• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High responsivity photodetectors based on graphene/WSe2 heterostructure by photogating effect

    2024-04-14 14:26:46ShupingLi李淑萍TingLei雷挺ZhongxingYan嚴仲興YanWang王燕LikeZhang張黎可HuayaoTu涂華垚WenhuaShi時文華andZhongmingZeng曾中明
    Chinese Physics B 2024年1期
    關(guān)鍵詞:張黎淑萍王燕

    Shuping Li(李淑萍), Ting Lei(雷挺), Zhongxing Yan(嚴仲興),Yan Wang(王燕), Like Zhang(張黎可), Huayao Tu(涂華垚),Wenhua Shi(時文華),?, and Zhongming Zeng(曾中明),§

    1Suzhou Industrial Park Institute of Services Outsourcing,Suzhou 215123,China

    2Nanofabrication Facility,Suzhou Institute of Nano-Tech and Nano-Bionics,Chinese Academy of Sciences,Suzhou 215123,China

    3School of Nano Technology and Nano Bionics,University of Science and Technology of China,Hefei 230026,China

    4School of Electronics and Information Engineering,Wuxi University,Wuxi 214105,China

    Keywords: WSe2,heterostructure,photodetector,photogating effect

    1.Introduction

    Photodetectors based on transition metal dichalcogenides(TMDCs)such as MoS2and WSe2have received much attention due to their flexible structure,[1,2]tunable bandgap,[3,4]and high absorption coefficient.[5,6]Previous studies have demonstrated that the photodetection efficiency of monolayer MoS2and WSe2photodetectors is as low as a few hundred mA/W, due to the light absorption limitations and the effects of non-optimal contact at the metal electrode and material interface.[7,8]Therefore, to obtain high-performance photodetectors, many researchers have turned to heterostructures based on graphene/TMDCs to prepare low-resistance devices.[9–11]Moreover, graphene-based heterostructures retain the inherent photoelectronic properties of a single material due to weak van der Waals forces between layers and the lack of surface dangling bonds, which can further improve device performance.[12–15]For example, Tanet al.and Yehet al.reported that the photodetection efficiency of WSe2and WS2photodetectors increased to 350 A/W and 3.5 A/W,respectively,by using graphene as a transparent contact electrode.[16,17]

    The tungsten disulfide (WSe2) has a tunable bandgap(1.2 eV–1.67 eV), bipolar transport behavior, and excellent photoelectronic properties, and has been widely studied as a potential candidate for next-generation optoelectronic devices, such as solar cells, photodetectors, and photonic modulators.[18–21]In addition, graphene can achieve wideband photodetection from ultraviolet to terahertz wavelengths due to its unique zero bandgap structure.[22,23]Furthermore, graphene-based photodetectors exhibit super-fast response speeds due to their ultra-high carrier mobility.[24]Unfortunately, the light absorption efficiency of monolayer graphene is only about 2.3% and usually lacks high photoresponsivity.[25]To generate higher photocurrent, it is possible to construct an internal electric field to separate photo-generated electron–hole pairs, thereby extending the carrier lifetime.[10,26]Therefore,by fabricating a vertical heterostructure device and combining the advantages of WSe2and graphene, it is promising to improve the overall performance of the photodetector.

    In the present research,we fabricated a high photodetection efficiency photodetector based on a graphene/WSe2vertical heterostructure.The device covered a layer of high lightabsorbing WSe2material on the graphene channel,which significantly enhanced the device’s light absorption.At the same time,we used the localized grating layer formed by the WSe2material to regulate the carrier concentration of the underlying graphene.At room temperature, the external quantum efficiency of the device reached 1.3×107%,and the photodetection efficiency reached 3.85×104A/W,which is 2–3 orders of magnitude higher than that of the WSe2photodetector.These results demonstrate that using WSe2material as the localized grating layer is an effective way to achieve high photoresponsivity and high external quantum efficiency.

    2.Experimental details

    2.1.Device fabrication

    The graphene/WSe2vdW heterostructure was fabricated using mechanical exfoliation technique.First, few layers graphene flake was exfoliated using 3M tape.Next, the graphene device was fabricated using layout design software(L-edit), electron beam lithography, and electron beam evaporation processes.Finally, WSe2thin film material is obtained through mechanical exfoliation and transferred onto the previously fabricated graphene device, resulting in the graphene/WSe2vertical device.

    2.2.Device characterization

    The morphology and thickness of the graphene/WSe2vdW heterostructure were measured using an atomic force microscope(AFM).The quality of the heterostructure device was characterized using a Raman spectrometer with a laser wavelength of 532 nm.The photoelectric performance was measured using a semiconductor parameter analyzer (Keithley 2400 and 2612B)in a dark room at room temperature and a laser source with a tunable wavelength of 365 nm–965 nm.

    3.Results and discussion

    3.1.Device structure and microscopic characterization

    Figure 1(a) shows a schematic diagram of the graphene/WSe2vertical heterostructure device on an Si/SiO2substrate.The device is obtained by mechanically exfoliating WSe2thin film material and transferring it onto a previously fabricated graphene device.Figure 1(b) shows an optical image of the graphene/WSe2heterostructure, where WSe2is used as the light-absorbing layer and the localized grating layer, and graphene as the conductive channel layer.The built-in electric field between graphene and WSe2can enhance the separation of electron–hole pairs and reduce the recombination probability.The morphology and thickness of the heterostructure device were characterized by atomic force microscopy (AFM).Figure 1(c) shows the AFM image of the graphene/WSe2vertical heterostructure device,where the orange dashed line represents WSe2, the red dashed line represents graphene, and the scale bar is 10 μm.The thickness information of the graphene/WSe2heterostructure device was extracted from the inset, where the thicknesses of WSe2and graphene were 11 nm and 7 nm,respectively.

    Figure 1(d)shows the Raman spectroscopy characterization results of the WSe2and the graphene/WSe2heterostructure region.For the pristine WSe2material, the Raman spectrum exhibits three prominent peaks: E2gat 249 cm?1,2LA(M) at 257 cm?1, and B2gat 308 cm?1, respectively.The Raman spectrum of the graphene/WSe2heterostructure region shows an additional characteristic peak of graphene at 1582.5 cm?1.This G peak originates from the E2gphonon mode,and the two-dimensional(2D)vibration mode’s characteristic peak is located at 2715.6 cm?1,corresponding to double phonon resonance.In the heterostructure region,the signal peak of graphene is much weaker than the Raman intensity of the WSe2material, due to the fact that the WSe2material is covered on top of graphene, causing it to receive much less Raman laser power.

    3.2.Electrical characterizations of the graphene/WSe2 heterostructure device

    Figures 2(a) and 2(b) show the output characteristics of the WSe2/h-BN heterostructure device at different gate voltages(Vg).As theVgincreases from 0 V to 50 V,the source–drain current(Ids)also increases,and the output characteristics exhibit a sub-linear behavior due to the Fermi level pinning effect between the metal electrode and the thin film material,as shown in the logarithmic coordinate plot in Fig.S1.As theVgvaries from?60 V to?10 V,the overall magnitude of theIdsincreases with the increase of theVg,corresponding to the transfer characteristic curve shown in Fig.S2, indicating that the WSe2/h-BN heterostructure device exhibits bipolar semiconductor characteristics.The electric field mobility(μFE)of the WSe2/h-BN heterostructure device is calculated using the following formula:

    whereμis the mobility of the device,Lis the channel length (5.4 μm),Wis the channel width (8.3 μm),εrepresents the vacuum permittivity (8.854×1012F/m),εrrepresents the relative permittivity of the material (3.9 for SiO2and 3.5 for h-BN), anddrepresents the thickness of SiO2(300 nm).Based on Eqs.(1)and(2),the electron(hole)mobility of the WSe2/h-BN heterostructure device at a source–drain voltage (Vds) of 1 V can be calculated as 7.20 cm2·V?1·s?1(25.17 cm2·V?1·s?1).

    Fig.2.Electrical characteristics of WSe2/h-BN heterostructure device and graphene/WSe2 heterostructure device under dark conditions.(a) Output characteristic curve of WSe2/h-BN heterostructure device with gate voltage ranging from 0 V to 50 V; (b) output characteristic curve with gate voltage ranging from ?60 V to ?10 V; (c) output characteristic curve of graphene/WSe2 heterostructure device with gate voltage ranging from 0 V to 90 V;(d)output characteristic curve with gate voltage ranging from ?90 V to 0 V.

    Figures 2(c) and 2(d) show the output characteristics of the heterostructure device as theVgvaries from 0 V to 90 V and from?90 V to 0 V,respectively.The results indicate Ohmic contact between graphene and the metal electrode without a Schottky barrier.The concentration of graphene conductive channel can be controlled by theVg.As theVgincreases from 0 V to 90 V,theIdsincreases.Conversely,as theVgincreases from?90 V to 0 V,theIdsdecreases.This is consistent with the transfer characteristics curve shown in Fig.S3, demonstrating the bipolar semiconductor behavior of the heterostructure device.

    Based on the above outstanding electrical performance,we further investigated the photodetection performance of WSe2/h-BN heterostructure devices.Figure 3(a) shows the output characteristics of the heterostructure device under visible light irradiation at 532 nm, withPinvalues ranging from 1.39 mW/cm2to 10.12 mW/cm2.As can be seen, the heterostructure device exhibits a large photocurrent at various light power densities, and the photocurrent increases with increasingPinvalues.WhenPinis 10.12 mW/cm2, theIdscan reach 5.74×10?6A, which is more than 5 μA higher than that under dark conditions.Figure 3(b) shows the dependence of the responsivity of the heterostructure device on theVdsand the incident light power density.The results show thatRsharply increases with increasing theVds, and reaches a maximum value of 1535.05 A/W atPin= 2.71 mW/cm2andVds=2 V.Figures 3(c) and 3(d) show the incident light power distribution curves of theRandD?of the heterostructure device,demonstrating good response characteristics of the WSe2/h-BN heterostructure device at various light power densities.Among them, whenPinis 1.39 mW/cm2and theIdsis 1 V, theRandD?can reach the highest values, which are 295.12 A/W and 4.19×109Jones,respectively.

    Next, we will delve into the photogating effect in the graphene/WSe2vertical heterostructure device and its origin, as shown in Fig.4(a).Taking the example of the graphene/WSe2vertical heterostructure device operating at a gate voltage ofVg<0 V,when WSe2and graphene come into contact with each other, due to the difference in carrier concentration and Fermi level,the holes in WSe2will diffuse towards graphene under the effect of carrier concentration gradient.Finally, under no external voltage, the diffusion and drift motions of the charge carriers are balanced, achieving dynamic equilibrium.In this state, an intrinsic electric field pointing from WSe2to graphene is generated in the depletion layer formed between them.By changing the external voltage,the width of the depletion layer and the strength of the intrinsic electric field can be further adjusted,thereby achieving the tuning of the heterostructure device’s performance.

    Fig.3.WSe2/h-BN heterostructure device: (a) output characteristic curves under different incident light intensities in dark conditions (wavelength λ =532 nm,Vg=0 V);(b)the 2D relationship between photoresponsivity and incident light power density and source–drain voltage(λ =532 nm,Vg=0 V);the variation of(c)photoresponsivity and(d)specific detectivity with incident light power density.

    Fig.4.Graphene/WSe2 vertical heterostructure device.Energy band diagrams of graphene/WSe2 vertical heterostructure devices under different gate voltages: (a) Vg <0 V and (b) Vg >0 V (with fixed incident wavelength of 365 nm, red represents holes and dark blue represents electrons);the schematic diagrams of(c)generation, (d)transfer, and(e)confinement of photoexcited electron–hole pairs.The upper layer is made of WSe2 material,the lower layer is made of graphene material,green circles represent electrons,red circles represent holes.

    Under dark conditions, the majority of theIdsin heterostructure devices comes from holes in graphene.When a 365-nm wavelength laser is irradiated on the heterostructure device,photo-generated electron–hole pairs are excited in both WSe2and graphene materials, as shown in Fig.4(c).Due to the formation of a built-in electric field from graphene to WSe2at the interface, the photogenerated electron–hole pairs are separated and move towards each material under the influence of the built-in electric field.Specifically,the holes in WSe2are transferred to the underlying graphene layer,while the photogenerated electrons in graphene are transferred to the upper WSe2layer,as shown in Fig.4(d).This process increases the hole concentration in the graphene conductive channel,and the holes drift under the influence of theVds,contributing to the increment of the photocurrent.In addition,due to the existence of the built-in electric field in the heterostructure device, the electrons transferred from graphene are confined to the WSe2layer, as shown in Fig.4(e).This confinement of electrons in the WSe2layer produces a modulation effect similar to the gate voltage.Under this strong coupling effect,electrons in the WSe2layer induce more holes to be generated in the graphene layer,thereby increasing the carrier concentration in the channel and improving the photo-detection performance of the heterostructure device by an order of magnitude.

    Based on the research of the electrical characteristics of heterostructure devices and the photoelectric properties of WSe2transistors,we continued to test the photo-detection performance of graphene/WSe2heterostructure devices under different conditions.When theVgwas 0 V,we tested the output characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination,as shown in Fig.5(a).With the increase of theVds,the photoelectric current of the heterostructure device also increased,indicating that the collection efficiency of photo-generated carriers gradually improved.At the same time, we also tested the transfer characteristic curve of the heterostructure device under dark conditions and 365-nm incident wavelength light illumination with a fixedVdsof 1 V,as shown in Fig.5(b).It can be seen that the photoelectric current of the heterostructure device under theVgregulation shows a trend of decreasing first and then increasing,indicating that the heterostructure device has bipolar semiconductor characteristics consistent with the experimental results under dark conditions.

    Fig.5.Graphene/WSe2 vertical heterostructure device: (a) output characteristics under dark and 365-nm wavelength light illumination (Vg = 0 V);(b) transfer characteristics under dark (Vds =1 V); (c) extracted photocurrent as a function of Vds (Vg =0 V, λ =365 nm); (d) the relationship between responsivity R,(e)detectivity D?,and(f)external quantum efficiency(EQE)with Vds.

    Figures 5(d)and 5(e)show the curves ofRandD?of the graphene/WSe2vertical heterostructure device as a function of source–drain voltage (Vds), respectively.The results indicate that theRandD?values of the device also increase with the increase ofVds.TheRandD?of the heterostructure device can be expressed by the following equations:[27–31]

    wherePin,A,andeare the incident optical power density,effective illuminated area,and electron charge.

    When the device is illuminated with 365-nm wavelength light at a power density of 16.75 mW/cm2and the source–drain voltage is 1 V,RandD?reach 1.34×104A/W and 2.21×109Jones,respectively.When the source–drain voltage is further increased to 2 V,theRandD?of the device are improved to 3.85×104A/W and 6.62×109Jones,respectively.In addition, to further improve the photoresponsivity of the heterostructure device, the gate voltage of the device can be increased to adjust the carrier concentration in the conductive channel.Furthermore, figure 5(f) demonstrates the variation of external quantum efficiency (EQE) with different source–drain voltages.The EQE is a dimensionless quantity that represents the ratio of collected electrons to incident photons in a device,and can be calculated using the following formula:

    whereRis the photoresponsivity,his the Planck constant(6.63×10?34J·s),λrepresents the wavelength of the incident laser,andcis the speed of light in vacuum.For the heterostructure device,the EQE reaches 4.6×104%at a source–drain voltage of?2 V.Continuing to increase the voltage to?2 V, the EQE increases to 1.3×107%, indicating that the light absorption efficiency can be improved by changing the source–drain voltage of the device.Finally,This is also comparable to those in previous works (supporting information,Table S1).

    4.Conclusion

    In summary, we demonstrated a graphene/WSe2vertical heterostructure based highly sensitive photodetector, where the WSe2layer plays a dual role of both the light absorption layer and the localized grating layer.The graphene conductive channel is induced to produce more charge carriers by capacitive coupling.Under the strong photogating effect,graphene/WSe2vertical heterostructure exhibits excellent optoelectronic properties at room temperature, with a detectivity and external quantum efficiency of 6.62×109Jones and 1.3×107%,respectively.Furthermore,the photoresponsivity reaches 3.85×104A/W,which is two to three orders of magnitude higher than that of theWSe2photodetector.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.11974379), the National Key Basic Research and Development Program of China (Grant No.2021YFC2203400), and Jiangsu Vocational Education Integrated Circuit Technology “Double-Qualified” Famous Teacher Studio(Grant No.2022-13).

    猜你喜歡
    張黎淑萍王燕
    Spin torque oscillator based on magnetic tunnel junction with MgO cap layer for radio-frequency-oriented neuromorphic computing
    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
    永恒的梁祝 永遠的蝴蝶
    一代鴻儒王應(yīng)麟
    月湖書生徐時棟
    喬淑萍:山城兒童的守護神
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    變臉
    絕情刀
    亚洲精品美女久久久久99蜜臀| 久久中文字幕一级| 丰满人妻熟妇乱又伦精品不卡| 日韩人妻精品一区2区三区| 纵有疾风起免费观看全集完整版| 欧美精品一区二区大全| 电影成人av| 麻豆av在线久日| 色精品久久人妻99蜜桃| 一级,二级,三级黄色视频| 欧美亚洲 丝袜 人妻 在线| 一级,二级,三级黄色视频| 国产免费福利视频在线观看| 男女之事视频高清在线观看| 黄频高清免费视频| 国产av精品麻豆| 黄色视频,在线免费观看| 黑丝袜美女国产一区| 国产一区二区三区在线臀色熟女 | 日日摸夜夜添夜夜添小说| 在线观看舔阴道视频| 国产亚洲精品一区二区www | 成人精品一区二区免费| 黑人操中国人逼视频| 国产精品 欧美亚洲| 国产成人欧美在线观看 | 熟女少妇亚洲综合色aaa.| 夫妻午夜视频| 久久午夜综合久久蜜桃| 日日摸夜夜添夜夜添小说| 中文字幕av电影在线播放| 中文字幕av电影在线播放| 日日摸夜夜添夜夜添小说| 亚洲成人手机| 老司机亚洲免费影院| 午夜激情av网站| 老汉色∧v一级毛片| 色在线成人网| 国产精品香港三级国产av潘金莲| 一进一出好大好爽视频| 男女床上黄色一级片免费看| 国产一区二区激情短视频| 性高湖久久久久久久久免费观看| 亚洲欧美一区二区三区黑人| 一边摸一边抽搐一进一小说 | 热99re8久久精品国产| 国产97色在线日韩免费| 黄色丝袜av网址大全| 美女福利国产在线| 久久精品亚洲精品国产色婷小说| 国产精品国产高清国产av | 日韩欧美国产一区二区入口| 亚洲美女黄片视频| 精品视频人人做人人爽| 国产精品免费一区二区三区在线 | 国产高清视频在线播放一区| 亚洲精品在线观看二区| 久久精品熟女亚洲av麻豆精品| 久久毛片免费看一区二区三区| 欧美激情 高清一区二区三区| 亚洲男人天堂网一区| 国产午夜精品久久久久久| 中文字幕另类日韩欧美亚洲嫩草| av网站免费在线观看视频| 国产精品偷伦视频观看了| 国产成人一区二区三区免费视频网站| 亚洲人成伊人成综合网2020| 国产单亲对白刺激| 国产高清国产精品国产三级| 一本综合久久免费| 丰满少妇做爰视频| 高清欧美精品videossex| 精品福利观看| 黄色 视频免费看| 色在线成人网| 99精品欧美一区二区三区四区| 久久国产精品大桥未久av| 欧美日韩成人在线一区二区| 老司机午夜十八禁免费视频| 色尼玛亚洲综合影院| 亚洲色图综合在线观看| 免费在线观看视频国产中文字幕亚洲| 亚洲欧美激情在线| 国产野战对白在线观看| 亚洲成人国产一区在线观看| 国产精品av久久久久免费| 汤姆久久久久久久影院中文字幕| 99久久国产精品久久久| e午夜精品久久久久久久| av一本久久久久| 9191精品国产免费久久| 一级a爱视频在线免费观看| 久久婷婷成人综合色麻豆| 国产精品麻豆人妻色哟哟久久| 国产一卡二卡三卡精品| 黑人巨大精品欧美一区二区mp4| 午夜精品国产一区二区电影| 国产淫语在线视频| 国产午夜精品久久久久久| 亚洲欧美一区二区三区黑人| 又大又爽又粗| 欧美日韩福利视频一区二区| 熟女少妇亚洲综合色aaa.| 少妇猛男粗大的猛烈进出视频| 水蜜桃什么品种好| 男人舔女人的私密视频| 一个人免费看片子| 午夜福利,免费看| 亚洲欧美一区二区三区黑人| 日本一区二区免费在线视频| 中文字幕最新亚洲高清| av电影中文网址| 老汉色∧v一级毛片| 免费黄频网站在线观看国产| 久久av网站| 欧美激情高清一区二区三区| av网站免费在线观看视频| 久久这里只有精品19| 高清在线国产一区| 在线观看舔阴道视频| 在线观看www视频免费| 国产一区有黄有色的免费视频| 亚洲久久久国产精品| 亚洲精品中文字幕一二三四区 | 999精品在线视频| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 男女免费视频国产| 成年人黄色毛片网站| 国产精品免费大片| 久久青草综合色| 老司机在亚洲福利影院| 大型黄色视频在线免费观看| 少妇被粗大的猛进出69影院| 亚洲av电影在线进入| 高清毛片免费观看视频网站 | 久久婷婷成人综合色麻豆| 国产又色又爽无遮挡免费看| 五月开心婷婷网| 色精品久久人妻99蜜桃| 精品国产一区二区久久| 国产精品 欧美亚洲| 欧美精品啪啪一区二区三区| 亚洲成人免费av在线播放| 精品人妻熟女毛片av久久网站| 日本av免费视频播放| 久久久精品94久久精品| 欧美国产精品va在线观看不卡| 成人特级黄色片久久久久久久 | 国产一区二区三区综合在线观看| 母亲3免费完整高清在线观看| 成人国产av品久久久| 国产深夜福利视频在线观看| 精品乱码久久久久久99久播| 亚洲一码二码三码区别大吗| 色婷婷av一区二区三区视频| 天堂8中文在线网| 九色亚洲精品在线播放| 日本欧美视频一区| 久久人妻熟女aⅴ| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 午夜两性在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲av电影在线进入| 91国产中文字幕| 午夜久久久在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产成人欧美| 欧美黑人精品巨大| 成在线人永久免费视频| 国产精品成人在线| 亚洲第一欧美日韩一区二区三区 | 久久久精品区二区三区| 丝袜喷水一区| 91精品三级在线观看| 国产精品久久久久久人妻精品电影 | 精品熟女少妇八av免费久了| 国产精品久久电影中文字幕 | 久久午夜亚洲精品久久| 精品久久蜜臀av无| 丁香六月欧美| 亚洲熟女毛片儿| 午夜福利欧美成人| 俄罗斯特黄特色一大片| 欧美成狂野欧美在线观看| 午夜激情久久久久久久| 亚洲欧美一区二区三区久久| 黄色a级毛片大全视频| 一进一出抽搐动态| 久久中文字幕人妻熟女| 亚洲精品在线观看二区| 黄色毛片三级朝国网站| av网站免费在线观看视频| 国产精品香港三级国产av潘金莲| 巨乳人妻的诱惑在线观看| 99国产精品免费福利视频| 日韩大码丰满熟妇| svipshipincom国产片| 中文字幕精品免费在线观看视频| www.自偷自拍.com| 亚洲久久久国产精品| 老鸭窝网址在线观看| av福利片在线| 成人18禁高潮啪啪吃奶动态图| 变态另类成人亚洲欧美熟女 | 欧美激情 高清一区二区三区| 51午夜福利影视在线观看| 国产一区二区在线观看av| av国产精品久久久久影院| 精品国产超薄肉色丝袜足j| 人妻 亚洲 视频| 国产成人精品无人区| 精品久久久久久电影网| 黄片播放在线免费| 国产精品98久久久久久宅男小说| 亚洲成人免费av在线播放| 老司机影院毛片| 三级毛片av免费| 国产精品电影一区二区三区 | 亚洲国产欧美日韩在线播放| 国产伦理片在线播放av一区| av超薄肉色丝袜交足视频| 十分钟在线观看高清视频www| 美女福利国产在线| 亚洲 国产 在线| 女性生殖器流出的白浆| 欧美乱妇无乱码| 最近最新中文字幕大全电影3 | 久久性视频一级片| 久久ye,这里只有精品| 欧美日韩av久久| 波多野结衣av一区二区av| 极品教师在线免费播放| 免费在线观看黄色视频的| 人人妻人人添人人爽欧美一区卜| 亚洲欧美日韩另类电影网站| 黄片小视频在线播放| 国产精品av久久久久免费| 一级,二级,三级黄色视频| 欧美一级毛片孕妇| 久久精品亚洲熟妇少妇任你| 日本黄色视频三级网站网址 | 亚洲熟女毛片儿| av线在线观看网站| 日韩三级视频一区二区三区| 久久性视频一级片| 亚洲情色 制服丝袜| 在线观看www视频免费| 高清视频免费观看一区二区| 黄片大片在线免费观看| 久久午夜综合久久蜜桃| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 制服诱惑二区| 国产人伦9x9x在线观看| 黄色成人免费大全| 国产一卡二卡三卡精品| 嫁个100分男人电影在线观看| av一本久久久久| 亚洲精品在线美女| 亚洲熟妇熟女久久| 如日韩欧美国产精品一区二区三区| av一本久久久久| 亚洲欧美日韩另类电影网站| 亚洲精品一二三| 亚洲色图 男人天堂 中文字幕| 脱女人内裤的视频| 久久精品国产a三级三级三级| 91av网站免费观看| 亚洲国产欧美在线一区| 9热在线视频观看99| 午夜福利乱码中文字幕| 最新的欧美精品一区二区| 91老司机精品| 亚洲精品中文字幕在线视频| 99re6热这里在线精品视频| 精品国产乱码久久久久久小说| 国产精品电影一区二区三区 | 新久久久久国产一级毛片| 欧美激情高清一区二区三区| 一级片'在线观看视频| 精品福利观看| 亚洲av美国av| 午夜精品久久久久久毛片777| 亚洲 欧美一区二区三区| 嫩草影视91久久| 精品国产乱码久久久久久男人| 夜夜夜夜夜久久久久| 国产老妇伦熟女老妇高清| 久久精品aⅴ一区二区三区四区| 日韩大码丰满熟妇| 人人澡人人妻人| 每晚都被弄得嗷嗷叫到高潮| 日韩熟女老妇一区二区性免费视频| 在线观看免费日韩欧美大片| 欧美久久黑人一区二区| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 成年女人毛片免费观看观看9 | 久久青草综合色| av天堂在线播放| 大型av网站在线播放| 大片电影免费在线观看免费| 欧美精品亚洲一区二区| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 丰满少妇做爰视频| 日韩精品免费视频一区二区三区| 一级,二级,三级黄色视频| 91老司机精品| 成人国产一区最新在线观看| 香蕉丝袜av| 亚洲精品国产一区二区精华液| 精品少妇一区二区三区视频日本电影| 美女高潮喷水抽搐中文字幕| 无人区码免费观看不卡 | 国产一区二区三区在线臀色熟女 | 亚洲精品美女久久久久99蜜臀| 桃花免费在线播放| 色婷婷久久久亚洲欧美| 18禁国产床啪视频网站| 午夜福利乱码中文字幕| 91国产中文字幕| 精品高清国产在线一区| 国产xxxxx性猛交| a级毛片在线看网站| 久久久久久久久免费视频了| 国产精品影院久久| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 亚洲成人免费电影在线观看| 女性生殖器流出的白浆| 美女扒开内裤让男人捅视频| 亚洲三区欧美一区| 啦啦啦 在线观看视频| 三级毛片av免费| 女性被躁到高潮视频| 欧美激情 高清一区二区三区| 别揉我奶头~嗯~啊~动态视频| 久久精品亚洲熟妇少妇任你| 亚洲,欧美精品.| 日本wwww免费看| 亚洲专区国产一区二区| 女人久久www免费人成看片| 日本vs欧美在线观看视频| 国产老妇伦熟女老妇高清| 欧美黑人欧美精品刺激| 性少妇av在线| 欧美日韩精品网址| 亚洲精品美女久久av网站| 久久精品国产99精品国产亚洲性色 | 一区二区av电影网| 夜夜骑夜夜射夜夜干| 久久中文看片网| 色婷婷av一区二区三区视频| 国产精品1区2区在线观看. | 丁香六月天网| 亚洲色图 男人天堂 中文字幕| 老司机亚洲免费影院| 十八禁网站网址无遮挡| 婷婷丁香在线五月| 天堂俺去俺来也www色官网| 叶爱在线成人免费视频播放| 国产亚洲午夜精品一区二区久久| 少妇粗大呻吟视频| 天天操日日干夜夜撸| av国产精品久久久久影院| 国产精品久久久av美女十八| 国产精品 国内视频| 亚洲中文日韩欧美视频| 欧美黑人精品巨大| 中文字幕人妻熟女乱码| a级毛片黄视频| 日本黄色日本黄色录像| 超色免费av| 淫妇啪啪啪对白视频| 欧美日韩黄片免| 99国产综合亚洲精品| 色综合欧美亚洲国产小说| 免费在线观看影片大全网站| 69av精品久久久久久 | 男女床上黄色一级片免费看| 国产97色在线日韩免费| 在线观看免费视频日本深夜| 亚洲性夜色夜夜综合| 青青草视频在线视频观看| 在线观看一区二区三区激情| 制服诱惑二区| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| 亚洲成国产人片在线观看| 欧美亚洲日本最大视频资源| 免费观看av网站的网址| 精品少妇久久久久久888优播| 日本欧美视频一区| 国产av又大| 亚洲午夜精品一区,二区,三区| 十八禁网站网址无遮挡| 欧美另类亚洲清纯唯美| 黑人巨大精品欧美一区二区蜜桃| 中国美女看黄片| netflix在线观看网站| 1024香蕉在线观看| 日韩中文字幕视频在线看片| 丰满饥渴人妻一区二区三| 免费女性裸体啪啪无遮挡网站| 一级毛片女人18水好多| 国产又爽黄色视频| 三级毛片av免费| 午夜激情av网站| 亚洲性夜色夜夜综合| 我的亚洲天堂| 天天影视国产精品| 一进一出抽搐动态| 中文亚洲av片在线观看爽 | 天天添夜夜摸| 国产一区二区 视频在线| 在线观看一区二区三区激情| 99香蕉大伊视频| 黄色成人免费大全| 肉色欧美久久久久久久蜜桃| 午夜免费鲁丝| 久久久精品免费免费高清| 可以免费在线观看a视频的电影网站| 亚洲国产成人一精品久久久| 亚洲精品自拍成人| 天天躁日日躁夜夜躁夜夜| 国产精品二区激情视频| 欧美另类亚洲清纯唯美| 欧美精品av麻豆av| 亚洲avbb在线观看| www.自偷自拍.com| 男人操女人黄网站| 午夜激情av网站| 久久中文字幕人妻熟女| 精品少妇久久久久久888优播| 国产主播在线观看一区二区| 99久久精品国产亚洲精品| 亚洲国产欧美日韩在线播放| 久久久久久久久久久久大奶| 欧美乱码精品一区二区三区| 啦啦啦 在线观看视频| 亚洲情色 制服丝袜| 在线永久观看黄色视频| 大片电影免费在线观看免费| 极品少妇高潮喷水抽搐| 一区二区av电影网| 久久久久久免费高清国产稀缺| 亚洲一区二区三区欧美精品| 曰老女人黄片| 亚洲一码二码三码区别大吗| 香蕉久久夜色| 日日摸夜夜添夜夜添小说| 精品人妻在线不人妻| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 18在线观看网站| 色婷婷久久久亚洲欧美| 亚洲性夜色夜夜综合| 久久99热这里只频精品6学生| 欧美黑人精品巨大| 日韩大片免费观看网站| 纯流量卡能插随身wifi吗| 久久性视频一级片| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av | 久久久久网色| 欧美激情高清一区二区三区| 精品高清国产在线一区| 大香蕉久久网| 日日摸夜夜添夜夜添小说| a级片在线免费高清观看视频| 亚洲第一欧美日韩一区二区三区 | 国产精品自产拍在线观看55亚洲 | 激情在线观看视频在线高清 | av网站免费在线观看视频| 99国产精品一区二区三区| 亚洲av电影在线进入| 色综合婷婷激情| 欧美日本中文国产一区发布| 两个人看的免费小视频| 国产欧美日韩一区二区三| 老司机午夜福利在线观看视频 | 狠狠狠狠99中文字幕| 一本综合久久免费| 亚洲av电影在线进入| 国产1区2区3区精品| 啦啦啦 在线观看视频| 久久热在线av| 欧美老熟妇乱子伦牲交| 法律面前人人平等表现在哪些方面| 丁香六月天网| 色婷婷av一区二区三区视频| 日韩制服丝袜自拍偷拍| 亚洲天堂av无毛| 999精品在线视频| 免费观看a级毛片全部| 老汉色∧v一级毛片| 久久性视频一级片| 一边摸一边做爽爽视频免费| 亚洲av国产av综合av卡| 亚洲精品一卡2卡三卡4卡5卡| cao死你这个sao货| 色老头精品视频在线观看| 亚洲av日韩在线播放| 欧美日韩av久久| 最近最新免费中文字幕在线| 丝袜美足系列| 国产精品国产av在线观看| 色综合欧美亚洲国产小说| 欧美av亚洲av综合av国产av| 精品欧美一区二区三区在线| 99re在线观看精品视频| 黄色片一级片一级黄色片| 岛国在线观看网站| 久久人妻福利社区极品人妻图片| 99精品在免费线老司机午夜| h视频一区二区三区| 亚洲精品乱久久久久久| 亚洲成人免费av在线播放| 久久久久久亚洲精品国产蜜桃av| 日韩成人在线观看一区二区三区| 亚洲伊人久久精品综合| 国产深夜福利视频在线观看| 亚洲人成伊人成综合网2020| 免费看a级黄色片| 亚洲免费av在线视频| 搡老岳熟女国产| 人妻久久中文字幕网| 久久精品aⅴ一区二区三区四区| 夫妻午夜视频| 国产不卡av网站在线观看| 久久久久精品国产欧美久久久| 久久中文看片网| 午夜免费鲁丝| 亚洲精品粉嫩美女一区| 成人精品一区二区免费| 午夜福利免费观看在线| 咕卡用的链子| 免费观看av网站的网址| 欧美性长视频在线观看| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| 在线看a的网站| 欧美精品亚洲一区二区| 免费看十八禁软件| 在线观看免费视频日本深夜| 免费人妻精品一区二区三区视频| 在线观看www视频免费| 久9热在线精品视频| 18禁观看日本| 国产成人av教育| 国产男靠女视频免费网站| 十分钟在线观看高清视频www| 丝袜喷水一区| 色综合欧美亚洲国产小说| 国产主播在线观看一区二区| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一二三| 黑人欧美特级aaaaaa片| 亚洲视频免费观看视频| 亚洲欧美日韩高清在线视频 | 中文字幕av电影在线播放| av有码第一页| 一本综合久久免费| 亚洲一码二码三码区别大吗| 成年版毛片免费区| 交换朋友夫妻互换小说| 久热爱精品视频在线9| 大香蕉久久成人网| 老司机靠b影院| 国产成人一区二区三区免费视频网站| 精品亚洲成a人片在线观看| 大片电影免费在线观看免费| av视频免费观看在线观看| 天堂8中文在线网| 女人久久www免费人成看片| 午夜91福利影院| 亚洲欧美一区二区三区黑人| 欧美日韩精品网址| 国产黄频视频在线观看| 在线亚洲精品国产二区图片欧美| 亚洲伊人久久精品综合| 丁香欧美五月| 在线播放国产精品三级| 黄片小视频在线播放| 国精品久久久久久国模美| 国产av精品麻豆| 色老头精品视频在线观看| 超色免费av| 大型黄色视频在线免费观看| 可以免费在线观看a视频的电影网站| 一区二区日韩欧美中文字幕| 91老司机精品| 国产成人精品在线电影| 老熟妇乱子伦视频在线观看| 这个男人来自地球电影免费观看| 999久久久精品免费观看国产| 18禁美女被吸乳视频| 亚洲欧美精品综合一区二区三区| 成人黄色视频免费在线看| 新久久久久国产一级毛片| 黑人猛操日本美女一级片| 欧美黑人欧美精品刺激| 午夜日韩欧美国产| 国产免费福利视频在线观看| 黑人巨大精品欧美一区二区mp4| 国产欧美日韩综合在线一区二区| 丝袜喷水一区| 免费av中文字幕在线| 亚洲精品美女久久av网站| 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 热re99久久精品国产66热6|