• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable high Curie temperature through 5d transition metal atom doping in CrI3

    2024-01-25 07:30:04XuebingPeng彭雪兵MingsuSi司明蘇andDaqiangGao高大強(qiáng)
    Chinese Physics B 2024年1期

    Xuebing Peng(彭雪兵), Mingsu Si(司明蘇), and Daqiang Gao(高大強(qiáng)),?

    1School of Physical Science and Technology,Lanzhou University,Lanzhou 730000,China

    2School of Materials and Energy,Lanzhou University,Lanzhou 730000,China

    Keywords: ferromagnetism,magnetic anisotropy energy,Curie temperature,half-metal

    1.Introduction

    Although two-dimensional (2D) materials have been explored for more than a decade,magnetic order rarely survives in atomically thin films due to thermal fluctuations.[1,2]The realization of 2D magnets is a big challenge.An early strategy was to introduce local defect states with magnetic elements into non-magnetic materials.[3–6]The magnetism introduced by this method is short-range.A new method to achieve lowdimensional ferromagnets is to use intrinsic magnetic order.In 2017, monolayer CrI3and few-layer Cr2Ge2Te6were simultaneously reported.[7,8]Immediately afterwards, in 2018,Denget al.successfully prepared monolayer Fe3GeTe2with intrinsic ferromagnetism.[9]These works opened the door for the study of 2D magnetic materials and provided a novel material platform for the future development of low-dimensional spintronics.

    CrI3as a layered magnetic material was first systematically studied by Dillon and Olson[10]and realized in the monolayer limit by Huanget al.[7]A spin-orientation-controlled band structure offers the opportunity for the study of second harmonics in solid state physics.[13,14]Due to its special crystal structure,CrI3has a topologically protected spin magnetic moment[15]as well as Kitaev interaction induced by shared edge I?.[16]With a strong layer-dependent effect,the magnetic ground state can be changed from ferromagnetic(FM)to antiferromagnetic(AFM)as the monolayer becomes a bilayer.[17]The excellent magnetism of CrI3makes it potentially promising for applications in the field of spintronics.Most research is based on the intrinsic magnetism of CrI3.However,the Curie temperature(Tc)of CrI3is only 45 K,[18]which severely limits practical applications.Thus, increasing theTcof CrI3is a focus of research.

    The magnetism of monolayer CrI3has been modulated by strain,[19,20]carrier doping,[21]defect introduction,[22,23]applied electric field[24]and surface adsorption.[25–27]For example,Guoet al.adsorbed Li atoms on the surface to semimetallize CrI3and increaseTc.[28]Yanget al.used Sc atoms to dope CrI3and increasedTcfrom 47 K to 131 K.[29]The gain or loss of electrons causes an increase in the magnetic moment of Cr, which eventually increasesTc.In fact, the above methods are not particularly effective ways to increaseTcbecause Li and Sc atoms have almost no magnetic moment in a honeycomb lattice.Recently, Birgeneau’s group successfully prepared Fe5GeTe2,which has a higherTc(over 400 K)than Fe3GeTe2.The underlying physics originates from the increasing coordination number of the Fe ion.[30]Based on the above ideas,we chose 5d transition metal(TM)atoms to dope CrI3,because 5d TM atoms with a larger spin–orbit coupling(SOC) may increase the magnetic anisotropy energy (MAE)to stabilize long-range FM order.

    In this work, we investigate the crystal stability, MAE,Tc,FM stability and electronic properties of TM@CrI3based on first-principles calculations.Formation energy and phonon spectra calculations show that TM@CrI3is thermodynamically stable, and the absence of imaginary modes in phonon spectra indicates that TM@CrI3monolayers (TM=Hf, Ta,W, Re and Os) are also dynamically stable.Due to the increase in magnetic moment induced by the doping of TM atoms,TM@CrI3has a higherTcthrough Monte–Carlo(MC)simulation.Among these,Tcof W@CrI3reaches 254 K.By further increasing the doping concentration of W atoms, aTcabove room temperature can be achieved.Intriguingly,a large MAE for W@CrI3can stabilize long-range FM order.Moreover,FM stability of TM@CrI3is enhanced.Most TM@CrI3change from a semiconductor to a half-metal.These results provide knowledge relevant to potential applications of CrI3monolayers in spintronics.

    2.Computational details

    We use the framework of density functional theory as implemented in the Viennaab initiosimulation package to perform first-principles calculations.[31,32]The Monkhorst–Pack scheme of 5×5×1k-point sampling in the entire Brillouin zone (BZ) was used to perform momentum space integration for a 2×2×1 TM@CrI3supercell.[33]MAE was calculated with a 12×12×1k-point mesh.The plane-wave cutoff energy was set to 500 eV.The generalized gradient approximation with the Perdew–Burke–Ernzerhof realization was used for the exchange correlation functional.[34]The Hellmann–Feynman forces acting on each atom were entirely relaxed during structural optimization until they were less than 10?3eV·?A?1;the electronic convergence requirement was set to 10?7eV.Since the system is a 2D nanosheet,a vacuum region of 20 ?A along the direction perpendicular to the surface of the nanosheet was introduced to avoid interference between the periodic images.A 30×30×1 supercell was used to simulateTcbased on the MC method.[35]

    3.Results and discussion

    Monolayer CrI3possesses the space group ofp-31m(No.162).Cr3+ions are sandwiched by octahedra formed by shared-edge I?ions and form a hexagonal honeycomb structure, as shown in Fig.1(a).The optimized lattice constant isa=b=7.00 ?A.The Cr3+–I?and Cr3+–Cr3+bond distances are 2.7 ?A and 4.0 ?A, respectively.The magnetic moment of each Cr3+ion is 3.06μB.The band structure of CrI3is displayed in Fig.1(b).The valence band maximum and the conduction band minimum appear for the spin-up channel,giving a band gap of 1.21 eV.All these results are in good agreement with previously reported results.[29,36]Here, we dope CrI3with one 5d TM atom, introducing it into the interstitial hollow position of a 2×2×1 supercell,as shown in Fig.1(c).

    Fig.1.(a)Top(top panel)and side(bottom panel)views of the crystal structure of CrI3,where H represents the hollow position.(b)Calculated band structure of CrI3.The Fermi energy is set to 0 eV.(c)Crystal structure of a transition metal(TM)atom introduced into the hollow position.(d)Formation energies of TM@CrI3.(e)Calculated Curie temperature(Tc)of TM@CrI3 and host CrI3.(f)Magnetic moment and specific heat of W@CrI3 versus temperature from Monte–Carlo simulation.

    To reveal the thermodynamic stability of atomic doping, we calculate the formation energy, which is defined asFf=Edop?ECrI3?μTMwhereEdopis the total energy of TM@CrI3,ECrI3is the total energy of CrI3andμTMis the chemical potential of the TM atom.As shown in Fig.1(d),the formation energies of all TM@CrI3are negative, indicating that all are thermodynamically stable.We also calculate the phonon dispersion over a 2×2×1 supercell using the PHONOPY package,[37]which is based on density functional perturbation theory.[38]The absence of imaginary modes in the entire BZ is displayed in Figs.S1(a)–S1(e),indicating that monolayer TM@CrI3(TM=Hf, Ta, W, Re and Os) are dynamically stable.However, doping with Ir, Pt and Au atoms is not dynamically stable as the imaginary frequencies appear near theΓpoint(Figs.S1(f)–S1(h)).

    To estimateTcof TM@CrI3,we calculate exchange couplings between magnetic atoms via the Heisenberg exchange interaction,H=∑i,δ JNSi·Sδ, whereJNrepresents the exchange couplings between magnetic atoms,iis the magnetic atomic site andδrepresents the nearest neighbor distance.Siis the spin quantum number.Here, we mainly consider the nearest and next-nearest exchange couplings between Cr3+and Cr3+ions as well as the nearest exchange coupling between Cr3+ions and the TM atom, denoted asJ1,J2andJ3,respectively.J3is only considered for W and the Ta atoms with the larger magnetic moments.One FM and three AFM configurations(N′eel,zigzag and stripy)are used in the calculations of exchange coupling, as shown in Fig.3(a).The three magnetic coupling constants can be extracted from the following equations:

    whereSA,SBandSCare the spin operators of magnetic ions on A, B and C sites.The exchange coupling constants are given in Table S1.

    Based on the 2D Ising model, we employ Metropolis Monte–Carlo(MC)simulation to studyTc.Figure 1(e)shows theTcof TM@CrI3.Tcof the host CrI3is also calculated to be 45 K, which is in line with the result reported in previous work.[7]In TM@CrI3,Tcis significantly increased.Tcof Au@CrI3is about 64 K,which is slightly higher than that of the host CrI3.Tcof W@CrI3reaches 254 K, nearly six times higher than that of the host CrI3,and is much increased in comparison with 3d TM@CrI3.[29]Meanwhile,in Fig.1(f)variation of the average magnetic moment and specific heat of W@CrI3with temperature is shown.We further exploredTcfor W@CrI3for different doping concentrations: 5.9%and 8.6% represent 2×2×1 CrI3doped with two and three W atoms, respectively(Fig.S4).It is pleasing to note thatTcof CrI3is significantly improved with increasing W doping concentration.As shown in Fig.2(a),at a doping concentration of 5.9%,Tcincreases from 254 K to 306 K,which is above room temperature.With continuing increase in the doping concentration,Tcof W@CrI3is increased to 348 K(Fig.2(b)).

    Fig.2.Magnetic moment and specific heat versus temperature for doping concentrations of(a)5.9%and(b)8.6%for W@CrI3.

    To account for variation ofTc,we calculated the exchange energy, which is defined asEAFM–EFM.Here, zigzag-AFM is chosen as a reference due to its lower energy.Among the TM@CrI3, the W atom has the highest exchange energy, the Ta atom the next and the Au atom the least,but their exchange energy is greater than that of CrI3,as shown in Fig.3(b).The pattern of variation of exchange energy is consistent withTc.Similarly, the magnetic moments of TM atoms also show the same pattern of variation.For example, the W atom with the largest magnetic moment has the highestTc(Fig.3(c)).The Au atom has almost no magnetic moment,and the increase inTcis not significant.This result indicates thatTcis related to the magnetic moments of TM atoms.The magnetic moments of TM atoms increase the exchange coupling and coordination number between the magnetic atoms.Further, according to a mean-field treatment, results for the magnetic transition temperature follow, whereZNNandJNNare the coordination number and exchange coupling of magnetic atoms,respectively.[9,39]The larger the magnetic atomic coordination number, the exchange coupling and the magnetic moment,the higher the evaluatedTc.Therefore,the magnetic moments induced by doping with TM atoms can increaseTc.

    Fig.3.(a)Four magnetic configurations:ferromagnetic(FM),N′eel antiferromagnetic(AFM),zigzag AFM and stripy AFM.(b)The calculated exchange energy of TM@CrI3 and the host CrI3.(c)The magnetic moments of TM atoms and Cr3+ ions(TM,transition metal).

    Next,we discuss the underlying physics of the W atomic magnetic moment in W@CrI3.The spin-density distribution shows that the total magnetic moment stems from the Cr atoms and the W atom(Fig.4(a)).The W atom tends to lose the partial electrons of the outermost electron shell(5d46s2)through strong electronegative action around I?ions, and picks up a magnetic moment of about 2μB.We calculated the Bader charge of W@CrI3,where the W atom loses 0.6eand every I?ion gains 0.11e(Table S2).In the projected density of states,d-resolved orbitals of the W atom have a large spin polarization and hybridization(Fig.4(b)).Both the dxzand dyzorbitals are occupied by a fractional electron, and contribute 0.15μBand 0.14μB,respectively.In contrast,the dz2orbital with more spin-up electrons has a magnetic moment of 1.04μB.This is because the dz2orbital rarely overlaps with the p orbitals of the surrounding I?ions.The dx2?y2and dxyorbitals protected by C3symmetry are degenerate below the Fermi level, and their magnetic moments are 0.35μB.Furthermore, the magnitude of magnetic moments can be understood from the asymmetry of spin polarization below the Fermi level in the density of states(DOS)of TM atoms,as shown in Figs.4(c)–4(f).For example,the spin polarized asymmetry of the Hf atom is weaker than that of the Ta atom, so the magnetic moment of the Ta atom is larger.Similarly, the W atom has a larger spin polarized asymmetry than the Ta atom,leading to a larger value for the W atom.The Os atom has the weakest asymmetry.The W atom therefore has the largest magnetic moment.For low-dimensional materials, a large MAE driven by SOC would resist the thermal fluctuation to stabilize the longrange FM order.Due to the large SOC of 5d TM atoms,the induced MAE would be large, and is defined asEMAE=E(100)?E(001).Positive or negative values of MAE represent that the magnetic easy axis is along the out-of-plane or inplane direction, respectively.In Table 1, the magnetic easy axis of TM@CrI3(TM=Hf, Ta, W, Re and Ir) is along the out-of-plane direction: Re@CrI3has the largest MAE,which mainly originates from the Re atom.The magnetic easy axis for doping with Os,Pt and Au atoms is along the in-plane direction.Except for Os,the absolute values of MAE after doping are enhanced with respect to CrI3, whose MAE is about 0.804 meV.[20]Therefore,doping with TM atoms can enhance the MAE of CrI3.

    Fig.4.(a) The spin density distribution of W@CrI3 and (b) projected density of states (PDOS) of the W atom.Density of states (DOS) of(c) Hf, (d) W, (e) Ta and (f) Os atoms in TM@CrI3.The positive and negative values of DOS represent spin-up and spin-down channels,respectively.The Fermi energy is set to 0 eV.

    Table 1.The MAE(EMAE)in TM@CrI3.The contribution from Cr,I and TM atoms is also listed.The unit is meV.

    We now discuss the FM stability of TM@CrI3.The FM coupling of monolayer CrI3can be understood by the Goodenough–Kanamori–Anderson model as a competition between two exchange interactions: a direct exchange interaction between Cr3+ions by electron hopping and a superexchange between the Cr3+ions mediated by intermediate nonmagnetic I?ions.As schematically shown in Fig.5(a), stable AFM coupling depends sensitively on the distancedbetween Cr3+ions.Stable FM coupling is dominated by superexchange interactions and is controlled by theθof Cr3+–I?–Cr3+ions.Except for the Ta atom,dof Cr3+–Cr3+after doping is increased with respect to the host CrI3(Fig.5(b)),indicating that AFM coupling of direct exchange is weakened.Theθfor all TM@CrI3is decreased,and is close to 90°,giving rise to stronger FM stability.

    Fig.6.The band structure of TM@CrI3 (TM=Ta,W,Os,Ir,Pt,Au).The Fermi energy level EF is set to 0 eV.

    Electronic structure is a key concern in the study of physical properties.We display the band structure of TM@CrI3(TM=Ta, W, Os, Ir, Pt, Au) in Fig.6.Because of the gain or loss of valence electrons (Table S3), the impurity energy levels are induced in the band structure.Therefore,the energy bands of TM@CrI3(TM=Ta,W,Os,Ir,Pt)cross the Fermi energy level to change from semiconductors to half-metals.Hf@CrI3and Re@CrI3are also half-metals (Fig.S6).Such materials have promising applications in advanced magnetic recording,magnetic storage,high-efficiency magnetic sensors,spin-emitting diodes and many other fields.[40]In particular,for TM@CrI3(TM=W, Os, Ir), the band gaps of the spindown channel are greater than 1.5 eV, which prevents thermal activation effects from exciting the forbidden carriers to reduce the polarization rate.[41]Au@CrI3is a semiconductor because the Au atom has almost no gain or loss of electrons.

    4.Conclusions

    In summary, we have performed a systematic study of TM@CrI3through the combination of a first-principles method and MC simulation.All TM@CrI3are thermodynamically stable due to their negative formation energy, and the absence of imaginary modes in the phonon spectra indicates that TM@CrI3monolayers(TM=Hf,Ta,W,Re and Os)are also dynamically stable.Tcof TM@CrI3is increased, with a highest value of 254 K for W@CrI3.As the doping concentration of W atoms is increased to 8.6%,Tcis increased to above room temperature(348 K).Interestingly,W@CrI3has a large MAE of 4.999 meV to stabilize long-range FM order.Furthermore, the FM stability of TM@CrI3is enhanced.Except for doping with Au atoms,TM@CrI3become half-metallic.It is hoped that these results will provide theoretical guidance for experimentally tuning MAE,Tcand electronic structure.

    一区二区三区高清视频在线| av福利片在线观看| 熟妇人妻不卡中文字幕| 在线观看免费高清a一片| 男插女下体视频免费在线播放| 狂野欧美激情性xxxx在线观看| 人人妻人人澡欧美一区二区| 天天一区二区日本电影三级| 日本三级黄在线观看| 丰满少妇做爰视频| 久久久成人免费电影| 国产老妇女一区| 中文字幕久久专区| 少妇人妻精品综合一区二区| 成人漫画全彩无遮挡| 在线观看一区二区三区| 免费av不卡在线播放| 大又大粗又爽又黄少妇毛片口| 国产淫片久久久久久久久| 一级毛片电影观看| 亚洲欧美日韩无卡精品| 国产黄片美女视频| 欧美97在线视频| 国产69精品久久久久777片| av在线播放精品| 欧美性猛交╳xxx乱大交人| 在线观看人妻少妇| 99热全是精品| 亚洲丝袜综合中文字幕| 欧美不卡视频在线免费观看| 亚洲精华国产精华液的使用体验| 纵有疾风起免费观看全集完整版 | 中文字幕av在线有码专区| 三级男女做爰猛烈吃奶摸视频| 深夜a级毛片| 国产成人精品婷婷| 中文乱码字字幕精品一区二区三区 | 80岁老熟妇乱子伦牲交| 国产亚洲av片在线观看秒播厂 | 亚洲综合色惰| 观看美女的网站| 非洲黑人性xxxx精品又粗又长| 亚洲三级黄色毛片| 在线a可以看的网站| 日韩中字成人| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 伦精品一区二区三区| 日韩av在线免费看完整版不卡| 我的女老师完整版在线观看| 午夜精品在线福利| 中文在线观看免费www的网站| 女人久久www免费人成看片| av播播在线观看一区| 国产一区亚洲一区在线观看| 男人和女人高潮做爰伦理| av黄色大香蕉| 国产一级毛片七仙女欲春2| 2021天堂中文幕一二区在线观| 亚洲精品自拍成人| 一区二区三区高清视频在线| h日本视频在线播放| 黄色一级大片看看| 免费看光身美女| 久久精品人妻少妇| 亚洲成人精品中文字幕电影| 只有这里有精品99| 国产一区二区在线观看日韩| 国产精品无大码| 美女脱内裤让男人舔精品视频| 亚洲无线观看免费| 精品久久久噜噜| 99热这里只有是精品50| 成人综合一区亚洲| 久久久久久久亚洲中文字幕| 亚洲天堂国产精品一区在线| 婷婷色av中文字幕| 中文字幕免费在线视频6| 女的被弄到高潮叫床怎么办| 97超碰精品成人国产| 男女边摸边吃奶| 精品久久国产蜜桃| 国产单亲对白刺激| 久久鲁丝午夜福利片| 美女大奶头视频| 少妇裸体淫交视频免费看高清| 久久99热6这里只有精品| 日日摸夜夜添夜夜添av毛片| 国产一区二区在线观看日韩| 日本一二三区视频观看| 国产激情偷乱视频一区二区| 国产精品无大码| 天美传媒精品一区二区| 又爽又黄a免费视频| 夫妻性生交免费视频一级片| 亚洲内射少妇av| 久99久视频精品免费| 日韩一区二区视频免费看| 久久久久久九九精品二区国产| 国产黄a三级三级三级人| 乱系列少妇在线播放| 午夜免费男女啪啪视频观看| 五月伊人婷婷丁香| 禁无遮挡网站| 午夜视频国产福利| 精品久久久久久久久亚洲| 免费观看无遮挡的男女| 丝袜喷水一区| 午夜福利在线在线| 91久久精品国产一区二区成人| 精品99又大又爽又粗少妇毛片| 99久久九九国产精品国产免费| 国产伦精品一区二区三区视频9| 嫩草影院入口| 亚洲丝袜综合中文字幕| 美女大奶头视频| 色播亚洲综合网| av线在线观看网站| 永久免费av网站大全| 久久久久久久午夜电影| 男人狂女人下面高潮的视频| 精品国产一区二区三区久久久樱花 | 直男gayav资源| 欧美日韩一区二区视频在线观看视频在线 | 黄片wwwwww| 69av精品久久久久久| 成年av动漫网址| 老司机影院毛片| 亚洲一级一片aⅴ在线观看| 国产精品熟女久久久久浪| 啦啦啦韩国在线观看视频| 日韩av不卡免费在线播放| 国产精品爽爽va在线观看网站| 国产69精品久久久久777片| 亚洲最大成人中文| 日韩欧美三级三区| 亚洲欧美一区二区三区国产| 国产毛片a区久久久久| 婷婷六月久久综合丁香| 在线免费十八禁| 欧美高清成人免费视频www| 国产黄频视频在线观看| 六月丁香七月| 久久久精品免费免费高清| 免费高清在线观看视频在线观看| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 国产黄频视频在线观看| 男插女下体视频免费在线播放| 国产色婷婷99| 91av网一区二区| 六月丁香七月| 久久久久久久久中文| 亚洲成人精品中文字幕电影| 国产亚洲av嫩草精品影院| 美女被艹到高潮喷水动态| av在线观看视频网站免费| 校园人妻丝袜中文字幕| 国产色婷婷99| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 欧美潮喷喷水| 看非洲黑人一级黄片| 97热精品久久久久久| 精品一区二区三卡| 久久99精品国语久久久| 亚洲综合精品二区| 亚洲性久久影院| 久久久久精品久久久久真实原创| 男人爽女人下面视频在线观看| 午夜免费男女啪啪视频观看| 亚洲av.av天堂| 亚洲欧美一区二区三区国产| 国产男女超爽视频在线观看| 激情 狠狠 欧美| 蜜桃久久精品国产亚洲av| 国产免费福利视频在线观看| 久久97久久精品| 中文在线观看免费www的网站| 久久久亚洲精品成人影院| 一夜夜www| 精品久久久久久久久久久久久| 麻豆久久精品国产亚洲av| 亚洲最大成人av| 蜜桃亚洲精品一区二区三区| 亚洲欧美精品自产自拍| 国产黄片视频在线免费观看| 精品一区二区三卡| 热99在线观看视频| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 亚洲国产欧美人成| 精品亚洲乱码少妇综合久久| 久久精品人妻少妇| 亚洲精品国产av成人精品| 亚洲欧美成人精品一区二区| 亚洲一级一片aⅴ在线观看| 一级黄片播放器| 看十八女毛片水多多多| 中国国产av一级| 日日啪夜夜爽| 国产精品无大码| 春色校园在线视频观看| 国产成人freesex在线| 97超视频在线观看视频| 成人亚洲精品av一区二区| 日本-黄色视频高清免费观看| 噜噜噜噜噜久久久久久91| 狠狠精品人妻久久久久久综合| 欧美三级亚洲精品| 成人午夜高清在线视频| 国产精品人妻久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 毛片女人毛片| 大香蕉久久网| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 国产爱豆传媒在线观看| 精品久久久精品久久久| 欧美+日韩+精品| 色吧在线观看| 女的被弄到高潮叫床怎么办| 亚洲精品久久久久久婷婷小说| 成人无遮挡网站| 久久久久久久久中文| 亚洲怡红院男人天堂| 国产精品一区www在线观看| 亚洲最大成人中文| 我要看日韩黄色一级片| 免费少妇av软件| 欧美日韩在线观看h| 春色校园在线视频观看| 国产精品.久久久| 少妇的逼好多水| 99热这里只有精品一区| 国产av在哪里看| 午夜老司机福利剧场| 国产精品不卡视频一区二区| 亚洲av成人av| 欧美成人午夜免费资源| av播播在线观看一区| 亚洲四区av| 日本熟妇午夜| 狂野欧美激情性xxxx在线观看| 别揉我奶头 嗯啊视频| 午夜福利高清视频| 亚洲欧美清纯卡通| 国产成人精品福利久久| 国产综合精华液| 亚洲在线观看片| av国产免费在线观看| av女优亚洲男人天堂| 少妇高潮的动态图| 日本免费a在线| 久久精品熟女亚洲av麻豆精品 | 麻豆乱淫一区二区| 午夜福利网站1000一区二区三区| 久久久久九九精品影院| 亚洲色图av天堂| 最近视频中文字幕2019在线8| 免费黄频网站在线观看国产| 99久久精品热视频| 久久久久久久国产电影| av播播在线观看一区| 精品欧美国产一区二区三| 免费看光身美女| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| 久久这里只有精品中国| 亚洲精品456在线播放app| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 亚洲欧美成人精品一区二区| 欧美另类一区| 午夜精品一区二区三区免费看| 黄片wwwwww| 韩国av在线不卡| 成年女人看的毛片在线观看| 国模一区二区三区四区视频| 网址你懂的国产日韩在线| av在线天堂中文字幕| 亚洲三级黄色毛片| 黑人高潮一二区| 免费看日本二区| 日韩av在线免费看完整版不卡| 最近手机中文字幕大全| 欧美日韩综合久久久久久| 偷拍熟女少妇极品色| 欧美97在线视频| 搡女人真爽免费视频火全软件| 韩国高清视频一区二区三区| 午夜福利在线在线| 少妇人妻精品综合一区二区| 永久免费av网站大全| 插阴视频在线观看视频| 欧美最新免费一区二区三区| 国产高清有码在线观看视频| 伦精品一区二区三区| 夫妻午夜视频| 免费人成在线观看视频色| 日日撸夜夜添| 国产在视频线在精品| 哪个播放器可以免费观看大片| 成人性生交大片免费视频hd| 寂寞人妻少妇视频99o| av卡一久久| 高清视频免费观看一区二区 | 黄色配什么色好看| 天美传媒精品一区二区| 特级一级黄色大片| 乱人视频在线观看| 91精品一卡2卡3卡4卡| 床上黄色一级片| 国产综合懂色| 亚洲一级一片aⅴ在线观看| 九九爱精品视频在线观看| 人人妻人人澡欧美一区二区| a级毛色黄片| 中文天堂在线官网| 五月天丁香电影| 国产av码专区亚洲av| 久久97久久精品| 国产午夜精品论理片| 国产精品日韩av在线免费观看| 观看免费一级毛片| 我的女老师完整版在线观看| 老师上课跳d突然被开到最大视频| 精品久久久久久久久亚洲| 麻豆av噜噜一区二区三区| 在线观看av片永久免费下载| 亚洲国产精品成人久久小说| 国产精品综合久久久久久久免费| 亚洲国产色片| 草草在线视频免费看| 国产视频内射| 2021天堂中文幕一二区在线观| 久久精品夜色国产| 精品人妻偷拍中文字幕| 能在线免费观看的黄片| 日韩av不卡免费在线播放| 亚洲精品日本国产第一区| 欧美日韩一区二区视频在线观看视频在线 | 我要看日韩黄色一级片| 中国美白少妇内射xxxbb| 91久久精品国产一区二区三区| 欧美97在线视频| 亚州av有码| 最近最新中文字幕大全电影3| 成人国产麻豆网| 国产91av在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品蜜桃在线观看| 欧美日韩精品成人综合77777| 美女高潮的动态| 2021天堂中文幕一二区在线观| 久久精品国产亚洲网站| 久久99精品国语久久久| 亚洲精品中文字幕在线视频 | 午夜激情欧美在线| av在线蜜桃| 春色校园在线视频观看| 日本黄大片高清| 婷婷色综合www| 全区人妻精品视频| 国产亚洲精品久久久com| 在线a可以看的网站| 精品久久久久久久末码| 国产精品久久久久久久电影| 午夜精品在线福利| 91久久精品电影网| 亚洲欧美一区二区三区国产| freevideosex欧美| 免费看av在线观看网站| 久久精品国产自在天天线| 午夜福利成人在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 亚洲人成网站在线播| 少妇丰满av| 女的被弄到高潮叫床怎么办| 婷婷六月久久综合丁香| 丝袜喷水一区| 一边亲一边摸免费视频| 99久久精品一区二区三区| 国产一区二区亚洲精品在线观看| 中文字幕av在线有码专区| 国产高清国产精品国产三级 | 亚洲三级黄色毛片| 97在线视频观看| 久久久欧美国产精品| 精品一区在线观看国产| 日韩成人伦理影院| 日本免费a在线| 亚洲欧美日韩东京热| 午夜亚洲福利在线播放| 九草在线视频观看| 好男人视频免费观看在线| .国产精品久久| 欧美日韩国产mv在线观看视频 | 精品少妇黑人巨大在线播放| 国精品久久久久久国模美| 看免费成人av毛片| 欧美成人一区二区免费高清观看| 亚洲欧美一区二区三区黑人 | 欧美日韩在线观看h| 嘟嘟电影网在线观看| eeuss影院久久| 亚洲av不卡在线观看| 3wmmmm亚洲av在线观看| av黄色大香蕉| 777米奇影视久久| 夜夜爽夜夜爽视频| 狂野欧美激情性xxxx在线观看| 国产伦理片在线播放av一区| 欧美zozozo另类| 伦理电影大哥的女人| 性插视频无遮挡在线免费观看| 国产老妇女一区| 99久国产av精品国产电影| av在线蜜桃| 最近2019中文字幕mv第一页| 欧美日韩在线观看h| 亚洲国产成人一精品久久久| 一级毛片 在线播放| 国产成人a区在线观看| 日韩av免费高清视频| 久久久精品免费免费高清| 中国国产av一级| 亚洲在久久综合| 在线观看免费高清a一片| 欧美区成人在线视频| 大香蕉97超碰在线| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| av免费观看日本| 亚洲人成网站在线播| 我的女老师完整版在线观看| 国产伦精品一区二区三区四那| 综合色av麻豆| 久久鲁丝午夜福利片| 国产精品久久视频播放| 国产免费福利视频在线观看| 韩国av在线不卡| 欧美日韩精品成人综合77777| 别揉我奶头 嗯啊视频| 免费不卡的大黄色大毛片视频在线观看 | 成人国产麻豆网| 最近最新中文字幕大全电影3| 九色成人免费人妻av| 免费av观看视频| 国产高清有码在线观看视频| 你懂的网址亚洲精品在线观看| 亚洲国产色片| 国产真实伦视频高清在线观看| 亚洲av不卡在线观看| 国产成人免费观看mmmm| 成人一区二区视频在线观看| 深爱激情五月婷婷| 久久久久久久久久久免费av| 好男人在线观看高清免费视频| 神马国产精品三级电影在线观看| 亚洲精品国产av蜜桃| 亚洲av男天堂| 成人综合一区亚洲| 久久综合国产亚洲精品| 一个人看的www免费观看视频| 亚洲四区av| 日日啪夜夜撸| 亚洲不卡免费看| xxx大片免费视频| 免费看不卡的av| 在线观看美女被高潮喷水网站| 岛国毛片在线播放| 毛片女人毛片| 亚洲精品乱码久久久久久按摩| 久久草成人影院| 亚洲av.av天堂| 国产伦精品一区二区三区四那| 综合色丁香网| 成人亚洲欧美一区二区av| 麻豆成人午夜福利视频| 亚洲国产精品sss在线观看| 精品亚洲乱码少妇综合久久| 97在线视频观看| 不卡视频在线观看欧美| 一本久久精品| 男女啪啪激烈高潮av片| 国产v大片淫在线免费观看| 一级毛片 在线播放| 80岁老熟妇乱子伦牲交| 亚洲国产精品成人综合色| 国产成人精品久久久久久| 亚洲精品第二区| 欧美日韩精品成人综合77777| 最近最新中文字幕大全电影3| av一本久久久久| 欧美激情久久久久久爽电影| 老司机影院成人| 亚洲自拍偷在线| videos熟女内射| 97在线视频观看| 成人午夜精彩视频在线观看| 亚洲国产欧美人成| 99re6热这里在线精品视频| 日韩欧美精品免费久久| 亚洲第一区二区三区不卡| 久久国内精品自在自线图片| 午夜福利高清视频| 欧美极品一区二区三区四区| 一边亲一边摸免费视频| 看免费成人av毛片| 久久久久网色| 国产 一区精品| 中文字幕人妻熟人妻熟丝袜美| 有码 亚洲区| 免费大片黄手机在线观看| 99久久精品国产国产毛片| 人人妻人人澡欧美一区二区| 乱码一卡2卡4卡精品| 国国产精品蜜臀av免费| 欧美不卡视频在线免费观看| 午夜爱爱视频在线播放| 最新中文字幕久久久久| 久久这里有精品视频免费| 国精品久久久久久国模美| 精品一区二区三区人妻视频| 国产精品久久久久久久久免| 国产一区亚洲一区在线观看| 亚洲在久久综合| 2021少妇久久久久久久久久久| 汤姆久久久久久久影院中文字幕 | av免费观看日本| 97超视频在线观看视频| 97超碰精品成人国产| 欧美xxxx黑人xx丫x性爽| 在线观看av片永久免费下载| 蜜桃久久精品国产亚洲av| 色哟哟·www| 伦理电影大哥的女人| 乱系列少妇在线播放| 久久精品夜夜夜夜夜久久蜜豆| 久久这里有精品视频免费| 少妇猛男粗大的猛烈进出视频 | a级毛片免费高清观看在线播放| 三级经典国产精品| 国产精品美女特级片免费视频播放器| 日韩精品有码人妻一区| 日韩电影二区| 少妇猛男粗大的猛烈进出视频 | 国产亚洲最大av| 国产精品1区2区在线观看.| 水蜜桃什么品种好| 亚洲国产av新网站| 在线播放无遮挡| 一本久久精品| 国产真实伦视频高清在线观看| 国产成人精品一,二区| 日本av手机在线免费观看| 黄色日韩在线| 精品欧美国产一区二区三| 精品人妻偷拍中文字幕| 五月玫瑰六月丁香| 国产精品久久久久久精品电影小说 | 麻豆国产97在线/欧美| 久久久久久久久中文| 综合色av麻豆| 人妻制服诱惑在线中文字幕| 久久久久九九精品影院| 久久久亚洲精品成人影院| 成年免费大片在线观看| eeuss影院久久| 亚洲久久久久久中文字幕| 3wmmmm亚洲av在线观看| 中文字幕免费在线视频6| 亚洲伊人久久精品综合| 久久精品国产亚洲av天美| 97超视频在线观看视频| 丝袜喷水一区| 有码 亚洲区| 国产伦理片在线播放av一区| 卡戴珊不雅视频在线播放| 你懂的网址亚洲精品在线观看| 能在线免费观看的黄片| 国产一区二区三区av在线| 亚洲不卡免费看| 精品午夜福利在线看| 日韩一区二区视频免费看| 久久综合国产亚洲精品| 白带黄色成豆腐渣| 毛片女人毛片| 蜜臀久久99精品久久宅男| 精品99又大又爽又粗少妇毛片| 国产精品国产三级国产av玫瑰| 午夜视频国产福利| av在线播放精品| 色网站视频免费| 国产精品久久久久久精品电影小说 | 69人妻影院| 夫妻性生交免费视频一级片| 熟女人妻精品中文字幕| 国产亚洲5aaaaa淫片| 国产单亲对白刺激| 在线观看一区二区三区| 亚洲av不卡在线观看| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 亚洲自偷自拍三级| 久久亚洲国产成人精品v| 国产老妇女一区| 69av精品久久久久久| 亚洲国产高清在线一区二区三| 最后的刺客免费高清国语| 波野结衣二区三区在线| 亚洲四区av| 人人妻人人澡欧美一区二区| 熟妇人妻不卡中文字幕|