• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stacking-dependent exchange bias in two-dimensional ferromagnetic/antiferromagnetic bilayers

    2024-01-25 07:30:10HuipingLi李慧平ShuaiweiPan潘帥唯ZheWang王喆BinXiang向斌andWenguangZhu朱文光
    Chinese Physics B 2024年1期
    關(guān)鍵詞:朱文

    Huiping Li(李慧平), Shuaiwei Pan(潘帥唯), Zhe Wang(王喆),Bin Xiang(向斌), and Wenguang Zhu(朱文光),?

    1International Center for Quantum Design of Functional Materials(ICQD),Hefei National Research Center for Physical Sciences at the Microscale,University of Science and Technology of China,Hefei 230026,China

    2Department of Physics,University of Science and Technology of China,Hefei 230026,China

    3Department of Physics,Southern University of Science and Technology,Shenzhen 518055,China

    4Department of Materials Science&Engineering,University of Science and Technology of China,Hefei 230026,China

    Keywords: exchange bias, two-dimensional ferromagnetic/antiferromagnetic bilayers, asymmetric magnetic interaction

    1.Introduction

    Exchange bias(EB),also known as exchange anisotropy,is characterized by a shift of the magnetic hysteresis loop along the applied magnetic field axis.[1,2]Since first reported in Co/CoO core–shell nanoparticles,[3,4]EB has been extensively investigated in a wide range of ferromagnetic/antiferromagnetic(FM/AFM)heterostructures and other magnetic interfacial systems because of its significant application value in spintronics.[5–7]Intuitively, FM magnetization presents a preferred orientation as a consequence of the asymmetric magnetic interactions implied in EB systems.The widely accepted model for FM/AFM interfaces proposes that the interactions between the FM spins and the AFM uncompensated spins drive the unidirectional anisotropy for the FM moments.[1]Numerous factors contribute to the origin of uncompensated spins, including defects or domain structures,[8–12]interfacial roughness,[13,14]interfacial random anisotropy,[15]and spin frustrations.[16–18]In compensated interfaces,the asymmetry can arise from various factors inherent to specific systems.One is the asymmetrical spatial arrangement of the FM spins relative to the different spin sublattices of the AFM layer,as exhibited in the Fe/FeF2(110)system.[19,20]Other specific factors, such as the Dzyaloshinskii–Moriya(DM)interaction or ferroelectric ionic displacements,are also considered as driven forces for inducing EB phenomena.[21–23]

    The complexity of interfacial structures in conventional three-dimensional systems has hindered a definitive understanding of EB.However, the recent development of twodimensional (2D) van der Waals (vdW) materials and their heterostructures offers an ideal platform to uncover and explore the underlying mechanisms of EB.[24]In particular, vdW magnetic heterostructures provide both pristine intralayer spin configurations and atomically sharp, clean interfaces.[25–28]Recent experiments have revealed the EB phenomena in various 2D material systems, such as MnPX3(X=S,Se)/Fe3GeTe2,[29,30]FePSe3/Fe3GeTe2,[31]Fe3GeTe2nanoflakes,[32–35]and CrI3/MnBi2Te4.[36]The EB effect in these vdW systems is attributed to the spatially inhomogeneous interlayer couplings between the FM and AFM spins at the interfaces,where uncompensated spins in the interfacial AFM layer play a crucial role.However, the unambiguous spin structures in these systems remain unclear, leaving behind uncertainties in the microscopic mechanism of EB.

    In this study,by stacking FM monolayers onto fully compensated AFM monolayers,we theoretically investigate asymmetric magnetic interactions and the emergent EB effect in 2D FM/AFM bilayers,as exemplified in the VS2/MnPSe3and CrBr3/MnPSe3heterostructures.We identify that the EB effect is primarily driven by the imbalanced magnetic interactions between the FM layer and the two spin sublattices of the AFM layer within the asymmetric stacking registries.Strikingly,the EB effect can be switched on and off,and its polarity can be changed through interlayer sliding in CrBr3/MnPSe3.Further electronic structure analyses elucidate the magnetic exchange interactions and their tunability by an externally applied electric field.

    2.Computational methods

    2.1.First-principles calculations

    The first-principles density functional theory (DFT) calculations were performed by using the Viennaab initiosimulation package[37,38]within the projector augmented-wave method.[39]The Perdew–Burke–Ernzerhof[40]parameterized generalized gradient approximation (GGA) method was used to describe electron exchange and correlation interactions.A cutoff energy of 500 eV was set for plane-wave basis sets,and aΓ-centered 12×12×1 Monkhorst–Pack[41]mesh was adopted fork-point sampling for all heterostructures.A vacuum region of more than 15 ?A in the out-of-plane direction was set to avoid interactions between periodic images.Heterostructures were constructed by adapting the FM monolayers to the lattice of the MnPSe3monolayer.VdW corrections were included using the zero-damping DFT-D3 method of Grimme[42]in bilayer structures.Considering the localized characteristics of 3d orbitals of transition metal elements, we used the GGA+Umethod proposed by Dudarevet al.,[43]withU=3.0 eV, 3.0 eV, and 5.0 eV for V, Cr, and Mn atoms, respectively.This method has been effectively applied in previous studies.[44–46]Optimized atomic structures were achieved until the Hellmann–Feynman forces on all the atoms were less than 0.01 eV/?A.The climbing image nudged elastic band method[47]was implemented to calculate the barriers of the transition between different stackings of the CrBr3/MnPSe3heterostructures.

    2.2.Characterization of magnetic properties

    The exchange interaction coefficients were extracted by the Heisenberg model

    whereJijrepresents the exchange coupling between the spin siteiand spin sitej;SiandSjdenote the spin vectors.In numerical calculations,|S| was fixed at 1/2, 3/2, and 5/2 for V,Cr, and Mn, respectively.The most common method for determining the parameters is the total energy mapping method,which fits the Hamiltonian by constructing different magnetic configurations to solve linear equations.However,the Heisenberg model itself can break down if the chosen magnetic configurations deviate significantly from the ground state.[48]To circumvent this issue,we instead utilized the Green’s function method proposed by Liechtensteinet al.,[49]as implemented in the TB2J code.[48]Compared to freestanding monolayers,intralayer interactions exhibit only minor changes (see Table S1 in supporting information),suggesting robust magnetic orders within each stacking block layer.In addition to estimating the spin-flop critical field of the AFM MnPSe3layer,the four-state mapping analysis[50]was adopted to extract the single-ion anisotropy (A) due to the infeasibility of the TB2J code,[48]which yielded a value of +0.034 meV.According to the classical spin-flop picture,[51]the spin-flop critical field was estimated to be approximately 3.7 T, as determined by

    2.3.Monte Carlo simulations

    Hysteresis loops were simulated using the Monte Carlo method with a single-site update Metropolis algorithm on 25×25 and 30×30 spin lattices for the VS2/MnPSe3and CrBr3/MnPSe3heterostructures, respectively.The spin Hamiltonian for these systems is expressed as

    where the single-ion anisotropy (A) was set to +0.18 meV and?0.019 meV for V and Cr, respectively, and?represents the external magnetic field for the loops.Considering that the magnetic ground states exhibit a collinear in-plane spin arrangement, we applied the sweeping magnetic field in thex-axis direction.Additionally,because the saturation field for both the VS2and CrBr3monolayers is much smaller than 1 T,[53–55]we constrained the spin orientations of the two N′eel sublattices of Mn and used a magnetic field below 3 T to simulate the hysteresis loops.The magnetic field intervals were set to 0.2 T and 0.1 T for VS2and CrBr3, respectively.At each magnetic field step,initial 104Monte Carlo steps(MCSs)were used for the equilibration process,followed by 3×104MCSs for collecting magnetization information.Finally,the magnetization was normalized.

    3.Results and discussion

    The key feature of the EB effect lies in the unidirectional exchange anisotropy of FM moments induced by the pinning effect from the AFM layer,which means that the spin-up and spin-down states in the FM layer are no longer equivalent.The preferred direction of FM magnetization corresponds to a lower energy state, whereas the opposite direction corresponds to a higher energy state.In general, the difference can be understood as an inequality in the magnetic proximity interactions between these two states,as only the direction of FM moments has changed.To establish such an asymmetry,it is essential to prevent the exchange interactions between the FM spins and the AFM spins from canceling each other out,which can be achieved by constructing asymmetric magnetic exchange interactions in the FM/AFM heterostructures.The stacking of 2D magnetic monolayers provides an effective method to manipulate the magnetic exchange interactions via artificially designed atomic stacking registries,[56,57]which can be used to induce asymmetric interlayer magnetic proximity couplings and the consequent exchange anisotropy phenomenon.Following this, we constructed two FM/AFM heterostructures,VS2/MnPSe3and CrBr3/MnPSe3,to investigate the EB effect therein.

    The MnPSe3monolayer has been selected as the AFM building block for the heterostructures due to experimentally demonstrated N′eel AFM order below 40 K.[58]As depicted in Fig.1(a), the MnPSe3monolayer consists of two magnetic Mn ions and a P2Se6ligand, with each Mn ion octahedrally coordinated with six Se atoms.It belongs to the?3m(D3d) point group, and the Mn ions form a hexagonal honeycomb lattice, where the in-plane aligned Ising-type spins exhibit largeXYanisotropy.[58]To facilitate the analysis of magnetic interactions, we prioritized materials for the FM blocks that are commensurate with the MnPSe3lattice,such as the VS2and CrBr3monolayers.The lattice constants for these two FM monolayers are 3.18 ?A and 6.45 ?A,respectively, allowing a 2×2 supercell of VS2and a 1×1 unit cell of CrBr3to match well with the MnPSe3monolayer(with lattice constants of 6.39 ?A), with a lattice mismatch of less than 1%.The H-phase VS2monolayer, with the?6m2(D3h) point-group symmetry, is a semiconductor in contrast to its metallic T-phase and has been theoretically predicted to be a strongly correlated ferromagnet with in-plane magnetic anisotropy.[59,60]The CrBr3monolayer,sharing the same crystal symmetry with MnPSe3,is a Heisenberg-type ferromagnet with a Curie temperature of 30 K but with an out-of-plane easy axis of magnetization.[53,61]Considering the noticeable differences between these two FM monolayers, it can be anticipated that the VS2/MnPSe3and CrBr3/MnPSe3heterostructures constructed by adding an AFM MnPSe3monolayer will yield diverse properties.

    As shown in Fig.1(a),the MnPSe3lattice is taken as the reference basal plane, with the spin configuration fixed.An H-phase VS2monolayer is stacked onto the MnPSe3monolayer to form the FM/AFM heterostructure, and the stacking sequences are expressed using the fractional coordinates relative to the in-plane basis vectors.The stacking energy profile shown in Fig.1(b)illustrates four local minima at the stacking coordinates of[1/6,1/3], [1/6, 5/6], [2/3, 1/3], and[2/3, 5/6].However,these four stacking configurations are actually identical due to the 2×2 supercell of VS2.Consequently,only one stable stacking configuration exists for the VS2/MnPSe3heterostructure, with the atomic structure shown in Fig.1(c).In this configuration, one Mn atom (marked by Mn1) is located beneath a V atom, whereas the other Mn atom (marked by Mn2) is situated under the hollow site of the remaining three V atoms.Various spin configurations are comprehensively investigated in the stable stacking structure, indicating that the collinear spin arrangements,where the spins of V atoms align in parallel with Mn1,exhibit the lowest energy(Fig.S1 in supporting information).Notably,different spin arrangements do not change the most stable stacking because the effect of different spin arrangements on the energy is on the order of a few meV, whereas the energy difference between different stacking registries is on the order of tens of meV(see Figs.1(b)and S3).

    Fig.1.Stacking structure and EB of VS2/MnPSe3.(a) The stacking strategy for constructing VS2/MnPSe3 heterostructures.The red thick arrows represent the[100]and[010]lateral shift directions.(b)Stacking energy as a function of the full space of lateral shifts.The heat map was drawn by interpolating over neighboring data points on a 12×12 grid.The cyan markers indicate the energy minima.(c) The atomic structure of the stable stacking sequence of VS2/MnPSe3.(d)Schematic of the interlayer magnetic exchange pathways.(e)Simulated magnetic hysteresis loop, where the black arrows represent the sweep directions of the magnetic field. HEB is the EB field.

    In the VS2/MnPSe3heterostructure,it is noteworthy that reversing the spins of VS2while maintaining the AFM spins of MnPSe3fixed results in an energy difference.Specifically,the V–Mn1 antiparallel magnetic structure(where spins of V align antiparallel to the spin orientation of Mn1) has an energy of~1.5 meV higher than the V–Mn1 parallel magnetic structure(where spins of V atoms align parallel to the spin orientation of Mn1).This indicates that there is a preferred direction for the FM VS2layer,which is a critical feature manifested by the EB effect.Because spin arrangements remain consistent with the pristine monolayers(Fig.S1),the energy difference mainly stems from interlayer magnetic interactions.Figure 1(d) displays the magnetic interactions between V and Mn, labeledJinter1,Jinter2,Jinter3,andJinter4,according to their atomic separation distances and environments.It is evident that the opposite spins of Mn1 and Mn2 are differently influenced by the FM layer.For Mn1, there is oneJinter1and sixJinter3exchange pathways,whereas for Mn2,there are threeJinter2and threeJinter4pathways.We adopted the Heisenberg model to extract the magnetic exchange interaction coefficients(see Table S1)and found that these asymmetrical interlayer magnetic interactions cannot be compensated, resulting in the energy difference when the FM spins flip.Concomitantly,the asymmetric magnetic interactions yielded a pinning effect on the spins of the FM layer.This is quite similar to the inexpiable magnetic interactions in the Fe/FeF2(110) heterostructure[20]and the uncompensated interactions induced by DM in the IrMn3/Co(111) system.[23]Thus, an EB phenomenon is expected to arise in the VS2/MnPSe3heterostructure.

    According to the exchange pathways shown in Fig.1(d)and Table S1, the interlayer couplings contribute to the total energy due to the spin flip of the FM layer,which is estimated by ΔE=(2Jinter1?6Jinter2+12Jinter3?6Jinter4)|SV·SMn|=0.4 meV/unit cell, whereSVandSMnare spin vectors of V and Mn, respectively.This value is much smaller than the difference in the total energies obtained from the DFT calculations,which can be attributed to other interactions not involved in the Heisenberg model.Nevertheless,this energy difference adequately demonstrates the asymmetric characteristics of interlayer magnetic interactions.Furthermore,we used the Monte Carlo method to simulate the hysteresis loop.Considering that the estimated spin-flop critical magnetic field of MnPSe3monolayer was much larger than the saturation magnetic field of VS2, we fixed the spins of Mn and only considered the variations of the FM spins in the simulation.The resulting hysteresis loop,as shown in Fig.1(e),obviously exhibited a center deviating from the origin of the magnetic field axis(HEB≈?0.39 T),indicating the presence of an EB effect in the VS2/MnPSe3heterostructure.

    With the spin arrangement of Mn atoms determined, the preferred orientation of FM spins in VS2is parallel to the spin direction of Mn1 in the VS2/MnPSe3heterostructure.This implies that the polarity of the EB field is also determined by the V–Mn1 spins.If the two spin sublattices of MnPSe3were interchanged,the EB would change its sign,corresponding to a reversal of the EB polarity.This can be achieved by applying a large opposite magnetic field to magnetize and subsequently restore the AFM order in the MnPSe3layer.In addition, we note that the energy difference caused by the flip of the FM spins varies with the stacking configurations(Fig.S3).In certain cases,for example the[1/3,1/6]stacking sequence,the energy difference is positive,potentially corresponding to a positive EB.However, in commensurate VS2/MnPSe3heterostructures,it is challenging to achieve different EB polarities by stacking manipulation,as there is only one stable stacking configuration.

    For the CrBr3/MnPSe3heterostructure, due to the same symmetry of both the FM CrBr3and AFM MnPSe3monolayers,several(meta-)stable stacking configurations exist.As shown in Fig.2(a),we used the same stacking strategy to construct CrBr3/MnPSe3heterostructure as with the VS2/MnPSe3case.The stacking energy profile shown in Fig.2(b)presents several local minima, corresponding to four stacking sequences with coordinates of [0, 0], [1/3, 0], [1/3, 2/3], and[2/3, 1/3].These configurations are denoted by AA, AB',AB,and AC,respectively,analogous to the notations adopted for bilayer CrI3.[56]But herein, one layer is substituted with MnPSe3, represented by A in the presented notations.By sliding the CrBr3monolayer along the two paths depicted in Fig.2(b), these four stackings can transition to each other.The energy barrier for shifting from AA stacking to AB'is 48 meV/unit cell, whereas the transitions between the others are~30 meV/unit cell (see Figs.2(c) and S4).These barriers are comparable to the sliding barrier between the FM and AFM stackings in bilayer CrI3(~26 meV/unit cell),[56]indicating that these stackings are stable,and interlayer sliding is feasible.

    Consistent with the VS2/MnPSe3case, the interlayer magnetic exchange interaction of the CrBr3/MnPSe3heterostructures is depicted in Fig.2(f).For the two spin sublattices of Mn with opposite orientations, it is apparent that the local atomic environments in the AA and AB'stackings are identical, resulting in counterbalanced magnetic interactions.Conversely, the local registries in the AB and AC stackings are different,leading to imbalanced interactions between the Mn sublattices and Cr spins, as shown in Fig.2(f).For the AB stacking, there is oneJinter1and threeJinter2exchange pathways in Mn1, but threeJinter3and threeJinter4in Mn2.The situation is reversed for the AC stacking.Therefore, upon the reversal of the FM spins, the energies of the AA and AB'stackings remain unchanged, whereas those of AB and AC are altered.Notably, the magnetic anisotropy of the CrBr3monolayer is distinct from that of MnPSe3.Nevertheless, when these two monolayers are stacked together,the magnetic ground state shows collinear spin arrangements due to the magnetic proximity effect (Fig.S2).Accordingly,we used collinear magnetic configurations to calculate the energy differences caused by the reversal of FM spins, which show identical total energies for the AA and AB'stackings but nonzero values for the AB and AC stackings, as marked in Fig.2(d).This implies that the AA and AB'stackings do not exhibit the EB effect, whereas the AB and AC stackings do show this phenomenon.Notably,because of the equivalent atomic structures, the energy differences for AB and AC are opposite, corresponding to the opposite polarities of EB.The Monte Carlo simulations presented in Fig.2(g)show EB fields of?0.32 T for AB and+0.32 T for AC,which are in agreement with the analysis described previously.Specifically, the hysteresis loop centers for the AA and AB'stackings are situated at the origin,indicating the absence of EB,whereas the AB and AC stackings display EB with opposite polarities.

    Distinct from the VS2/MnPSe3heterostructure, the(meta-)stable stacking configurations undergo alterations with interlayer sliding in the CrBr3/MnPSe3heterostructures, and the positive and negative energy differences caused by the reversal of Cr spins can be reversed,as shown in Fig.2(d).Correspondingly,the polarities of EB are altered during the interlayer sliding process.For example,along the zigzag transition path illustrated in Fig.2(b), EB can be turned on and off by transiting from AA or AB'to AB or AC stacking,and the polarities can be switched between the AB and AC stackings.

    Fig.2.Stacking structures and EB of CrBr3/MnPSe3.(a)The stacking strategy for constructing CrBr3/MnPSe3 heterostructures.The red thick arrows represent the [100] and [010] lateral shift directions.(b) Stacking energy as a function of the full space of lateral shifts, drawn by interpolating over neighboring data points on a 6×6 grid.The cyan cross markers represent the energy minima.The red and black dashed arrows represent interlayer sliding along the[1ˉ10]direction and a zigzag path, respectively.(c)Stacking energies for the[1ˉ10]direction(black)and the zigzag path(red)shown in (b).(d) Energy differences caused by the reversal of FM spins along the [1ˉ10] direction (black) and the zigzag path (red).(e) Top views of the(meta-)stable stacking configurations of the CrBr3/MnPSe3 heterostructure.(f)Schematics of the interlayer magnetic exchange pathways between the d orbitals of magnetic atoms.(g)Simulated hysteresis loops for the AA,AB',AB,and AC stacking registries of CrBr3/MnPSe3,respectively.

    We compared our proposed bilayers with the previously reported vdW EB systems,[24]as summarized in Table S2.The most prominent feature of the VS2/MnPSe3and CrBr3/MnPSe3bilayers is that their EB effects originate from the imbalanced magnetic interactions between the FM layer and the two sublattices of the AFM layer.This allowed us to push the limits of the EB systems to extremely thin bilayer thicknesses and offered the potential for tuning the EB field through interlayer sliding,thanks to their vdW nature.

    To better understand the magnetic interactions presented in the VS2/MnPSe3and CrBr3/MnPSe3heterostructures exhibiting EB, we examined the electronic structures of these systems, as shown in Fig.3.All three constituent monolayers are semiconductors,and upon vertical contact between the FM and AFM layers, they form a type-II band alignment while maintaining global energy gaps, as shown in Figs.3(a)and 3(b).Based on the arrangements of the d orbitals of the magnetic atoms in energy bands, we provide a simplified schematic model of the interlayer magnetic exchange couplings, as shown in Fig.3(c), which can be divided into the FM and AFM types.FM coupling mainly occurs through hopping between the occupied and unoccupied orbitals of another atom, whereas AFM coupling primarily takes place between the occupied d orbitals.The projected bands show minimal overlaps between the d orbitals of FM V/Cr atoms and AFM Mn atoms,indicating weak direct exchange interactions.Additionally, a disparity exists between the majority-spin and minority-spin bands,leading to weaker exchange interactions between the different spins.The global band gap is determined by the majority-spin bands,indicating that FM coupling is primary for interlayer magnetic interactions in these heterostructures.This is in line with the exchange coefficients calculated in the Heisenberg model(Table S1).The p orbitals of the nonmagnetic atoms serve as a bridge for magnetic exchange interactions,as evidenced by the mixed bands of S and Se or Br and Se.The stacking process alters the symmetry of the surfaces,leading to electron redistribution, as evidenced by the differential charge density revealing the largest charge differences in the interlayer area (Fig.S5).Considering that the external electric field is effective to manipulate the charge distribution,it can be used to tune the strength of magnetic exchange interactions.[62]As shown in Figs.3(d)and 3(e),by applying an out-of-plane electric field,the energy differences caused by the reversal of FM spins exhibit a monotonic relationship with respect to the field.In CrBr3/MnPSe3heterostructures,the energy difference remains unchanged for the AA and AB'stackings lacking EB, but it varies oppositely for the AB and AC stackings because of their opposite EB polarities (Fig.3(e)).These findings suggest that the strength of the EB field can be modulated by the electric field.For heterostructures with EB,a positive electric field would enhance the EB field,which can be understood by the enhancement of FM couplings by lowering the energy gap between the d orbitals of magnetic atoms(Fig.S6).[63]

    Fig.3.Band structures and electric field responses for the VS2/MnPSe3 and CrBr3/MnPSe3 heterostructures.(a)Spin-resolved band structures of the VS2/MnPSe3 heterostructure.(b) Spin-resolved band structures of the AB-stacking CrBr3/MnPSe3 heterostructure.(c) Schematic diagram of the interlayer exchange couplings for the d orbital electrons of magnetic atoms, including FM and AFM couplings.(d) Energy difference caused by the reversal of FM spins as a function of the external electric field for the VS2/MnPSe3 heterostructure.(e) Energy differences caused by the reversal of FM spins as a function of the external electric field for the CrBr3/MnPSe3 heterostructures.

    So far, we have proven the presence of EB in 2D FM/AFM bilayer systems, which necessitates that the interlayer magnetic exchange interactions between the FM and AFM layers cannot be canceled out, as exemplified by the VS2/MnPSe3and CrBr3/MnPSe3heterostructures.Following a similar strategy, we further propose that other systems,such as the 1T-VS2/MnPSe3and CrCl3/MnPS3heterostructures, can also exhibit the EB effect, as manifested by the energy alterations caused by the spin flips of the FM layers(Fig.S7).

    4.Conclusion and perspectives

    In summary, we demonstrated the existence of the EB effect in the proposed 2D FM/AFM bilayers by introducing asymmetric interlayer magnetic interactions through stacking engineering.Explicitly, we stacked 2D FM and AFM monolayers following the rule that ensures the interlayer magnetic interactions between the FM spins, and the two spin sublattices of the AFM layer cannot be canceled out,thus leading to the arising of the EB effect.As the stacking registry changes,the EB exhibits on/off switching and polarity reversal capabilities,with the strength tuned by an external electric field.Our results provide new insights into the microscopic understanding of the interfacial exchange interactions with the EB effect in 2D compensated magnetic heterostructures.

    Acknowledgements

    Project supported by the National Key Research and Development Program of China(Grant No.2019YFA0210004),the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDB30000000), and the Fundamental Research Funds for the Central Universities (Grant No.WK3510000013).Computational support was provided by the National Supercomputing Center in Tianjin.

    猜你喜歡
    朱文
    Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
    Machine learning potential aided structure search for low-lying candidates of Au clusters
    Modeling the heterogeneous traffic flow considering the effect of self-stabilizing and autonomous vehicles
    Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis*
    走三邊
    唱起號子走漢江
    熱鬧的大山
    Teacher:Teacher—dominant or Student—centered
    西部論叢(2017年3期)2017-09-11 06:21:44
    朱文韜 平凡之中展現(xiàn)別樣風采
    北方人(2017年12期)2017-07-25 09:17:06
    Imaging complex near-surface structures in Yumen oil field by joint seismic traveltime and waveform inversion
    石油物探(2017年1期)2017-03-15 10:46:51
    精品电影一区二区在线| 欧美一级a爱片免费观看看| 欧美日韩国产亚洲二区| 日韩欧美国产一区二区入口| 丰满乱子伦码专区| 国产淫片久久久久久久久 | 亚洲欧美激情综合另类| 真人做人爱边吃奶动态| 一进一出抽搐gif免费好疼| 高清日韩中文字幕在线| 国产精华一区二区三区| 亚洲人成网站高清观看| 日韩中文字幕欧美一区二区| 五月玫瑰六月丁香| 精品久久久久久久末码| 最新美女视频免费是黄的| 成年版毛片免费区| 他把我摸到了高潮在线观看| 深爱激情五月婷婷| 天天躁日日操中文字幕| 色播亚洲综合网| 男人和女人高潮做爰伦理| 欧美色欧美亚洲另类二区| 亚洲久久久久久中文字幕| 久久久国产成人精品二区| 欧美日韩亚洲国产一区二区在线观看| 亚洲国产精品久久男人天堂| 国产成人av激情在线播放| 免费一级毛片在线播放高清视频| 精品国内亚洲2022精品成人| 一级毛片高清免费大全| 国产免费男女视频| 精品不卡国产一区二区三区| 一区二区三区高清视频在线| 日本五十路高清| 一进一出好大好爽视频| 99在线人妻在线中文字幕| 99国产精品一区二区蜜桃av| 亚洲国产色片| 欧洲精品卡2卡3卡4卡5卡区| 美女被艹到高潮喷水动态| 亚洲最大成人中文| 亚洲精品在线美女| 亚洲欧美日韩高清专用| 亚洲人成伊人成综合网2020| 国产精品永久免费网站| 在线国产一区二区在线| 伊人久久精品亚洲午夜| 国产精品亚洲一级av第二区| 日韩欧美国产一区二区入口| www.色视频.com| 叶爱在线成人免费视频播放| 给我免费播放毛片高清在线观看| 一级作爱视频免费观看| 亚洲av不卡在线观看| 欧洲精品卡2卡3卡4卡5卡区| 一级毛片高清免费大全| 欧美日韩国产亚洲二区| 国产精品一区二区三区四区免费观看 | 久久久久久久精品吃奶| 亚洲精华国产精华精| 很黄的视频免费| 午夜久久久久精精品| 99国产精品一区二区三区| 欧美最黄视频在线播放免费| 丰满人妻熟妇乱又伦精品不卡| 搡老熟女国产l中国老女人| 99视频精品全部免费 在线| 成人国产一区最新在线观看| 欧美av亚洲av综合av国产av| 国产精品一及| 亚洲av美国av| 国产精品爽爽va在线观看网站| 一个人观看的视频www高清免费观看| 欧美乱妇无乱码| 成年免费大片在线观看| 午夜久久久久精精品| 国产激情偷乱视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 一区二区三区激情视频| 亚洲国产精品999在线| 他把我摸到了高潮在线观看| 成人特级av手机在线观看| 最近最新中文字幕大全免费视频| 熟女人妻精品中文字幕| 级片在线观看| 91字幕亚洲| 听说在线观看完整版免费高清| 国产视频内射| 国产精品乱码一区二三区的特点| 国产91精品成人一区二区三区| 俺也久久电影网| 久久久久久久亚洲中文字幕 | 啦啦啦免费观看视频1| 69av精品久久久久久| 亚洲久久久久久中文字幕| 免费av不卡在线播放| 国产精品一及| 中文字幕精品亚洲无线码一区| 欧美高清成人免费视频www| 午夜影院日韩av| 51午夜福利影视在线观看| 人妻久久中文字幕网| 国语自产精品视频在线第100页| 久久99热这里只有精品18| 日本一二三区视频观看| 国产亚洲精品综合一区在线观看| 国产伦精品一区二区三区视频9 | av福利片在线观看| 国产成人福利小说| 蜜桃亚洲精品一区二区三区| 亚洲 欧美 日韩 在线 免费| 极品教师在线免费播放| 精品人妻一区二区三区麻豆 | 久久精品91无色码中文字幕| 精品国内亚洲2022精品成人| 国产三级在线视频| 一边摸一边抽搐一进一小说| 亚洲中文日韩欧美视频| 国产一区二区在线观看日韩 | 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 中亚洲国语对白在线视频| 九色国产91popny在线| 成人av一区二区三区在线看| 18禁美女被吸乳视频| 欧美国产日韩亚洲一区| 精品电影一区二区在线| 夜夜爽天天搞| 国产av麻豆久久久久久久| 欧美又色又爽又黄视频| a级毛片a级免费在线| 欧美3d第一页| 精品国产亚洲在线| 香蕉丝袜av| 亚洲人成网站在线播| 午夜两性在线视频| 天堂√8在线中文| 国内精品久久久久久久电影| 免费无遮挡裸体视频| 在线免费观看的www视频| 成人av在线播放网站| 91九色精品人成在线观看| 欧美bdsm另类| 午夜免费激情av| 免费一级毛片在线播放高清视频| 最新中文字幕久久久久| 在线观看免费午夜福利视频| 网址你懂的国产日韩在线| 美女高潮喷水抽搐中文字幕| 亚洲精品456在线播放app | 天天一区二区日本电影三级| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| av福利片在线观看| 听说在线观看完整版免费高清| 亚洲人成网站在线播| 精品国产超薄肉色丝袜足j| 欧美日韩中文字幕国产精品一区二区三区| 日本三级黄在线观看| 人妻夜夜爽99麻豆av| 国内毛片毛片毛片毛片毛片| 天堂网av新在线| 日本与韩国留学比较| а√天堂www在线а√下载| 午夜激情欧美在线| 女同久久另类99精品国产91| 国产精品自产拍在线观看55亚洲| 亚洲天堂国产精品一区在线| 成人三级黄色视频| 男人的好看免费观看在线视频| 真人做人爱边吃奶动态| 久久久久久久久大av| 国产麻豆成人av免费视频| 亚洲最大成人中文| 成人特级av手机在线观看| 老司机福利观看| 国产一区二区三区视频了| 黄色视频,在线免费观看| 内地一区二区视频在线| 国产视频一区二区在线看| 亚洲精品国产精品久久久不卡| 成年免费大片在线观看| 亚洲成人久久性| 国产精品自产拍在线观看55亚洲| 亚洲avbb在线观看| 国产高潮美女av| 国产精品女同一区二区软件 | 国产精品久久久久久久久免 | 日本与韩国留学比较| 免费看十八禁软件| 国产亚洲精品一区二区www| 他把我摸到了高潮在线观看| 久久精品国产99精品国产亚洲性色| 国产亚洲精品久久久久久毛片| 国产精品日韩av在线免费观看| 老司机福利观看| 国产免费一级a男人的天堂| 日韩欧美免费精品| 国产欧美日韩精品一区二区| 亚洲精品成人久久久久久| 久久午夜亚洲精品久久| h日本视频在线播放| 久久精品综合一区二区三区| 国产aⅴ精品一区二区三区波| 久久欧美精品欧美久久欧美| 男人和女人高潮做爰伦理| 一个人看视频在线观看www免费 | 欧美激情久久久久久爽电影| 久久久久久大精品| 国产成人av激情在线播放| 美女大奶头视频| 一本一本综合久久| 亚洲av二区三区四区| 成年女人永久免费观看视频| 亚洲男人的天堂狠狠| 国产爱豆传媒在线观看| 久久久久九九精品影院| 婷婷亚洲欧美| 免费观看人在逋| 国产色爽女视频免费观看| 国产野战对白在线观看| 在线观看免费午夜福利视频| 国产午夜福利久久久久久| 欧美日韩乱码在线| 亚洲av中文字字幕乱码综合| 亚洲18禁久久av| 亚洲精品456在线播放app | 久久香蕉精品热| 观看美女的网站| 啦啦啦观看免费观看视频高清| 亚洲精品成人久久久久久| 成人av在线播放网站| 白带黄色成豆腐渣| 18禁美女被吸乳视频| 欧美最黄视频在线播放免费| 久久99热这里只有精品18| xxxwww97欧美| 国产免费一级a男人的天堂| av视频在线观看入口| 美女被艹到高潮喷水动态| 九九久久精品国产亚洲av麻豆| 99热6这里只有精品| 免费av不卡在线播放| 黄色视频,在线免费观看| 99热这里只有是精品50| 久久久久久久久大av| 性欧美人与动物交配| 两个人的视频大全免费| 桃红色精品国产亚洲av| 国语自产精品视频在线第100页| 久久久精品欧美日韩精品| 真实男女啪啪啪动态图| 久久久成人免费电影| 99久久精品国产亚洲精品| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片| 特级一级黄色大片| 嫩草影院精品99| 两个人看的免费小视频| 99久久精品热视频| 亚洲人成网站在线播| av中文乱码字幕在线| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| or卡值多少钱| 啦啦啦韩国在线观看视频| www日本黄色视频网| 一级黄片播放器| 国产午夜福利久久久久久| 日韩av在线大香蕉| 亚洲国产精品合色在线| 日本a在线网址| 波多野结衣巨乳人妻| 日韩欧美三级三区| 中文在线观看免费www的网站| 亚洲精品成人久久久久久| 非洲黑人性xxxx精品又粗又长| 99视频精品全部免费 在线| 国产高清有码在线观看视频| 欧美+日韩+精品| 国产精品三级大全| 人妻丰满熟妇av一区二区三区| 搡女人真爽免费视频火全软件 | 日韩人妻高清精品专区| 欧美色视频一区免费| 一个人看的www免费观看视频| 18禁在线播放成人免费| 韩国av一区二区三区四区| 亚洲熟妇熟女久久| 午夜精品一区二区三区免费看| 婷婷六月久久综合丁香| 亚洲av电影不卡..在线观看| 精华霜和精华液先用哪个| 久久久久性生活片| 久久久久亚洲av毛片大全| 欧美色视频一区免费| 小说图片视频综合网站| 最近最新免费中文字幕在线| 成年版毛片免费区| 男女视频在线观看网站免费| 欧美激情久久久久久爽电影| av视频在线观看入口| 国产亚洲精品综合一区在线观看| 露出奶头的视频| 免费观看精品视频网站| 久久精品国产清高在天天线| 亚洲天堂国产精品一区在线| 国产精品一及| 最新美女视频免费是黄的| 亚洲美女视频黄频| 老司机午夜福利在线观看视频| 午夜福利在线在线| 很黄的视频免费| 精品人妻偷拍中文字幕| 国产真实乱freesex| 亚洲 欧美 日韩 在线 免费| 久久性视频一级片| 亚洲中文字幕一区二区三区有码在线看| 精品久久久久久久末码| 亚洲专区国产一区二区| 日韩欧美精品免费久久 | 日韩欧美一区二区三区在线观看| 高清在线国产一区| 免费av毛片视频| 精品久久久久久成人av| 午夜福利欧美成人| 欧美极品一区二区三区四区| 男女下面进入的视频免费午夜| 日本黄色片子视频| 精品久久久久久,| 99久久精品国产亚洲精品| 又粗又爽又猛毛片免费看| 久久午夜亚洲精品久久| 悠悠久久av| 国产精品嫩草影院av在线观看 | 黄色丝袜av网址大全| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 精品国产美女av久久久久小说| 欧美中文综合在线视频| 久久久成人免费电影| 蜜桃久久精品国产亚洲av| 少妇人妻一区二区三区视频| 欧美成人免费av一区二区三区| 亚洲成人精品中文字幕电影| 免费看日本二区| 午夜福利18| 最新在线观看一区二区三区| 91av网一区二区| 桃色一区二区三区在线观看| 在线视频色国产色| 中出人妻视频一区二区| 午夜福利欧美成人| 色尼玛亚洲综合影院| av欧美777| 亚洲av不卡在线观看| 美女大奶头视频| www国产在线视频色| 亚洲成人精品中文字幕电影| 亚洲av不卡在线观看| 啦啦啦免费观看视频1| 91麻豆av在线| 精品国产三级普通话版| 国产高清videossex| 一进一出好大好爽视频| 亚洲人成网站高清观看| 九色成人免费人妻av| 亚洲av成人精品一区久久| 美女黄网站色视频| 脱女人内裤的视频| 色综合站精品国产| 91九色精品人成在线观看| 99国产综合亚洲精品| 亚洲无线观看免费| 亚洲七黄色美女视频| www日本在线高清视频| 女人十人毛片免费观看3o分钟| 久久久久国产精品人妻aⅴ院| 亚洲七黄色美女视频| 岛国在线观看网站| 欧美xxxx黑人xx丫x性爽| 欧美最新免费一区二区三区 | 黄色片一级片一级黄色片| 久久精品人妻少妇| 美女高潮的动态| 久久国产乱子伦精品免费另类| 国产成人欧美在线观看| 在线观看一区二区三区| 精品人妻一区二区三区麻豆 | 欧洲精品卡2卡3卡4卡5卡区| 免费电影在线观看免费观看| 中文字幕久久专区| 噜噜噜噜噜久久久久久91| 9191精品国产免费久久| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 日本 欧美在线| 99视频精品全部免费 在线| 男插女下体视频免费在线播放| 国产极品精品免费视频能看的| 1024手机看黄色片| 波多野结衣高清无吗| aaaaa片日本免费| av中文乱码字幕在线| 久久久国产成人精品二区| 啦啦啦免费观看视频1| 99热这里只有精品一区| 黄片小视频在线播放| 精品一区二区三区av网在线观看| 国产一区二区在线av高清观看| 久久久久久久久中文| 免费看美女性在线毛片视频| 精品福利观看| 欧美乱妇无乱码| ponron亚洲| 亚洲欧美激情综合另类| 久久精品国产自在天天线| 日韩欧美在线二视频| 久久久久久久久大av| 久久久精品大字幕| 欧美一区二区国产精品久久精品| 熟妇人妻久久中文字幕3abv| 男女视频在线观看网站免费| 国产一级毛片七仙女欲春2| av女优亚洲男人天堂| 亚洲精品亚洲一区二区| 老司机午夜福利在线观看视频| 一a级毛片在线观看| 国产精品,欧美在线| 在线看三级毛片| 一级a爱片免费观看的视频| 亚洲久久久久久中文字幕| 高清日韩中文字幕在线| 国产av麻豆久久久久久久| 国产精品自产拍在线观看55亚洲| 欧美激情久久久久久爽电影| 嫁个100分男人电影在线观看| 三级国产精品欧美在线观看| aaaaa片日本免费| 美女免费视频网站| 尤物成人国产欧美一区二区三区| 99在线人妻在线中文字幕| 亚洲成av人片在线播放无| 69人妻影院| 黄色成人免费大全| 好男人在线观看高清免费视频| 成人国产一区最新在线观看| 色综合欧美亚洲国产小说| 草草在线视频免费看| 国产aⅴ精品一区二区三区波| 国产成年人精品一区二区| 丁香六月欧美| 精品免费久久久久久久清纯| 在线天堂最新版资源| 麻豆成人午夜福利视频| 日韩成人在线观看一区二区三区| 黄色丝袜av网址大全| 国产av不卡久久| 中文资源天堂在线| 天天躁日日操中文字幕| 成人av一区二区三区在线看| www国产在线视频色| 国产精品久久久人人做人人爽| 国产色婷婷99| 国产精品女同一区二区软件 | 久久精品亚洲精品国产色婷小说| 一个人观看的视频www高清免费观看| 动漫黄色视频在线观看| 欧美色欧美亚洲另类二区| avwww免费| 黑人欧美特级aaaaaa片| 国产精品自产拍在线观看55亚洲| 国语自产精品视频在线第100页| 久久午夜亚洲精品久久| 国产野战对白在线观看| 尤物成人国产欧美一区二区三区| 久久精品综合一区二区三区| 色老头精品视频在线观看| 国产成人影院久久av| 日韩人妻高清精品专区| 成人亚洲精品av一区二区| 亚洲av美国av| 香蕉久久夜色| 99riav亚洲国产免费| 精品电影一区二区在线| 亚洲av电影不卡..在线观看| 十八禁网站免费在线| 国产伦在线观看视频一区| 午夜福利在线观看吧| 日本免费一区二区三区高清不卡| 老司机福利观看| 亚洲18禁久久av| 真人做人爱边吃奶动态| 露出奶头的视频| 麻豆一二三区av精品| 99热只有精品国产| 制服人妻中文乱码| 久久中文看片网| 国产综合懂色| 国产免费av片在线观看野外av| 亚洲久久久久久中文字幕| 国产精品香港三级国产av潘金莲| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 色视频www国产| 男女午夜视频在线观看| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av在线| 三级毛片av免费| 国产精品影院久久| 老司机午夜十八禁免费视频| 国产av在哪里看| 亚洲av成人av| 啦啦啦韩国在线观看视频| 国产成人福利小说| 一级毛片高清免费大全| 国产精品爽爽va在线观看网站| 亚洲成av人片在线播放无| 嫩草影院精品99| 香蕉久久夜色| 日本a在线网址| 国产精品国产高清国产av| а√天堂www在线а√下载| 日韩精品中文字幕看吧| 欧美xxxx黑人xx丫x性爽| 大型黄色视频在线免费观看| 国产成人啪精品午夜网站| 国产一区二区激情短视频| 欧美不卡视频在线免费观看| 亚洲国产色片| 国内揄拍国产精品人妻在线| 日日摸夜夜添夜夜添小说| 亚洲国产精品成人综合色| 日韩免费av在线播放| 成熟少妇高潮喷水视频| 有码 亚洲区| 757午夜福利合集在线观看| 给我免费播放毛片高清在线观看| 丁香欧美五月| 啦啦啦观看免费观看视频高清| 狠狠狠狠99中文字幕| 老汉色∧v一级毛片| 欧美成人免费av一区二区三区| 亚洲av成人av| 99久久九九国产精品国产免费| 日韩有码中文字幕| 久久婷婷人人爽人人干人人爱| 看黄色毛片网站| 国产精品 国内视频| 中文字幕av成人在线电影| 亚洲精品乱码久久久v下载方式 | 又黄又爽又免费观看的视频| 在线观看免费午夜福利视频| 久久婷婷人人爽人人干人人爱| 午夜日韩欧美国产| 高清毛片免费观看视频网站| 亚洲国产精品sss在线观看| 亚洲在线自拍视频| 91在线精品国自产拍蜜月 | 蜜桃亚洲精品一区二区三区| 哪里可以看免费的av片| 国产精品一区二区三区四区免费观看 | www日本在线高清视频| 午夜精品久久久久久毛片777| av欧美777| 18+在线观看网站| 一本久久中文字幕| 一级a爱片免费观看的视频| 国产激情欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 神马国产精品三级电影在线观看| 国产aⅴ精品一区二区三区波| 免费观看人在逋| 日韩欧美 国产精品| 精品午夜福利视频在线观看一区| 亚洲内射少妇av| 国产乱人伦免费视频| 久久久久性生活片| 日本精品一区二区三区蜜桃| 99久久九九国产精品国产免费| 美女 人体艺术 gogo| 色噜噜av男人的天堂激情| 真实男女啪啪啪动态图| 久久久久久久午夜电影| 99国产精品一区二区三区| 欧美成人a在线观看| 国产精品亚洲一级av第二区| 午夜精品在线福利| 伊人久久大香线蕉亚洲五| www国产在线视频色| 九九久久精品国产亚洲av麻豆| 欧美一级a爱片免费观看看| or卡值多少钱| 欧美不卡视频在线免费观看| 性色avwww在线观看| 老熟妇仑乱视频hdxx| 日本黄色片子视频| 久久婷婷人人爽人人干人人爱| 国内精品久久久久精免费| 国产一区二区三区在线臀色熟女| 岛国在线观看网站| 国产精华一区二区三区| 欧美又色又爽又黄视频| 精品久久久久久成人av| 88av欧美| 在线观看舔阴道视频| 亚洲黑人精品在线| 日本黄大片高清| 色视频www国产| 五月玫瑰六月丁香| 国产精品98久久久久久宅男小说| 亚洲成a人片在线一区二区| 波多野结衣高清作品| av福利片在线观看|