• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management

    2022-08-31 09:55:56MinYue岳敏YanWang王燕HuiLiLiang梁會(huì)力andZengXiaMei梅增霞
    Chinese Physics B 2022年8期
    關(guān)鍵詞:王燕

    Min Yue(岳敏) Yan Wang(王燕) Hui-Li Liang(梁會(huì)力) and Zeng-Xia Mei(梅增霞)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2Songshan Lake Materials Laboratory,Dongguan 523808,China

    3School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: perovskite/Si tandem solar cells,simulation,TOPCon,CsPbI3

    1. Introduction

    Crystalline silicon (c-Si) solar cells have occupied over 90% photovoltaic market due to their low cost, high efficiency and mature industrialization. The power conversion efficiency(PCE)of current world record cell for single-junction c-Si solar cells is 26.7% which is close to the 29.4% efficiency limit of Si.[1,2]In order to break through this efficiency ceiling,one approach is to fabricate multi-junction solar cells which can effectively enhance the utilization of the solar spectrum by reducing the thermalization loss. The theoretical efficiency of Si based two-junction solar cells can exceed 45% which is quite attractive.[3]The calculation result manifests that Si (Eg=1.12 eV) based TSC requires an absorption material withEg~1.70 eV in the top cell so as to maximize the efficiency.[3]Halide perovskites with tunable bandgap(1.5 eV–2.3 eV),high absorption coefficient and good defect tolerance,[4,5]have rapidly enhanced the PCE from 3.8% to 25.7% in the last ten years.[6,7]The bandgap of perovskite can be ideally adjusted to 1.67 eV–1.75 eV by changing the composition of ABX3.[8]

    It is quite incredible that the PCE of perovskite/Si(PVK/Si)TSCs has developed extremely fast, from 13.7%in 2015[9]to 29.8% in 2021,[10]exceeding that of the c-Si solar cells. In high-efficiency PVK/Si TSCs,silicon heterojunction (SHJ) solar cell is usually chosen as the bottom cell because of its high PCE and high open-circuit voltage(Voc).[11]However, the SHJ totally distinguishes from the mainstream passivated emitter and rear cell (PERC), leading to a quite high levelized cost of electricity (LCOE). The tunnel oxide passivated contact(TOPCon)silicon solar cell is another outstanding candidate for the bottom Si solar cell which is compatible better with existing PERC production lines and has manifested a high record efficiency of 26.0%.[12]The LCOE of PVK/TOPCon TSCs has been calculated to be lower than PVK/SHJ TSCs for both utility and residential installation by Fraunhofer ISE.[13]Currently,the researches of PVK/Si TSCs mainly focus on organic-inorganic hybrid perovskite due to its relatively high efficiency. However, its thermal stability is still a huge challenge.[14]On the other hand,the all inorganic perovskite CsPbI3has been demonstrated to be more superior thermal stability and incredibly increased PCE from 2.9% to 20.37% in 6 years.[15,16]Meanwhile, the optimal bandgap of CsPbI3is 1.72 eV,[17]which is suitable for the application of PVK/Si TSCs.

    To further improve the PCE of PVK/Si TSCs,one effective way is to reduce optical loss by employing light trapping structures. Upright pyramid structure is the most common texture in silicon solar cells, and achieved by etching silicon wafer in a mixed alkali solution.[18]In the PVK/Si TSCs,the upright pyramid structure is usually employed in rear side of silicon solar cell while the front side is polished because of the difficulty in obtaining uniform perovskite film by spin coating on textured surface.[19,20]However, the front planar surface of silicon results in poor light tapping capability. In order to cope with this challenge, upright pyramidal polydimethylsiloxane (PDMS) structure has been introduced on the top of TSCs.[21]Micrometer-thick perovskite top cell was spincoated on fully upright pyramidal textured silicon solar cell to avoid shunt paths.[20]Double-side-textured silicon cell with sub-micrometer pyramids was employed in order to minimize the thickness of perovskite film by solution process.[22]Furthermore, the inverted pyramid structure was proposed as a more promising texture, which has a lower reflectivity than upright pyramid.[23,24]It was introduced into the PVK/Si TSC by adding an inverted pyramidal PDMS antireflective coating, which would complicate the fabrication process.[25]Directly texturing on Si seems a more practical approach to mass production.[26]Nevertheless,such a research is still relatively limited,and more attention should be paid to realizing the application of such an excellent texture to PVK/Si TSC.

    Herein, we design the optics of CsPbI3/TOPCon TSCs based on optical simulation that combines transfer matrix method(TMM)with ray-tracing method.The optical losses of different surface structures of silicon bottom solar cells such as rear-side upright pyramid(r-UP),bifacial upright pyramid(b-UP), and bifacial inverted pyramid (b-IP), are systematically discussed. In order to further optimize the surface structure of silicon, the dependence of optical loss on the bottom angle of rear-side b-IP is investigated particularly. Meanwhile,the photogenerated current densities of TSCs are calculated by varying the thickness of CsPbI3layer and Si bulk considering the fact that the current density matching is a key issue in two-terminal TSCs. Moreover, through comparing the optical performances of various transparent conductive oxide(TCO)layers,we find the hydrogenated indium oxide(IO:H)a more attractive front TCO candidate. Finally, the PCE of the CsPbI3/TOPCon TSC can achieve 31.78% when the best matched current density is realized.

    2. Device simulation parameters

    The sketches of CsPbI3/TOPCon TSCs with various textures are shown in Fig. 1. The material, function, and thickness of each layer are listed in Table 1 (their refractive indexes and extinction coefficients can be found in Fig. S1 in Supporting information. Both upright pyramid and inverted pyramid are 2-μm wide with an angle of 54.7?, consistent with our previous experimental data.[23]As the thickness of SiOxlayer is extremely thin (~1.5 nm), its influence can be reasonably ignored during the optical simulation. The rear and front ITO electrodes possess an identical carrier concentration of 2.0×1020cm?3in that too high carrier concentration will result in high free carrier absorption at long wavelengths. The interlayer ITO has a carrier concentration of 4.9×1020cm?3for the sake of favorable charge transfer between the subcells.[27]

    Table 1. List of simulation parameters.

    The optical properties of the CsPbI3/TOPCon TSCs were simulated by the widely used ray-tracing method and TMM for the Si thick layer and other thin layers,respectively.[35]The origin code of simulation can be acquired from website.[36]The normal incidence AM1.5G spectrum (from 300 nm to 1200 nm in steps of 10 nm) was chosen as the illuminant.In order to calculate the photogenerated current density, the internal quantum efficiency (IQE) was assumed to be 100%.Thus,the photogenerated current density could be determined by integrating the photon flux of the AM1.5G solar spectrum with the corresponding absorptance, expressed as the following equation:[32]

    2.1. Textures

    Fig.2. Optical properties of CsPbI3/TOPCon TSCs with three different textures,showing(a)absorptance of CsPbI3 layer and Si bulk,(b)reflectance of TSCs,(c)transmittance of TSCs,and(d)current densities of absorbed or lost lights(in units mA/cm2).

    2.2. Bottom angle of rear-side inverted pyramid

    Fig. 3. (a) Photogenerated current density of CsPbI3 layer and Si bulk with respect to θ; (b) current density loss of TSC triggered by reflection and transmission versus θ; (c) wavelength-dependent reflectance, and (d) transmittance of TSC for different values of θ; absorptance of (e) CsPbI3 layer and(f)Si bulk for different values of θ.

    wherenSiandαSiare the refractive index and incident angle of Si,njandαjare the refractive index and incident/refraction angle of the layer j between Si and air,n0andα0are the refractive index and refraction angle of the air, respectively. In other words, the incident angle in Si for the total internal reflection at the top or bottom interface of TSCs only depends onnSiandn0. Our previous work have illustrated that whenθ>4?,the reflection in the front interface of TSCs will generally decrease with the increase ofθbecause of the enhanced probability of total internal reflection;whenθ<24?,the transmission in the rear interface of TSC will be suppressed for the same reason.[39]Therefore,a smallθcan make a trade-off between reflection and transmission, contributing to a higherJGSi.Thus,in order to maximize the optical harvest in PVK/Si TSCs, the rear side texture should become smoother, which will be simultaneously benefciial to the passivation of the rearside surface of Si subcell.

    2.3. Thickness of CsPbI3 layer and Si bulk

    Current density matching between the top subcell and bottom subcell is one of the most critical issues in twoterminal TSCs.In order to maximize the series current density of the CsPbI3/TOPCon TSCs, the thickness value of CsPbI3layer and Si bulk should be delicately modulated to achieve a positive match. Asymmetrical b-IP with a bottom angle 10?of rear-side was chosen for the texture of Si subcell in this subsection. The thickness of CsPbI3layer varies from 400 nm to 2200 nm in steps of 20 nm, while the Si bulk’s ranges from 40μm to 210μm in steps of 10μm.

    Fig. 4. Simulated optical performances of CsPbI3/TOPCon TSCs with different values of thickness of CsPbI3 layer and Si bulk. (a) Photogenerated currentdensity of CsPbI3 layer; (b)JG CsPbI3 andJG Si,withSi bulk thickness fxiedat180μm; (c)absorption spectrum ofCsPbI3 layer andSi bulk,withthickness of Si bulk fxied at180μm butthicknessof CsPbI3 layer varied; (d)photogeneratedcurrent density ofSi bulk; (e)JGCsPbI3 and JGSi,withthickness of CsPbI3 layer fxied at 400 nm;(f)absorptionspectra of CsPbI3 layer andSibulk,with thickness of CsPbI3layer fxied at 400 nmbut thickness of Si bulk varied.

    Basically, the short-circuit current density (Jsc) of the entire two-terminal TSC reaches up to the lower one of the two subcells, bringing out the key problem of current matching. Figure 5 exhibits theJscof CsPbI3/TOPCon TSCs and thickness of both CsPbI3layer and Si bulk for current density matching. When the CsPbI3layer is thinner than 600 nm,Jscis unilaterally restricted by theJGCsPbI3, indicating that even 40-μm Si is thick enough to match with CsPbI3layer. With the increase of CsPbI3layer thickness, the Si bulk should be thickened correspondingly. At present, the thickness of industrial used Czochralski (CZ) Si wafer is~180 μm, which is absolutely thick enough to match with a 2000-nm CsPbI3layer. According to previously published experimental data,the thickness of CsPbI3layer is usually less than 1000 nm as a result of crystallization quality, implying that theJscof the CsPbI3/TOPCon TSC will be mainly determined by the thickness of CsPbI3layer. On the other hand, the bottom Si substrate has suffciient space to become thinner. The maximumJsccan reach to 19.79 mA/cm2when the thickness of Si bulk and CsPbI3layer are 180μm and 2180 nm,respectively.

    Fig. 5. (a) Short-circuit current density of CsPbI3/TOPCon TSC and (b)matched thickness of CsPbI3 layer and Si bulk.

    2.4. Front TCO

    The optimized structure of CsPbI3/TOPCon TSC is shown in Fig.6 according to the discussion above and its optical loss analysis. With the excellent bifacial texture and the matched thickness of CsPbI3layer and Si bulk,the whole optical loss can be reduced to 6.53 mA/cm2. Of these various optical losses,parasitic absorption loss from the front ITO occupies the largest proportion,which reaches to 1.80 mA/cm2.Therefore,restraining the parasitic absorption in the top TCO layer is an effective way to further enhance the optical performance of the CsPbI3/TOPCon TSC.

    Fig.6. Optical performance of optimized CsPbI3/TOPCon TSC.(a)Simulated structure with optimized texture and absorber thickness;(b)photogenerated current density and optical losses of CsPbI3/TOPCon TSC(in units mA/cm2).

    Fig.7.Optical performances of different front TCOs,showing curves of wavelength dependent(a)n and(b)k of different TCO materials,(c)absorptance of front TCO layers,and(d)absorptance of CsPbI3 layer and Si bulk.

    2.5. Device performance

    Fig.8.Simulated EQE of subcells and optical losses(parasitic absorption,reflectance,and transmittance)of optimized CsPbI3/TOPCon TSC,expressed

    Table 2. Simulated photovoltaic parameters of CsPbI3/TOPCon TSC.

    3. Conclusions

    The optical performance of CsPbI3/TOPCon twoterminal TSCs is simulated by the combination of ray-tracing and TMM. Compared with planar front surface, bifacial texture can significantly enhance the absorption of both CsPbI3layer and Si bulk due to the reduced front reflection triggered off by the front texture. Meanwhile, the b-IP textured TSC has a more superior photogenerated current density than b-UP

    Acknowledgements

    The authors would like to thank Prof. Xiaolong Du and Dr. Yaoping Liu for the inspiring discussion.

    Project supported by the National Natural Science Foundation of China(Grant Nos.61904201 and 11875088)and the Guangdong Basic and Applied Basic Research Foundation,China(Grant No.2019B1515120057).

    猜你喜歡
    王燕
    英語(yǔ)學(xué)習(xí)活動(dòng)觀在高中英語(yǔ)閱讀課堂的實(shí)踐與思考
    Plasma activation towards oxidized nanocarbons for efficient electrochemical synthesis of hydrogen peroxide
    Clinical observation on acupoint injection for back pain in patients w ith primary osteoporosis
    智取“私了協(xié)議”
    Stratigraphy of late Quaternary deposits in the mid-western North Yellow Sea*
    購(gòu)房款還未還清 又騙賣主26萬(wàn)
    方圓(2017年17期)2017-10-11 10:27:26
    The progress of treatment of children’s psoriasis
    淺談?dòng)⒄Z(yǔ)聽(tīng)力課堂問(wèn)題與對(duì)策
    卷宗(2016年5期)2016-08-02 02:50:18
    醫(yī)學(xué)論文英文摘要中否定的對(duì)比研究
    卷宗(2016年5期)2016-08-02 02:50:18
    走錯(cuò)門道
    故事林(2008年16期)2008-05-14 15:38:00
    久久精品综合一区二区三区| 99久久精品热视频| 久99久视频精品免费| 欧美乱妇无乱码| 麻豆国产av国片精品| 精品免费久久久久久久清纯| 欧美zozozo另类| 精品国产三级普通话版| 亚洲人成网站高清观看| 免费av观看视频| 国产精品av视频在线免费观看| 亚洲成人中文字幕在线播放| 一本综合久久免费| 亚洲不卡免费看| 19禁男女啪啪无遮挡网站| 色噜噜av男人的天堂激情| 久久亚洲精品不卡| 91麻豆精品激情在线观看国产| 成人国产一区最新在线观看| 中文字幕熟女人妻在线| www国产在线视频色| 9191精品国产免费久久| 亚洲国产精品999在线| 黄片小视频在线播放| 久久亚洲真实| 法律面前人人平等表现在哪些方面| 伊人久久精品亚洲午夜| 国产精品香港三级国产av潘金莲| 日本a在线网址| 桃色一区二区三区在线观看| 亚洲最大成人中文| 又紧又爽又黄一区二区| 伊人久久大香线蕉亚洲五| 久久久久亚洲av毛片大全| 国产高清视频在线播放一区| 免费看a级黄色片| 亚洲一区二区三区色噜噜| 国产欧美日韩精品一区二区| 国产伦精品一区二区三区四那| 色哟哟哟哟哟哟| 亚洲av免费在线观看| 俺也久久电影网| 午夜久久久久精精品| 三级男女做爰猛烈吃奶摸视频| 国产精品香港三级国产av潘金莲| 中亚洲国语对白在线视频| 精品99又大又爽又粗少妇毛片 | 午夜激情福利司机影院| 久久精品国产亚洲av涩爱 | 国产成人aa在线观看| 亚洲不卡免费看| 波野结衣二区三区在线 | 超碰av人人做人人爽久久 | 欧美成人免费av一区二区三区| 国产综合懂色| 激情在线观看视频在线高清| 精品久久久久久,| 亚洲精品色激情综合| 黄色视频,在线免费观看| 嫩草影院入口| 久9热在线精品视频| 男女做爰动态图高潮gif福利片| 3wmmmm亚洲av在线观看| 国产精品98久久久久久宅男小说| 波多野结衣高清无吗| 国产一区二区亚洲精品在线观看| 国产亚洲欧美98| 国产熟女xx| 欧美日本亚洲视频在线播放| 欧美zozozo另类| 一本一本综合久久| 在线国产一区二区在线| 成人三级黄色视频| 中国美女看黄片| 天堂影院成人在线观看| 九九在线视频观看精品| 丰满人妻一区二区三区视频av | 99久久九九国产精品国产免费| 国产不卡一卡二| 99久久无色码亚洲精品果冻| 久久久久久久亚洲中文字幕 | 国产91精品成人一区二区三区| 在线观看午夜福利视频| 两个人看的免费小视频| 我的老师免费观看完整版| 天堂√8在线中文| 一级作爱视频免费观看| 国产伦一二天堂av在线观看| 国产免费av片在线观看野外av| 午夜福利在线观看吧| 亚洲天堂国产精品一区在线| 日韩人妻高清精品专区| 欧美成人性av电影在线观看| 久久人妻av系列| 999久久久精品免费观看国产| 国产欧美日韩精品亚洲av| 国产真实乱freesex| 美女被艹到高潮喷水动态| 伊人久久大香线蕉亚洲五| av在线天堂中文字幕| 首页视频小说图片口味搜索| 一级黄色大片毛片| 床上黄色一级片| 亚洲人与动物交配视频| 亚洲欧美日韩东京热| 国产精品香港三级国产av潘金莲| tocl精华| 午夜视频国产福利| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 亚洲在线自拍视频| 欧美日本亚洲视频在线播放| 岛国在线免费视频观看| 国产成人a区在线观看| 免费在线观看影片大全网站| 叶爱在线成人免费视频播放| 黄色丝袜av网址大全| 精品一区二区三区视频在线观看免费| 噜噜噜噜噜久久久久久91| 最新在线观看一区二区三区| 日本成人三级电影网站| 欧美性猛交黑人性爽| 成人鲁丝片一二三区免费| 99久久九九国产精品国产免费| 国产精品一及| 日韩欧美精品v在线| 国产一区二区三区在线臀色熟女| 色av中文字幕| 日韩中文字幕欧美一区二区| 国产精品精品国产色婷婷| 亚洲第一欧美日韩一区二区三区| 999久久久精品免费观看国产| 久久精品综合一区二区三区| 婷婷丁香在线五月| 亚洲专区国产一区二区| 噜噜噜噜噜久久久久久91| 亚洲欧美精品综合久久99| 久久久久免费精品人妻一区二区| 国产欧美日韩一区二区三| av女优亚洲男人天堂| 一级毛片高清免费大全| 无遮挡黄片免费观看| 亚洲黑人精品在线| 亚洲在线自拍视频| 亚洲欧美日韩无卡精品| 亚洲欧美日韩高清专用| 无限看片的www在线观看| 国产一区二区在线观看日韩 | 内地一区二区视频在线| 91久久精品电影网| 亚洲黑人精品在线| 亚洲中文日韩欧美视频| 一区福利在线观看| 国产美女午夜福利| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 国产精品久久久久久久久免 | 1000部很黄的大片| 狠狠狠狠99中文字幕| 国产亚洲精品久久久com| 国产高清videossex| 亚洲av五月六月丁香网| 99在线人妻在线中文字幕| bbb黄色大片| 亚洲欧美日韩东京热| 国产精品久久久久久精品电影| 1024手机看黄色片| 搡老熟女国产l中国老女人| 国产乱人伦免费视频| 内射极品少妇av片p| 日韩欧美国产一区二区入口| 在线天堂最新版资源| 老熟妇仑乱视频hdxx| 日本精品一区二区三区蜜桃| 免费看十八禁软件| 狂野欧美白嫩少妇大欣赏| 国产色婷婷99| 亚洲午夜理论影院| 又紧又爽又黄一区二区| 日韩欧美精品v在线| 男女下面进入的视频免费午夜| 琪琪午夜伦伦电影理论片6080| 亚洲五月天丁香| 国产视频内射| 午夜精品一区二区三区免费看| 成人国产综合亚洲| 亚洲成人久久性| 久久久久久久久大av| 最近最新免费中文字幕在线| e午夜精品久久久久久久| 麻豆一二三区av精品| 成年女人看的毛片在线观看| 久久精品国产清高在天天线| 美女高潮的动态| 女同久久另类99精品国产91| 男女之事视频高清在线观看| 久久久精品大字幕| 国产伦精品一区二区三区视频9 | 少妇熟女aⅴ在线视频| 黄片小视频在线播放| e午夜精品久久久久久久| 九九在线视频观看精品| 久久6这里有精品| 国产色婷婷99| 日韩欧美一区二区三区在线观看| 国产97色在线日韩免费| 成人特级黄色片久久久久久久| 综合色av麻豆| 淫妇啪啪啪对白视频| 久久国产乱子伦精品免费另类| a在线观看视频网站| 9191精品国产免费久久| 亚洲精品美女久久久久99蜜臀| 成年女人毛片免费观看观看9| 亚洲中文字幕一区二区三区有码在线看| 国产精品女同一区二区软件 | 日日干狠狠操夜夜爽| 亚洲在线自拍视频| 久久精品人妻少妇| 亚洲性夜色夜夜综合| 国产在视频线在精品| 女人高潮潮喷娇喘18禁视频| 久久久色成人| 欧美日韩综合久久久久久 | 午夜福利18| 亚洲五月婷婷丁香| 免费看光身美女| www.999成人在线观看| 久久草成人影院| 国产免费一级a男人的天堂| 女人十人毛片免费观看3o分钟| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 亚洲国产中文字幕在线视频| 亚洲自拍偷在线| 国产亚洲精品久久久com| 亚洲国产欧美网| 国产91精品成人一区二区三区| 欧美3d第一页| 日韩人妻高清精品专区| 真人一进一出gif抽搐免费| 国产精品一区二区三区四区免费观看 | 欧美乱妇无乱码| 欧美精品啪啪一区二区三区| 中文字幕熟女人妻在线| 亚洲人成网站高清观看| 国产精品久久久人人做人人爽| 午夜激情欧美在线| 我的老师免费观看完整版| 夜夜爽天天搞| 日韩欧美在线乱码| 日本精品一区二区三区蜜桃| 五月玫瑰六月丁香| 夜夜夜夜夜久久久久| 人妻夜夜爽99麻豆av| 欧美黑人巨大hd| 好看av亚洲va欧美ⅴa在| 男女床上黄色一级片免费看| 制服人妻中文乱码| 午夜影院日韩av| 好男人在线观看高清免费视频| 国内精品一区二区在线观看| 叶爱在线成人免费视频播放| 成人一区二区视频在线观看| 亚洲精品色激情综合| 精品久久久久久成人av| 五月伊人婷婷丁香| 又爽又黄无遮挡网站| 国产爱豆传媒在线观看| 久久久久国内视频| 成年版毛片免费区| 色吧在线观看| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 在线a可以看的网站| 亚洲精品粉嫩美女一区| 精品无人区乱码1区二区| 欧美日韩瑟瑟在线播放| 免费高清视频大片| 在线看三级毛片| 色综合婷婷激情| 亚洲国产精品sss在线观看| 搡老妇女老女人老熟妇| 亚洲av电影不卡..在线观看| 国产毛片a区久久久久| 美女免费视频网站| 免费搜索国产男女视频| 亚洲男人的天堂狠狠| 成年版毛片免费区| 免费电影在线观看免费观看| 真人一进一出gif抽搐免费| 麻豆一二三区av精品| 亚洲自拍偷在线| 母亲3免费完整高清在线观看| 少妇的丰满在线观看| 一个人看的www免费观看视频| 美女黄网站色视频| 久99久视频精品免费| 国产亚洲精品一区二区www| 少妇人妻一区二区三区视频| 免费人成视频x8x8入口观看| 久久久久久久亚洲中文字幕 | 久久人人精品亚洲av| 日日干狠狠操夜夜爽| 欧美大码av| 男女午夜视频在线观看| 亚洲黑人精品在线| 成人国产综合亚洲| 日韩av在线大香蕉| 久久久久国产精品人妻aⅴ院| 国产精品爽爽va在线观看网站| 欧美一级a爱片免费观看看| 黄色女人牲交| 国产久久久一区二区三区| 亚洲成人精品中文字幕电影| 国产精品亚洲av一区麻豆| 好男人电影高清在线观看| 1024手机看黄色片| 两个人的视频大全免费| 男女视频在线观看网站免费| 丁香六月欧美| 色综合亚洲欧美另类图片| 深爱激情五月婷婷| 90打野战视频偷拍视频| 日韩欧美国产在线观看| 婷婷精品国产亚洲av在线| 日韩欧美精品免费久久 | 一本久久中文字幕| 国产精品野战在线观看| 亚洲中文字幕一区二区三区有码在线看| 成年女人永久免费观看视频| 精品无人区乱码1区二区| 亚洲最大成人中文| 88av欧美| aaaaa片日本免费| 欧美不卡视频在线免费观看| 十八禁网站免费在线| www国产在线视频色| 好男人电影高清在线观看| 男插女下体视频免费在线播放| 99久久99久久久精品蜜桃| 久久精品国产亚洲av香蕉五月| 成年人黄色毛片网站| 中文字幕av在线有码专区| 精品国产三级普通话版| 熟女人妻精品中文字幕| 久久久久国产精品人妻aⅴ院| 亚洲精品色激情综合| 老司机午夜十八禁免费视频| 黄色成人免费大全| 亚洲精品国产精品久久久不卡| 精品午夜福利视频在线观看一区| 亚洲一区二区三区色噜噜| 少妇裸体淫交视频免费看高清| 两个人看的免费小视频| 国产精品一区二区三区四区久久| 最新美女视频免费是黄的| 国产欧美日韩一区二区三| 欧美国产日韩亚洲一区| www.色视频.com| 高清在线国产一区| 国产精品,欧美在线| 国产高清videossex| 免费av毛片视频| 亚洲国产精品久久男人天堂| 国产私拍福利视频在线观看| 久久国产精品人妻蜜桃| АⅤ资源中文在线天堂| 国产伦精品一区二区三区四那| 国产一区二区在线av高清观看| 窝窝影院91人妻| 日本精品一区二区三区蜜桃| 特大巨黑吊av在线直播| 久久欧美精品欧美久久欧美| 两人在一起打扑克的视频| 亚洲精品在线美女| 欧美黑人巨大hd| 老熟妇乱子伦视频在线观看| 亚洲精品影视一区二区三区av| 国产精品一区二区三区四区免费观看 | 国产色爽女视频免费观看| 日韩欧美一区二区三区在线观看| 国产色爽女视频免费观看| 国产精品,欧美在线| 国产 一区 欧美 日韩| 精品国产美女av久久久久小说| 国产精品永久免费网站| 12—13女人毛片做爰片一| 老鸭窝网址在线观看| 日日夜夜操网爽| 美女免费视频网站| www.www免费av| 欧美高清成人免费视频www| 亚洲精品美女久久久久99蜜臀| 久久精品国产99精品国产亚洲性色| 1000部很黄的大片| 中国美女看黄片| 久久精品国产综合久久久| 精品国产三级普通话版| 亚洲成人久久爱视频| 女同久久另类99精品国产91| 亚洲狠狠婷婷综合久久图片| 欧美大码av| 无遮挡黄片免费观看| 欧美色视频一区免费| 老熟妇乱子伦视频在线观看| 欧美性猛交黑人性爽| 观看免费一级毛片| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区 | 久久久精品欧美日韩精品| 久久国产精品人妻蜜桃| 国产成人系列免费观看| 老司机午夜十八禁免费视频| 亚洲电影在线观看av| 日本 欧美在线| 欧美日韩国产亚洲二区| АⅤ资源中文在线天堂| 亚洲精品乱码久久久v下载方式 | 午夜激情福利司机影院| 成人特级黄色片久久久久久久| 69人妻影院| 亚洲国产欧美网| 五月玫瑰六月丁香| 欧美中文综合在线视频| 女人高潮潮喷娇喘18禁视频| 成年人黄色毛片网站| h日本视频在线播放| 免费看美女性在线毛片视频| 国产探花在线观看一区二区| 黄色女人牲交| 亚洲第一欧美日韩一区二区三区| 久久久久久九九精品二区国产| a在线观看视频网站| 久久久久国产精品人妻aⅴ院| 免费看美女性在线毛片视频| 精品久久久久久久人妻蜜臀av| 亚洲av美国av| 亚洲avbb在线观看| 国产精品一区二区三区四区久久| 久久午夜亚洲精品久久| 伊人久久精品亚洲午夜| 综合色av麻豆| 国产av麻豆久久久久久久| 久久久久久久久久黄片| 色综合欧美亚洲国产小说| 欧美+亚洲+日韩+国产| 青草久久国产| 日本熟妇午夜| 国产国拍精品亚洲av在线观看 | 成人一区二区视频在线观看| 国产精品久久久久久精品电影| 精品99又大又爽又粗少妇毛片 | 久久久国产成人精品二区| 国产精品综合久久久久久久免费| 午夜免费激情av| 99久久九九国产精品国产免费| 乱人视频在线观看| 人妻丰满熟妇av一区二区三区| av中文乱码字幕在线| 国产淫片久久久久久久久 | 久久草成人影院| 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 69av精品久久久久久| 搞女人的毛片| 舔av片在线| 可以在线观看毛片的网站| 97超视频在线观看视频| 久久伊人香网站| 最新中文字幕久久久久| 国产成人欧美在线观看| 久久国产乱子伦精品免费另类| 国产亚洲欧美98| 精华霜和精华液先用哪个| 国产aⅴ精品一区二区三区波| 久久久久久国产a免费观看| 久久精品国产亚洲av涩爱 | 国产 一区 欧美 日韩| 国产亚洲欧美在线一区二区| 亚洲无线观看免费| 在线观看午夜福利视频| 久久精品人妻少妇| 精品99又大又爽又粗少妇毛片 | 欧美午夜高清在线| 日日摸夜夜添夜夜添小说| 一个人免费在线观看电影| 九九在线视频观看精品| x7x7x7水蜜桃| 国产蜜桃级精品一区二区三区| 日日夜夜操网爽| 性色av乱码一区二区三区2| 女同久久另类99精品国产91| 99热6这里只有精品| avwww免费| 久久久精品大字幕| 观看美女的网站| 午夜两性在线视频| 99热6这里只有精品| 午夜a级毛片| 啦啦啦韩国在线观看视频| 亚洲av一区综合| 在线天堂最新版资源| 精品无人区乱码1区二区| 亚洲片人在线观看| 成人一区二区视频在线观看| 成人午夜高清在线视频| 99久久久亚洲精品蜜臀av| 老司机午夜福利在线观看视频| 色吧在线观看| 国产熟女xx| 日韩高清综合在线| 国产男靠女视频免费网站| 国产精品永久免费网站| 淫秽高清视频在线观看| 天天一区二区日本电影三级| 亚洲欧美日韩高清专用| www日本黄色视频网| 国产成人啪精品午夜网站| 草草在线视频免费看| 最近最新中文字幕大全电影3| 久久久久久大精品| 亚洲国产精品合色在线| 久久精品91无色码中文字幕| 日本黄色视频三级网站网址| 国产视频内射| 亚洲,欧美精品.| 久久精品亚洲精品国产色婷小说| 男插女下体视频免费在线播放| 女人高潮潮喷娇喘18禁视频| 国产又黄又爽又无遮挡在线| 香蕉丝袜av| 亚洲精品在线美女| 蜜桃亚洲精品一区二区三区| www.999成人在线观看| 伊人久久精品亚洲午夜| 亚洲国产色片| 国产一区二区在线观看日韩 | 精品乱码久久久久久99久播| 欧美+日韩+精品| 久久性视频一级片| 国产真实伦视频高清在线观看 | 亚洲精品乱码久久久v下载方式 | 亚洲av二区三区四区| 51国产日韩欧美| 男女做爰动态图高潮gif福利片| 一区二区三区国产精品乱码| 一边摸一边抽搐一进一小说| 国产野战对白在线观看| 久久久精品大字幕| 成人午夜高清在线视频| 日韩人妻高清精品专区| 久久久久精品国产欧美久久久| 乱人视频在线观看| 精品国产亚洲在线| 欧美一级毛片孕妇| 国产精品三级大全| 三级男女做爰猛烈吃奶摸视频| 99久久精品国产亚洲精品| 香蕉av资源在线| 久久久久免费精品人妻一区二区| 欧美乱妇无乱码| 亚洲乱码一区二区免费版| 国产又黄又爽又无遮挡在线| 性色av乱码一区二区三区2| 两个人的视频大全免费| 特大巨黑吊av在线直播| 琪琪午夜伦伦电影理论片6080| 三级男女做爰猛烈吃奶摸视频| 一级作爱视频免费观看| 亚洲专区中文字幕在线| 亚洲男人的天堂狠狠| 露出奶头的视频| 网址你懂的国产日韩在线| 精品无人区乱码1区二区| 精品乱码久久久久久99久播| www日本在线高清视频| 午夜福利视频1000在线观看| www日本黄色视频网| www.熟女人妻精品国产| 1024手机看黄色片| 午夜免费成人在线视频| 欧美另类亚洲清纯唯美| 亚洲,欧美精品.| 午夜日韩欧美国产| 国产午夜福利久久久久久| 精品一区二区三区视频在线 | 亚洲,欧美精品.| 欧美高清成人免费视频www| 久久亚洲真实| 一进一出抽搐gif免费好疼| 美女高潮的动态| 91麻豆精品激情在线观看国产| 啦啦啦韩国在线观看视频| 国内毛片毛片毛片毛片毛片| 欧美日韩综合久久久久久 | 日韩免费av在线播放| 欧美中文日本在线观看视频| 他把我摸到了高潮在线观看| 一区二区三区国产精品乱码| 欧美成人性av电影在线观看| 国产精品久久久久久久电影 | 日韩精品青青久久久久久| 两人在一起打扑克的视频| www.色视频.com| 国产精品电影一区二区三区| 天美传媒精品一区二区| 久久香蕉精品热| x7x7x7水蜜桃| 久久婷婷人人爽人人干人人爱| 脱女人内裤的视频| 免费观看人在逋| 在线天堂最新版资源| 99热6这里只有精品|