• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management

    2022-08-31 09:55:56MinYue岳敏YanWang王燕HuiLiLiang梁會(huì)力andZengXiaMei梅增霞
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王燕

    Min Yue(岳敏) Yan Wang(王燕) Hui-Li Liang(梁會(huì)力) and Zeng-Xia Mei(梅增霞)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Songshan Lake Materials Laboratory,Dongguan 523808,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perovskite/Si tandem solar cells,simulation,TOPCon,CsPbI3

    1. Introduction

    Crystalline silicon (c-Si) solar cells have occupied over 90% photovoltaic market due to their low cost, high efficiency and mature industrialization. The power conversion efficiency(PCE)of current world record cell for single-junction c-Si solar cells is 26.7% which is close to the 29.4% efficiency limit of Si.[1,2]In order to break through this efficiency ceiling,one approach is to fabricate multi-junction solar cells which can effectively enhance the utilization of the solar spectrum by reducing the thermalization loss. The theoretical efficiency of Si based two-junction solar cells can exceed 45% which is quite attractive.[3]The calculation result manifests that Si (Eg=1.12 eV) based TSC requires an absorption material withEg~1.70 eV in the top cell so as to maximize the efficiency.[3]Halide perovskites with tunable bandgap(1.5 eV–2.3 eV),high absorption coefficient and good defect tolerance,[4,5]have rapidly enhanced the PCE from 3.8% to 25.7% in the last ten years.[6,7]The bandgap of perovskite can be ideally adjusted to 1.67 eV–1.75 eV by changing the composition of ABX3.[8]

    It is quite incredible that the PCE of perovskite/Si(PVK/Si)TSCs has developed extremely fast, from 13.7%in 2015[9]to 29.8% in 2021,[10]exceeding that of the c-Si solar cells. In high-efficiency PVK/Si TSCs,silicon heterojunction (SHJ) solar cell is usually chosen as the bottom cell because of its high PCE and high open-circuit voltage(Voc).[11]However, the SHJ totally distinguishes from the mainstream passivated emitter and rear cell (PERC), leading to a quite high levelized cost of electricity (LCOE). The tunnel oxide passivated contact(TOPCon)silicon solar cell is another outstanding candidate for the bottom Si solar cell which is compatible better with existing PERC production lines and has manifested a high record efficiency of 26.0%.[12]The LCOE of PVK/TOPCon TSCs has been calculated to be lower than PVK/SHJ TSCs for both utility and residential installation by Fraunhofer ISE.[13]Currently,the researches of PVK/Si TSCs mainly focus on organic-inorganic hybrid perovskite due to its relatively high efficiency. However, its thermal stability is still a huge challenge.[14]On the other hand,the all inorganic perovskite CsPbI3has been demonstrated to be more superior thermal stability and incredibly increased PCE from 2.9% to 20.37% in 6 years.[15,16]Meanwhile, the optimal bandgap of CsPbI3is 1.72 eV,[17]which is suitable for the application of PVK/Si TSCs.

    To further improve the PCE of PVK/Si TSCs,one effective way is to reduce optical loss by employing light trapping structures. Upright pyramid structure is the most common texture in silicon solar cells, and achieved by etching silicon wafer in a mixed alkali solution.[18]In the PVK/Si TSCs,the upright pyramid structure is usually employed in rear side of silicon solar cell while the front side is polished because of the difficulty in obtaining uniform perovskite film by spin coating on textured surface.[19,20]However, the front planar surface of silicon results in poor light tapping capability. In order to cope with this challenge, upright pyramidal polydimethylsiloxane (PDMS) structure has been introduced on the top of TSCs.[21]Micrometer-thick perovskite top cell was spincoated on fully upright pyramidal textured silicon solar cell to avoid shunt paths.[20]Double-side-textured silicon cell with sub-micrometer pyramids was employed in order to minimize the thickness of perovskite film by solution process.[22]Furthermore, the inverted pyramid structure was proposed as a more promising texture, which has a lower reflectivity than upright pyramid.[23,24]It was introduced into the PVK/Si TSC by adding an inverted pyramidal PDMS antireflective coating, which would complicate the fabrication process.[25]Directly texturing on Si seems a more practical approach to mass production.[26]Nevertheless,such a research is still relatively limited,and more attention should be paid to realizing the application of such an excellent texture to PVK/Si TSC.

    Herein, we design the optics of CsPbI3/TOPCon TSCs based on optical simulation that combines transfer matrix method(TMM)with ray-tracing method.The optical losses of different surface structures of silicon bottom solar cells such as rear-side upright pyramid(r-UP),bifacial upright pyramid(b-UP), and bifacial inverted pyramid (b-IP), are systematically discussed. In order to further optimize the surface structure of silicon, the dependence of optical loss on the bottom angle of rear-side b-IP is investigated particularly. Meanwhile,the photogenerated current densities of TSCs are calculated by varying the thickness of CsPbI3layer and Si bulk considering the fact that the current density matching is a key issue in two-terminal TSCs. Moreover, through comparing the optical performances of various transparent conductive oxide(TCO)layers,we find the hydrogenated indium oxide(IO:H)a more attractive front TCO candidate. Finally, the PCE of the CsPbI3/TOPCon TSC can achieve 31.78% when the best matched current density is realized.

    2. Device simulation parameters

    The sketches of CsPbI3/TOPCon TSCs with various textures are shown in Fig. 1. The material, function, and thickness of each layer are listed in Table 1 (their refractive indexes and extinction coefficients can be found in Fig. S1 in Supporting information. Both upright pyramid and inverted pyramid are 2-μm wide with an angle of 54.7?, consistent with our previous experimental data.[23]As the thickness of SiOxlayer is extremely thin (~1.5 nm), its influence can be reasonably ignored during the optical simulation. The rear and front ITO electrodes possess an identical carrier concentration of 2.0×1020cm?3in that too high carrier concentration will result in high free carrier absorption at long wavelengths. The interlayer ITO has a carrier concentration of 4.9×1020cm?3for the sake of favorable charge transfer between the subcells.[27]

    Table 1. List of simulation parameters.

    The optical properties of the CsPbI3/TOPCon TSCs were simulated by the widely used ray-tracing method and TMM for the Si thick layer and other thin layers,respectively.[35]The origin code of simulation can be acquired from website.[36]The normal incidence AM1.5G spectrum (from 300 nm to 1200 nm in steps of 10 nm) was chosen as the illuminant.In order to calculate the photogenerated current density, the internal quantum efficiency (IQE) was assumed to be 100%.Thus,the photogenerated current density could be determined by integrating the photon flux of the AM1.5G solar spectrum with the corresponding absorptance, expressed as the following equation:[32]

    2.1. Textures

    Fig.2. Optical properties of CsPbI3/TOPCon TSCs with three different textures,showing(a)absorptance of CsPbI3 layer and Si bulk,(b)reflectance of TSCs,(c)transmittance of TSCs,and(d)current densities of absorbed or lost lights(in units mA/cm2).

    2.2. Bottom angle of rear-side inverted pyramid

    Fig. 3. (a) Photogenerated current density of CsPbI3 layer and Si bulk with respect to θ; (b) current density loss of TSC triggered by reflection and transmission versus θ; (c) wavelength-dependent reflectance, and (d) transmittance of TSC for different values of θ; absorptance of (e) CsPbI3 layer and(f)Si bulk for different values of θ.

    wherenSiandαSiare the refractive index and incident angle of Si,njandαjare the refractive index and incident/refraction angle of the layer j between Si and air,n0andα0are the refractive index and refraction angle of the air, respectively. In other words, the incident angle in Si for the total internal reflection at the top or bottom interface of TSCs only depends onnSiandn0. Our previous work have illustrated that whenθ>4?,the reflection in the front interface of TSCs will generally decrease with the increase ofθbecause of the enhanced probability of total internal reflection;whenθ<24?,the transmission in the rear interface of TSC will be suppressed for the same reason.[39]Therefore,a smallθcan make a trade-off between reflection and transmission, contributing to a higherJGSi.Thus,in order to maximize the optical harvest in PVK/Si TSCs, the rear side texture should become smoother, which will be simultaneously benefciial to the passivation of the rearside surface of Si subcell.

    2.3. Thickness of CsPbI3 layer and Si bulk

    Current density matching between the top subcell and bottom subcell is one of the most critical issues in twoterminal TSCs.In order to maximize the series current density of the CsPbI3/TOPCon TSCs, the thickness value of CsPbI3layer and Si bulk should be delicately modulated to achieve a positive match. Asymmetrical b-IP with a bottom angle 10?of rear-side was chosen for the texture of Si subcell in this subsection. The thickness of CsPbI3layer varies from 400 nm to 2200 nm in steps of 20 nm, while the Si bulk’s ranges from 40μm to 210μm in steps of 10μm.

    Fig. 4. Simulated optical performances of CsPbI3/TOPCon TSCs with different values of thickness of CsPbI3 layer and Si bulk. (a) Photogenerated currentdensity of CsPbI3 layer; (b)JG CsPbI3 andJG Si,withSi bulk thickness fxiedat180μm; (c)absorption spectrum ofCsPbI3 layer andSi bulk,withthickness of Si bulk fxied at180μm butthicknessof CsPbI3 layer varied; (d)photogeneratedcurrent density ofSi bulk; (e)JGCsPbI3 and JGSi,withthickness of CsPbI3 layer fxied at 400 nm;(f)absorptionspectra of CsPbI3 layer andSibulk,with thickness of CsPbI3layer fxied at 400 nmbut thickness of Si bulk varied.

    Basically, the short-circuit current density (Jsc) of the entire two-terminal TSC reaches up to the lower one of the two subcells, bringing out the key problem of current matching. Figure 5 exhibits theJscof CsPbI3/TOPCon TSCs and thickness of both CsPbI3layer and Si bulk for current density matching. When the CsPbI3layer is thinner than 600 nm,Jscis unilaterally restricted by theJGCsPbI3, indicating that even 40-μm Si is thick enough to match with CsPbI3layer. With the increase of CsPbI3layer thickness, the Si bulk should be thickened correspondingly. At present, the thickness of industrial used Czochralski (CZ) Si wafer is~180 μm, which is absolutely thick enough to match with a 2000-nm CsPbI3layer. According to previously published experimental data,the thickness of CsPbI3layer is usually less than 1000 nm as a result of crystallization quality, implying that theJscof the CsPbI3/TOPCon TSC will be mainly determined by the thickness of CsPbI3layer. On the other hand, the bottom Si substrate has suffciient space to become thinner. The maximumJsccan reach to 19.79 mA/cm2when the thickness of Si bulk and CsPbI3layer are 180μm and 2180 nm,respectively.

    Fig. 5. (a) Short-circuit current density of CsPbI3/TOPCon TSC and (b)matched thickness of CsPbI3 layer and Si bulk.

    2.4. Front TCO

    The optimized structure of CsPbI3/TOPCon TSC is shown in Fig.6 according to the discussion above and its optical loss analysis. With the excellent bifacial texture and the matched thickness of CsPbI3layer and Si bulk,the whole optical loss can be reduced to 6.53 mA/cm2. Of these various optical losses,parasitic absorption loss from the front ITO occupies the largest proportion,which reaches to 1.80 mA/cm2.Therefore,restraining the parasitic absorption in the top TCO layer is an effective way to further enhance the optical performance of the CsPbI3/TOPCon TSC.

    Fig.6. Optical performance of optimized CsPbI3/TOPCon TSC.(a)Simulated structure with optimized texture and absorber thickness;(b)photogenerated current density and optical losses of CsPbI3/TOPCon TSC(in units mA/cm2).

    Fig.7.Optical performances of different front TCOs,showing curves of wavelength dependent(a)n and(b)k of different TCO materials,(c)absorptance of front TCO layers,and(d)absorptance of CsPbI3 layer and Si bulk.

    2.5. Device performance

    Fig.8.Simulated EQE of subcells and optical losses(parasitic absorption,reflectance,and transmittance)of optimized CsPbI3/TOPCon TSC,expressed

    Table 2. Simulated photovoltaic parameters of CsPbI3/TOPCon TSC.

    3. Conclusions

    The optical performance of CsPbI3/TOPCon twoterminal TSCs is simulated by the combination of ray-tracing and TMM. Compared with planar front surface, bifacial texture can significantly enhance the absorption of both CsPbI3layer and Si bulk due to the reduced front reflection triggered off by the front texture. Meanwhile, the b-IP textured TSC has a more superior photogenerated current density than b-UP

    Acknowledgements

    The authors would like to thank Prof. Xiaolong Du and Dr. Yaoping Liu for the inspiring discussion.

    Project supported by the National Natural Science Foundation of China(Grant Nos.61904201 and 11875088)and the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019B1515120057).

    猜你喜歡
    王燕
    英語(yǔ)學(xué)習(xí)活動(dòng)觀在高中英語(yǔ)閱讀課堂的實(shí)踐與思考
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    智取“私了協(xié)議”
    Stratigraphy of late Quaternary deposits in the mid-western North Yellow Sea*
    購(gòu)房款還未還清 又騙賣主26萬(wàn)
    方圓(2017年17期)2017-10-11 10:27:26
    The progress of treatment of children’s psoriasis
    淺談?dòng)⒄Z(yǔ)聽(tīng)力課堂問(wèn)題與對(duì)策
    卷宗(2016年5期)2016-08-02 02:50:18
    醫(yī)學(xué)論文英文摘要中否定的對(duì)比研究
    卷宗(2016年5期)2016-08-02 02:50:18
    走錯(cuò)門道
    故事林(2008年16期)2008-05-14 15:38:00
    久久国产精品男人的天堂亚洲| 亚洲成av片中文字幕在线观看| 亚洲av电影在线进入| 一边摸一边抽搐一进一小说| 国内久久婷婷六月综合欲色啪| 无限看片的www在线观看| 嫩草影视91久久| 88av欧美| tocl精华| 国产精品一区二区免费欧美| 麻豆久久精品国产亚洲av| 丰满的人妻完整版| 久久九九热精品免费| 亚洲国产中文字幕在线视频| av免费在线观看网站| 欧美在线黄色| 夜夜爽天天搞| 校园春色视频在线观看| 亚洲专区国产一区二区| 18禁国产床啪视频网站| 亚洲国产精品成人综合色| www国产在线视频色| 亚洲成人久久爱视频| 天堂影院成人在线观看| 动漫黄色视频在线观看| 老汉色av国产亚洲站长工具| 日本一区二区免费在线视频| 精品国产国语对白av| 精品电影一区二区在线| 叶爱在线成人免费视频播放| 欧美成人免费av一区二区三区| 国产伦在线观看视频一区| 国产男靠女视频免费网站| 亚洲中文av在线| 后天国语完整版免费观看| 国产在线精品亚洲第一网站| 久久久久久九九精品二区国产 | 19禁男女啪啪无遮挡网站| 最近最新免费中文字幕在线| 国产精品久久电影中文字幕| 午夜激情av网站| 日韩 欧美 亚洲 中文字幕| 香蕉丝袜av| 国产亚洲欧美98| 亚洲午夜理论影院| 久久国产乱子伦精品免费另类| 亚洲狠狠婷婷综合久久图片| 亚洲免费av在线视频| 亚洲av片天天在线观看| 美女免费视频网站| 91av网站免费观看| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| 黄色女人牲交| 久久精品91无色码中文字幕| 淫妇啪啪啪对白视频| 一边摸一边做爽爽视频免费| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 窝窝影院91人妻| 亚洲精品在线美女| 国产精品一区二区三区四区久久 | 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 亚洲中文字幕日韩| 久久久水蜜桃国产精品网| 在线观看日韩欧美| 久久久久免费精品人妻一区二区 | 久9热在线精品视频| 黄色a级毛片大全视频| 久久久久久免费高清国产稀缺| 久久久久久久久久黄片| 可以在线观看的亚洲视频| 日日爽夜夜爽网站| 国产野战对白在线观看| 亚洲国产精品成人综合色| 日本在线视频免费播放| 国产一区二区三区视频了| 国产精品一区二区三区四区久久 | 国产精品亚洲一级av第二区| 免费高清视频大片| 99久久精品国产亚洲精品| 久久久久久久久中文| 欧美又色又爽又黄视频| 最近最新中文字幕大全免费视频| 日韩欧美国产在线观看| 精品国产超薄肉色丝袜足j| 美女高潮喷水抽搐中文字幕| 国产麻豆成人av免费视频| 在线国产一区二区在线| 日韩 欧美 亚洲 中文字幕| 欧美黑人巨大hd| 国内久久婷婷六月综合欲色啪| 亚洲人成网站在线播放欧美日韩| 国产黄a三级三级三级人| 女警被强在线播放| 91在线观看av| 国产精品久久久人人做人人爽| 日韩高清综合在线| 黄片播放在线免费| 国产男靠女视频免费网站| 精品免费久久久久久久清纯| 两个人看的免费小视频| 欧美又色又爽又黄视频| 日本 欧美在线| 制服人妻中文乱码| 国产一级毛片七仙女欲春2 | 一级黄色大片毛片| 国产一区二区激情短视频| 无人区码免费观看不卡| 美女国产高潮福利片在线看| 草草在线视频免费看| 日韩大码丰满熟妇| 精品高清国产在线一区| 婷婷六月久久综合丁香| 一区二区三区精品91| 中文字幕久久专区| 日韩成人在线观看一区二区三区| 国产精品 国内视频| 欧美久久黑人一区二区| 人人妻,人人澡人人爽秒播| 日韩欧美免费精品| 色综合欧美亚洲国产小说| 国语自产精品视频在线第100页| 在线永久观看黄色视频| 人人妻人人澡人人看| 一本大道久久a久久精品| 欧美黑人精品巨大| 日韩大码丰满熟妇| 在线观看舔阴道视频| 亚洲第一av免费看| a在线观看视频网站| 精品国产乱子伦一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影| 在线播放国产精品三级| 亚洲全国av大片| 精品国产乱码久久久久久男人| 精品久久久久久成人av| 每晚都被弄得嗷嗷叫到高潮| 日本a在线网址| 午夜成年电影在线免费观看| 免费在线观看影片大全网站| 亚洲精品中文字幕一二三四区| 精品久久久久久成人av| 大型黄色视频在线免费观看| 男女视频在线观看网站免费 | 亚洲一区二区三区色噜噜| 国产精品日韩av在线免费观看| 成年免费大片在线观看| 午夜两性在线视频| 免费看美女性在线毛片视频| 国产aⅴ精品一区二区三区波| 老熟妇仑乱视频hdxx| 亚洲性夜色夜夜综合| 欧美日韩亚洲国产一区二区在线观看| 成人av一区二区三区在线看| 亚洲七黄色美女视频| e午夜精品久久久久久久| 成人永久免费在线观看视频| 亚洲av美国av| 可以免费在线观看a视频的电影网站| 手机成人av网站| 国产精品,欧美在线| 麻豆成人午夜福利视频| 色综合婷婷激情| 国产精品香港三级国产av潘金莲| 亚洲色图 男人天堂 中文字幕| 国产亚洲精品av在线| 国产真人三级小视频在线观看| 91国产中文字幕| 看黄色毛片网站| 亚洲国产毛片av蜜桃av| 男人的好看免费观看在线视频 | 午夜福利在线在线| 久久性视频一级片| 欧美性长视频在线观看| 久久久水蜜桃国产精品网| 两人在一起打扑克的视频| 欧美精品亚洲一区二区| 一个人免费在线观看的高清视频| 亚洲天堂国产精品一区在线| 亚洲全国av大片| 欧美在线一区亚洲| 久久精品国产综合久久久| 亚洲片人在线观看| 午夜老司机福利片| 夜夜看夜夜爽夜夜摸| a级毛片a级免费在线| 熟女少妇亚洲综合色aaa.| 麻豆久久精品国产亚洲av| 国产伦人伦偷精品视频| 日日夜夜操网爽| 亚洲第一av免费看| 久久这里只有精品19| 亚洲av五月六月丁香网| 嫩草影院精品99| 国产片内射在线| 999久久久国产精品视频| 欧美zozozo另类| 午夜免费鲁丝| 国产免费av片在线观看野外av| 在线观看日韩欧美| 亚洲成人免费电影在线观看| 69av精品久久久久久| 人妻丰满熟妇av一区二区三区| 午夜福利18| 国产亚洲av嫩草精品影院| netflix在线观看网站| 国产又爽黄色视频| 大型av网站在线播放| 老司机福利观看| 亚洲va日本ⅴa欧美va伊人久久| 少妇粗大呻吟视频| 免费在线观看完整版高清| 满18在线观看网站| 热99re8久久精品国产| 热re99久久国产66热| 成人国产一区最新在线观看| 久久中文看片网| 99国产精品一区二区蜜桃av| 性欧美人与动物交配| 成人欧美大片| av电影中文网址| 91字幕亚洲| 99国产极品粉嫩在线观看| 日韩视频一区二区在线观看| 国产av又大| 法律面前人人平等表现在哪些方面| 国产亚洲精品av在线| 国产精品久久久久久亚洲av鲁大| 十八禁网站免费在线| 18美女黄网站色大片免费观看| 欧美日韩亚洲国产一区二区在线观看| 超碰成人久久| 欧美av亚洲av综合av国产av| 黑丝袜美女国产一区| 99riav亚洲国产免费| 久久草成人影院| 亚洲国产欧美网| 手机成人av网站| 精品一区二区三区视频在线观看免费| 欧美又色又爽又黄视频| 亚洲精品美女久久av网站| 一区二区三区精品91| 欧美大码av| 一边摸一边做爽爽视频免费| 一进一出好大好爽视频| 久久精品91无色码中文字幕| 级片在线观看| 变态另类成人亚洲欧美熟女| 男女下面进入的视频免费午夜 | 中国美女看黄片| 国产精品 欧美亚洲| 少妇 在线观看| 精品乱码久久久久久99久播| 国产精华一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 一级黄色大片毛片| 一级a爱片免费观看的视频| 国产精品精品国产色婷婷| 99在线视频只有这里精品首页| 99精品在免费线老司机午夜| 国语自产精品视频在线第100页| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 免费在线观看日本一区| 国产三级在线视频| 啪啪无遮挡十八禁网站| 淫妇啪啪啪对白视频| 在线观看一区二区三区| 99久久综合精品五月天人人| 无遮挡黄片免费观看| 久久香蕉激情| 麻豆成人av在线观看| 日本免费a在线| 波多野结衣巨乳人妻| 国产91精品成人一区二区三区| 特大巨黑吊av在线直播 | 中出人妻视频一区二区| 婷婷精品国产亚洲av在线| 后天国语完整版免费观看| 久热爱精品视频在线9| 51午夜福利影视在线观看| 国产1区2区3区精品| 黄片小视频在线播放| 99久久综合精品五月天人人| 亚洲国产毛片av蜜桃av| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 精品熟女少妇八av免费久了| 午夜视频精品福利| 国产欧美日韩一区二区精品| 国产99白浆流出| 精品久久久久久久末码| 白带黄色成豆腐渣| 亚洲国产精品成人综合色| 国产伦一二天堂av在线观看| 天天添夜夜摸| 麻豆一二三区av精品| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 久久精品国产清高在天天线| 日韩欧美国产在线观看| 18禁国产床啪视频网站| √禁漫天堂资源中文www| 韩国精品一区二区三区| 美女 人体艺术 gogo| 丝袜在线中文字幕| 国产亚洲av嫩草精品影院| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 亚洲va日本ⅴa欧美va伊人久久| or卡值多少钱| 精品国产国语对白av| 国产精品日韩av在线免费观看| 我的亚洲天堂| 99精品欧美一区二区三区四区| 日韩欧美在线二视频| 啦啦啦免费观看视频1| 首页视频小说图片口味搜索| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 日韩精品青青久久久久久| 99精品久久久久人妻精品| 国产99白浆流出| 久久久久九九精品影院| 欧美成人午夜精品| 国产亚洲av嫩草精品影院| 精品不卡国产一区二区三区| 夜夜爽天天搞| 一级a爱视频在线免费观看| av有码第一页| 人人妻人人看人人澡| 亚洲精品美女久久av网站| 91老司机精品| 免费高清视频大片| 中文字幕av电影在线播放| 久久精品影院6| 我的亚洲天堂| 亚洲精品国产精品久久久不卡| 亚洲人成网站高清观看| 波多野结衣高清作品| 精品久久久久久久久久免费视频| 国产精品一区二区三区四区久久 | 国产不卡一卡二| 欧美中文日本在线观看视频| 欧美在线黄色| 午夜成年电影在线免费观看| 国产欧美日韩一区二区三| 亚洲第一电影网av| 欧美激情 高清一区二区三区| 色尼玛亚洲综合影院| 日韩精品免费视频一区二区三区| 亚洲国产中文字幕在线视频| 国产高清激情床上av| 亚洲男人的天堂狠狠| 美女午夜性视频免费| 狂野欧美激情性xxxx| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 久久欧美精品欧美久久欧美| 午夜老司机福利片| 午夜福利18| 久久久国产成人精品二区| 久久欧美精品欧美久久欧美| 亚洲成av人片免费观看| 午夜激情av网站| 国产精品 国内视频| 9191精品国产免费久久| 欧美黄色片欧美黄色片| 精品久久久久久久久久免费视频| 变态另类丝袜制服| 热re99久久国产66热| 亚洲人成77777在线视频| 精品高清国产在线一区| 精品国产乱码久久久久久男人| 亚洲专区字幕在线| 亚洲黑人精品在线| 在线观看免费视频日本深夜| 国产av又大| 每晚都被弄得嗷嗷叫到高潮| 久久久精品国产亚洲av高清涩受| 亚洲自拍偷在线| 亚洲第一欧美日韩一区二区三区| 国产主播在线观看一区二区| 久久国产精品人妻蜜桃| 啦啦啦 在线观看视频| 免费一级毛片在线播放高清视频| 听说在线观看完整版免费高清| 好看av亚洲va欧美ⅴa在| 欧美日韩乱码在线| 欧美精品亚洲一区二区| 在线观看免费日韩欧美大片| 欧美一区二区精品小视频在线| 在线观看日韩欧美| 国产男靠女视频免费网站| 女人被狂操c到高潮| 啦啦啦免费观看视频1| 国产成人啪精品午夜网站| 丰满的人妻完整版| 一级毛片女人18水好多| 亚洲狠狠婷婷综合久久图片| 在线十欧美十亚洲十日本专区| 免费人成视频x8x8入口观看| 一边摸一边做爽爽视频免费| 欧美人与性动交α欧美精品济南到| 黄色 视频免费看| 女警被强在线播放| 在线视频色国产色| 国产精品永久免费网站| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 性色av乱码一区二区三区2| 婷婷亚洲欧美| 国产亚洲av嫩草精品影院| 亚洲成人久久性| 午夜激情福利司机影院| 亚洲国产精品sss在线观看| 成熟少妇高潮喷水视频| 免费电影在线观看免费观看| 中文字幕av电影在线播放| 精品久久久久久久毛片微露脸| 亚洲专区字幕在线| 国产精品久久视频播放| 久久婷婷成人综合色麻豆| 日韩有码中文字幕| 欧美av亚洲av综合av国产av| 黄色丝袜av网址大全| 亚洲久久久国产精品| 99国产精品99久久久久| а√天堂www在线а√下载| 国产黄片美女视频| 国产亚洲av嫩草精品影院| 国内少妇人妻偷人精品xxx网站 | 国产国语露脸激情在线看| 亚洲精品在线观看二区| 欧美另类亚洲清纯唯美| 欧美黑人欧美精品刺激| 男男h啪啪无遮挡| 免费女性裸体啪啪无遮挡网站| 日韩精品中文字幕看吧| 俺也久久电影网| 国产高清视频在线播放一区| 十分钟在线观看高清视频www| avwww免费| 久久热在线av| 色综合站精品国产| 又黄又爽又免费观看的视频| 十八禁人妻一区二区| 麻豆久久精品国产亚洲av| 一个人观看的视频www高清免费观看 | 国产精品精品国产色婷婷| 亚洲最大成人中文| 高清毛片免费观看视频网站| 嫩草影视91久久| 欧美中文日本在线观看视频| 色综合亚洲欧美另类图片| 看免费av毛片| 91av网站免费观看| 国产视频一区二区在线看| 99精品久久久久人妻精品| 国产亚洲精品第一综合不卡| 高清在线国产一区| 国产精品日韩av在线免费观看| 亚洲自偷自拍图片 自拍| 1024视频免费在线观看| 亚洲成人久久性| 成年免费大片在线观看| 色综合亚洲欧美另类图片| 国产99久久九九免费精品| 久久久精品欧美日韩精品| 亚洲午夜精品一区,二区,三区| 丝袜人妻中文字幕| 韩国精品一区二区三区| 国产激情久久老熟女| 天堂动漫精品| 亚洲专区字幕在线| 嫁个100分男人电影在线观看| 亚洲全国av大片| 99久久综合精品五月天人人| 亚洲av美国av| 国产伦在线观看视频一区| 久久天躁狠狠躁夜夜2o2o| 亚洲精品中文字幕在线视频| 成人国语在线视频| 日韩欧美三级三区| 久久久久免费精品人妻一区二区 | 搞女人的毛片| 亚洲五月婷婷丁香| 男女午夜视频在线观看| 国产久久久一区二区三区| 波多野结衣高清作品| 国产亚洲精品一区二区www| 久久亚洲真实| 日韩欧美 国产精品| 可以免费在线观看a视频的电影网站| 一进一出好大好爽视频| 亚洲午夜理论影院| 久久精品成人免费网站| 在线观看www视频免费| 非洲黑人性xxxx精品又粗又长| 巨乳人妻的诱惑在线观看| 观看免费一级毛片| 俄罗斯特黄特色一大片| 亚洲人成网站在线播放欧美日韩| 免费在线观看成人毛片| 精品国产美女av久久久久小说| 99国产精品99久久久久| 国产精品 国内视频| 国内少妇人妻偷人精品xxx网站 | 亚洲成a人片在线一区二区| 少妇被粗大的猛进出69影院| 人人妻人人看人人澡| 男女之事视频高清在线观看| 精品国产超薄肉色丝袜足j| 夜夜夜夜夜久久久久| 午夜福利一区二区在线看| 看片在线看免费视频| 免费人成视频x8x8入口观看| 午夜福利高清视频| 法律面前人人平等表现在哪些方面| 19禁男女啪啪无遮挡网站| 中文资源天堂在线| 又大又爽又粗| 亚洲精品在线观看二区| 中文字幕最新亚洲高清| 国产精品av久久久久免费| 午夜两性在线视频| 成人国语在线视频| 亚洲久久久国产精品| 免费在线观看视频国产中文字幕亚洲| 国产色视频综合| 久久人人精品亚洲av| 久久国产精品人妻蜜桃| 精品国产乱码久久久久久男人| 亚洲中文字幕日韩| 国产成人欧美在线观看| 免费在线观看完整版高清| 成人永久免费在线观看视频| 成人手机av| 97人妻精品一区二区三区麻豆 | 午夜影院日韩av| 成人亚洲精品av一区二区| 丰满的人妻完整版| 日韩大尺度精品在线看网址| 亚洲无线在线观看| 亚洲专区字幕在线| 免费看十八禁软件| 国产高清视频在线播放一区| e午夜精品久久久久久久| 国产不卡一卡二| 中文字幕最新亚洲高清| 亚洲熟妇熟女久久| 女人爽到高潮嗷嗷叫在线视频| 精品国产乱码久久久久久男人| 美女国产高潮福利片在线看| 国产精华一区二区三区| 久久精品人妻少妇| 精品久久蜜臀av无| 久久精品国产清高在天天线| 亚洲 欧美一区二区三区| 香蕉丝袜av| 曰老女人黄片| 一本久久中文字幕| 精品国产超薄肉色丝袜足j| 别揉我奶头~嗯~啊~动态视频| 日本免费一区二区三区高清不卡| xxxwww97欧美| 中文字幕人成人乱码亚洲影| 欧美国产日韩亚洲一区| 亚洲男人天堂网一区| 看免费av毛片| 99国产综合亚洲精品| 欧美激情久久久久久爽电影| 亚洲五月天丁香| 欧美日韩黄片免| 免费在线观看亚洲国产| 国产又爽黄色视频| 伦理电影免费视频| 亚洲久久久国产精品| 男男h啪啪无遮挡| 亚洲七黄色美女视频| 国产亚洲av高清不卡| 欧美日韩一级在线毛片| 男人舔奶头视频| 老司机福利观看| 在线免费观看的www视频| 亚洲精品av麻豆狂野| 中文字幕另类日韩欧美亚洲嫩草| 国产精品1区2区在线观看.| 黄片大片在线免费观看| 国产一区在线观看成人免费| 成人精品一区二区免费| 男人的好看免费观看在线视频 | 国产高清有码在线观看视频 | 在线观看一区二区三区| 亚洲av片天天在线观看| 成年人黄色毛片网站| 国产高清激情床上av| 美国免费a级毛片| 精品熟女少妇八av免费久了| 1024香蕉在线观看| 亚洲国产精品合色在线| 久久久精品国产亚洲av高清涩受| 亚洲男人天堂网一区| 老司机在亚洲福利影院| 国产亚洲欧美98| 国产午夜精品久久久久久| 亚洲人成网站在线播放欧美日韩| 中出人妻视频一区二区| 90打野战视频偷拍视频| 亚洲中文字幕日韩| 亚洲精品国产一区二区精华液| 国产精品自产拍在线观看55亚洲|