一区二区| 日本一二三区视频观看| 别揉我奶头 嗯啊视频| 又黄又爽又免费观看的视频| 久久婷婷人人爽人人干人人爱| 久久午夜福利片| 乱码一卡2卡4卡精品| 色哟哟哟哟哟哟| 亚洲自偷自拍三级| 午夜激情欧美在线| 日韩,欧美,国产一区二区三区 | 欧美bdsm另类| 男女视频在线观看网站免费| 欧美国产日韩亚洲一区| 国产高清不卡午夜福利| 亚洲国产欧洲综合997久久,| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区三区四区免费观看 | 中文字幕人妻熟人妻熟丝袜美| 精品人妻偷拍中文字幕| av视频在线观看入口| 亚洲久久久久久中文字幕| 1000部很黄的大片| 日本爱情动作片www.在线观看 | 亚洲精品影视一区二区三区av| 99久久成人亚洲精品观看| 日本成人三级电影网站| 久久99热这里只有精品18| 日韩亚洲欧美综合| 亚洲中文日韩欧美视频| 精品久久久久久久久亚洲 | 亚洲av五月六月丁香网| 香蕉av资源在线| 成人性生交大片免费视频hd| 亚洲va日本ⅴa欧美va伊人久久| 色综合亚洲欧美另类图片| 一进一出抽搐动态| 欧美精品啪啪一区二区三区| 黄色一级大片看看| 国产乱人视频| 国产精品久久久久久av不卡| a级一级毛片免费在线观看| 日韩欧美国产一区二区入口| 免费搜索国产男女视频| 免费一级毛片在线播放高清视频| 国产精品av视频在线免费观看| 在现免费观看毛片| 中文资源天堂在线| 国产精品国产三级国产av玫瑰| 国产中年淑女户外野战色| 一个人看视频在线观看www免费| 国产高清视频在线观看网站| 国产成人av教育| 免费无遮挡裸体视频| 亚洲av日韩精品久久久久久密| 欧美高清性xxxxhd video| 悠悠久久av| 欧美激情在线99| 国产高清三级在线| 精品人妻视频免费看| 久久午夜福利片| 成人永久免费在线观看视频| 欧美日韩精品成人综合77777| 久久九九热精品免费| 亚洲无线观看免费| 国产91精品成人一区二区三区| 精品人妻1区二区| 欧美激情在线99| 国产在视频线在精品| 国产乱人视频| 少妇被粗大猛烈的视频| 国产亚洲精品久久久com| 老司机深夜福利视频在线观看| 亚洲熟妇中文字幕五十中出| 久久久国产成人精品二区| 我的老师免费观看完整版| 久久6这里有精品| 看片在线看免费视频| 日本 av在线| 国内精品久久久久久久电影| 国产精品亚洲一级av第二区| or卡值多少钱| 国产精品一区二区免费欧美| 欧美日本亚洲视频在线播放| 日韩高清综合在线| 欧美人与善性xxx| 国产男人的电影天堂91| 欧洲精品卡2卡3卡4卡5卡区| 午夜福利在线在线| 国产在线精品亚洲第一网站| 美女大奶头视频| 成人av在线播放网站| 成年版毛片免费区| 亚洲精品国产成人久久av| 一本精品99久久精品77| 91av网一区二区| 乱系列少妇在线播放| 全区人妻精品视频| 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 香蕉av资源在线| 欧美丝袜亚洲另类 | 欧美日韩乱码在线| 日韩一区二区视频免费看| 91久久精品电影网| 高清毛片免费观看视频网站| 成人高潮视频无遮挡免费网站| 色综合站精品国产| 久久久久久久亚洲中文字幕| 久久国产乱子免费精品| 久99久视频精品免费| 国产熟女欧美一区二区| 午夜亚洲福利在线播放| 亚洲av成人精品一区久久| 成人国产一区最新在线观看| 日本爱情动作片www.在线观看 | 哪里可以看免费的av片| 欧美成人一区二区免费高清观看| 色视频www国产| 99精品在免费线老司机午夜| av天堂中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 别揉我奶头 嗯啊视频| 亚洲国产精品sss在线观看| 午夜激情欧美在线| 三级国产精品欧美在线观看| 日韩高清综合在线| 伦理电影大哥的女人| 少妇裸体淫交视频免费看高清| av专区在线播放| 美女黄网站色视频| 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 国产中年淑女户外野战色| 日本-黄色视频高清免费观看| 色精品久久人妻99蜜桃| 少妇熟女aⅴ在线视频| 中文字幕熟女人妻在线| 看片在线看免费视频| 国产精品,欧美在线| 校园春色视频在线观看| 欧美日本亚洲视频在线播放| 日韩 亚洲 欧美在线| 网址你懂的国产日韩在线| 一夜夜www| 亚洲性久久影院| 91久久精品国产一区二区三区| 成人一区二区视频在线观看| 深夜精品福利| 高清在线国产一区| 他把我摸到了高潮在线观看| 欧洲精品卡2卡3卡4卡5卡区| 婷婷精品国产亚洲av在线| 国产亚洲精品久久久com| 女同久久另类99精品国产91| 69av精品久久久久久| 久久精品国产亚洲av涩爱 | 搡老熟女国产l中国老女人| 综合色av麻豆| 欧美潮喷喷水| 深夜精品福利| 天堂影院成人在线观看| 国产高清激情床上av| 久久精品国产亚洲av天美| 成人永久免费在线观看视频| 91久久精品国产一区二区三区| 真人做人爱边吃奶动态| 深夜精品福利| 又黄又爽又刺激的免费视频.| 久久久久久久久大av| 精品久久久久久久久久久久久| 久久亚洲精品不卡| 蜜桃久久精品国产亚洲av| 欧美bdsm另类| 亚洲av不卡在线观看| 一级a爱片免费观看的视频| 色视频www国产| 国产精品无大码| 桃色一区二区三区在线观看| 午夜福利在线在线| 久久精品国产亚洲网站| 精品人妻1区二区| 99热这里只有是精品在线观看| 欧美+亚洲+日韩+国产| 很黄的视频免费| av中文乱码字幕在线| a级毛片免费高清观看在线播放| 九色国产91popny在线| www.色视频.com| 国产精品永久免费网站| 精品国产三级普通话版| 亚洲久久久久久中文字幕| 久久这里只有精品中国| 精品久久久久久久久久久久久| 国产精品免费一区二区三区在线| 十八禁国产超污无遮挡网站| 日本色播在线视频| 久久草成人影院| 一级a爱片免费观看的视频| 人妻久久中文字幕网| 男人舔女人下体高潮全视频| 亚洲一区高清亚洲精品| 久久国产乱子免费精品| 99久国产av精品| 国产一区二区在线观看日韩| 精品99又大又爽又粗少妇毛片 | 简卡轻食公司| 久久久午夜欧美精品| 99久国产av精品| 久久这里只有精品中国| 十八禁国产超污无遮挡网站| 男女边吃奶边做爰视频| 窝窝影院91人妻| 成年女人永久免费观看视频| 午夜免费男女啪啪视频观看 | 黄色视频,在线免费观看| 亚洲国产日韩欧美精品在线观看| 偷拍熟女少妇极品色| 欧美绝顶高潮抽搐喷水| 99国产精品一区二区蜜桃av| av天堂中文字幕网| 午夜免费激情av| 我的老师免费观看完整版| 国产真实乱freesex| 国产高清视频在线播放一区| 乱系列少妇在线播放| 欧美+亚洲+日韩+国产| 久久99热6这里只有精品| 亚洲欧美日韩无卡精品| 亚洲欧美精品综合久久99| 久久精品久久久久久噜噜老黄 | 国产精品人妻久久久久久| 99九九线精品视频在线观看视频| 天天一区二区日本电影三级| 夜夜爽天天搞| 日本黄色视频三级网站网址| 欧美色视频一区免费| 22中文网久久字幕| 美女高潮的动态| 国产一区二区在线观看日韩| av黄色大香蕉| 久久这里只有精品中国| av在线老鸭窝| 日韩强制内射视频| 国产精品不卡视频一区二区| а√天堂www在线а√下载| 欧美最新免费一区二区三区| 亚洲四区av| 男女啪啪激烈高潮av片| 性欧美人与动物交配| 久久这里只有精品中国| 久久久久久久亚洲中文字幕|