• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field

    2022-08-31 10:00:00YilinLi李屹林HuiZhu朱慧RuiLi李銳JieLiu柳杰JinjuanXiang項金娟NaXie解娜ZengHuang黃增ZhixuanFang方志軒XingLiu劉行andLixingZhou周麗星
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李銳方志

    Yilin Li(李屹林) Hui Zhu(朱慧) Rui Li(李銳) Jie Liu(柳杰) Jinjuan Xiang(項金娟)Na Xie(解娜) Zeng Huang(黃增) Zhixuan Fang(方志軒) Xing Liu(劉行) and Lixing Zhou(周麗星)

    1Faculty of Information Technology,Beijing University of Technology,Beijing 100023,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: wake up,HZO ferroelectric thin-film,cycling electric field,oxygen vacancy

    1. Introduction

    Recently, high-kdielectrics such as HfO2have been extensively implemented in the microelectronics industry. In 2011, HfO2-SiO2thin films were discovered to exhibit ferroelectric properties by B¨osckeet al.[1]HfO2exists in the form of three basic crystal structures, which are monoclinic,tetragonal and cubic. These structures are centrosymmetric and exhibit no ferroelectric polarization.[2,3]By doping HfO2with Si, Zr, Y, etc., an orthorhombic phase can be obtained.The structure exhibits asymmetric centrality,which is responsible for its ferroelectric properties.[4,5]Ferroelectric randomaccess memories using HfO2-based thin films exhibit fast read and write speeds (tens of ns), low operating voltages, and small power consumption. Furthermore, compared to traditional ferroelectric materials (such as PZT), HfO2-based thin films were compatible with existing CMOS semiconductor processes. They had a sufficiently strong polarization strength(15–45 μC/cm2) in the nanometer range (10 nm).[6–9]As a high-kmaterial, the leakage current of HfO2was low, giving it good retention properties (about 10 years).[10]This opens a new path for the development of ferroelectric field-effect transistors.[11]

    A memory device undergoes continuous writing, reading, and data updating, and thus requires a ferroelectric thin film to withstand the large number of switching cycles. This brings about reliability problems, such as the wake-up effect, which refers to the increase in remnant polarization relative to the initial state at the beginning of 103–104switching cycles.[12]A number of wake-up mechanisms have been proposed, including an oxygen vacancy redistribution,[13]field-cycling-induced phase transitions,[14]and domain depinning mechanisms.[12]Oxygen vacancies play an important role because they are positively charged and are mobile at room temperature.[15,16]Under an electric field, a redistribution of oxygen vacancies (V¨O) within the oxide can occur,which de-pins the domain walls and increases the remnant polarization.[13,17]A phase transition from the tetragonal to the ferroelectric orthorhombic phase is another factor in the wake-up effect, and can be stabilized by redistributed oxygen vacancies.[12,18]Starschichet al. reported that the duration of the electric field was essential for the wake-up, indicating the importance of oxygen vacancy movement driven by the field.[13]To study the parameters affecting the wakeup effect in HfO2-based thin-film devices, and to understand the associated property changes, a deeper understanding of the mechanism is needed. Moreover, because oxygen vacancies are thought to play an important role, it is expected to provide valuable information for further discussion of the vacancy changes during the wake-up process. Here, we analyzed the wake-up behavior in the TiN/Hf0.4Zr0.6O2/TiN structure. Various switching waveforms were applied to investigate the dependence of the wake-up effect,and the variations in the remnant polarization, current–voltage(I–V)curve, and capacitance–voltage (C–V) characteristics were analyzed. A mechanism based on oxygen vacancies is proposed.

    2. Experimental methods

    To prepare samples for this work, Hf0.4Zr0.6O2(HZO)thin films with a thickness of 10 nm were deposited on silicon substrates at 300?C under N2carrier gas atmosphere by atomic layer deposition. The deposition process used precursors of tetrakis-(ethylmethylamino)-(hafnium/zirconium) and H2O as the oxygen source. To serve as a bottom electrode, a 10-nm-thick TiN layer was deposited on the silicon substrate by magnetron sputtering. Square TiN top electrodes, with a side width of 100 μm, were deposited on the HZO films by physical vapor deposition. To prevent the top electrode from being oxidized in air,a 75-nm-thick W electrode was DC sputtered on top of it. The TiN/HZO/TiN structures were annealed at a high temperature of 450?C. Polarization–voltage (P–V)hysteresis loops were measured with a radiant precision workstation.I–VandC–Vcurves were acquired with a semiconductor parameter analyzer(Agilent Technologies B1500A).In all tests,the bottom electrode was grounded,and the top electrode was biased with a drive voltage.

    3. Results and discussion

    The HZO thin film was cycled with 1-kHz,±3 V square waveforms. Changes in theP–Vcurves during the cycling are shown in Fig. 1(a). The initial state displayed a double hysteresis, which is a signature of anti-ferroelectric behavior.[20]After repetitive switching, it is transformed into a single ferroelectric hysteresis loop. The evolution of the remnant polarization and coercive voltage as a function of switching cycles are plotted in Figs.1(b)and 1(c). Both the magnitude of remnant polarization(Pr)and coercive voltage(Vc)increased during the first 104cycles. This was consistent with the wake-up effect in the polarization hysteresis of HZO thin films. With a further increase in the number of field cycles,thePrandVcdecreased,which corresponded to fatigue generally observed in many ferroelectrics.In addition,the magnitude of the negative coercive voltageVc?was always less than that of the positive coercive voltageVc+, indicating the presence of an internal built-in electric filed in the HZO film pointing from the bottom to the top interface. We calculated the built-in voltageVbiby(Vc+–Vc?)/2[21]and plotted them as a function switching cycles in Fig.1(c). It can be seen that the magnitude of built-in voltage stayed stable in the wake-up stage,but increased obviously after 104cycles,which should contribute to the shift ofP–Vhysteresis loops.[31]

    Fig. 1. Changes in (a) P–V hysteresis loops, (b) remnant polarization, (c) coercive voltage and built-in voltage with switching cycles under 1-kHz square waves. (d)Changes in remnant polarization as a function of switching cycles under square waves with various frequencies.

    The wake-up test was also performed under various frequencies, as shown in Fig. 1(d). As the switching frequency decreased, fewer switching cycles were needed to reach the same polarization increase relative to that from higher switching frequencies. This was consistent with previous results that a higher number of cycles was necessary to acquire the same remnant polarization at higher wake-up frequencies.[13]

    The dominant conduction mechanism for the HZO thin film was analyzed. It was firstly polarized with +3 V to preset the polarization state. Then theI–Vcurve was measured in the 0→3 V region, as illustrated in Fig. 2(a) with a double-logarithmic scale. As the voltage increased, theI–Vcurve exhibited a linear behavior (slopekof 1.1) at low voltage(<0.6 V),and then a quadratic behavior(k=2.2)at higher voltage.At 1.7 V,the current rose sharply and the slope was 6.9. The conduction behavior was consistent with trapcontrolled space-charge-limited(SCL)conduction,[22–24]with three regions corresponding to Ohmic, SCL, and trap-filledlimited conduction.[25]The origin of the space charges in the ferroelectric material is related to oxygen vacancies.They create trap energy levels in the bandgap for activated electrons to be mobile.[22]Thus, it is reasonable to assign oxygen vacancies as the physical origins for the traps in the film.Figure 2(b)displays theI–Vcurves for various numbers of switching cycles. It reveals that both the linear part (Ohmic conduction)and the SCL current remained stable up to 105cycles,indicating that the number of charge carriers associated with oxygen vacancies did not change in the wake-up process. This was consistent with previous results that no oxygen vacancies were generated in the wake-up stage.[12]

    Fig. 2. (a) The I–V characteristics under positive bias. The arrow denotes the sweep direction. (b) Changes in I–V curves with respect to switching cycles.

    The device was also repetitively switched with 1-kHz,±3 V pulsed waveforms. The pulse width ranged over 0.01–0.5 ms.It can be seen from Fig.3(a)that when the pulse width was less than 0.1 ms,the polarization did not exhibit a wakeup effect. Only when the pulse width was a certain length did the wake-up appear, which implied that the voltage application time in each switching cycle was an important factor. We plotted the remnant polarization over the total duration of the applied field for both square and pulsed waves in Fig. 3(b).The longer voltage application times in each cycle resulted in a faster wake-up. Furthermore,a wake-up also occurred when a DC voltage was applied. In Fig.3(b),the rise of remnant polarization under continuous DC voltage was close to that from the cycling wake-up for the equivalent duration. Hence, we can explain the wake-up effect in terms of the redistribution of oxygen vacancies,although there is no generation of new V¨Oat this stage. The positively charged oxygen vacancies moved under the external electric field. When the application time of each voltage cycle did not reach a certain limit,the vacancies just vibrated in their original positions and did not change their distribution. When the application time was sufficiently long,the V¨Oleft their initial positions, resulting in a net migration and redistribution that contributed to the wake-up process. In that case, both the voltage application time in each cycle and the cumulative electric field duration affected the wake-up process.

    Fig. 3. (a) Change in remnant polarization as a function of switching cycles under 1-kHz waves with various pulse widths. (b) Normalized change in Pr over the duration of the switching electrical field for both square (#cycles/frequency) and pulse waveforms (#cycles×pulse width×2). The results are compared with the rise of Pr under a continuous DC electric field.

    For further verification,C–Vloops were measured for the cycled samples. In Fig. 4(a), the capacitance decreased with the increasing number of electric field cycles. Lomenzoet al.[26,27]suggested that the decreased dielectric constant in the wake-up state was caused by the tetragonal-to-ferroelectric orthorhombic phase transition. Pintilieet al. proposed that theC–Vcurve of a ferroelectric material can be expressed by[17,28]

    whereNeffis the effective charge density in the space-charge region of the Schottky diode,Vbiis the built-in potential in the absence of polarization,δis the distance between the polarization sheet of charge and the physical metal–ferroelectric interface,qis the carrier charge,ε0is the permittivity of free space, andεsis the static dielectric constant. The±sign indicates two possible orientations of polarizationP. TheC–Vcurve in the area enclosed by the green dashed line in Fig.4(a)was chosen and the corresponding slope of 1/C2–Vwas fit to extractNefffor the interface under reverse bias. The inset in Fig.4(b)displays the linear fit of such a relationship to derive the initial charge density near the top electrode/film interface.The dependence ofNeffon switching cycles is illustrated in Fig.4(b)for the top and bottom interfaces.

    Fig.4.(a)Change inC–V characteristics for the HZO thin film with various switching cycles. (b)Change in free-carrier concentration at both top and bottom electrode/film interfaces with respect to the switching cycles. The inset shows the 1/C2–V plot of the initial sample.

    It shows that the effective charge density at the interfaces increased during wake-up. This could also be understood in terms of oxygen vacancy migration which is shown in Figs. 5(a)–5(c). Because the V¨Owith positive charges can attract electrons, they usually act as electron-trapping centers.[17]Initially, the V¨Oaccumulated at the TiN/HZO interface (Fig. 5(a)), where a large number of electrons were needed to fill traps, causing a small density of free charge in the space-charge region. As the wake-up process continued during the initial 104cycles,the oxygen vacancies moved away from the interface and went into the bulk of the HZO film as shown in Fig. 5(b), reducing the amount of V¨Oat the interface. Therefore, the charged-carrier trapping was reduced,which resulted in an increased effective charge density at the interfacial space-charge region. It can also be derived that there should be a higher concentration of V¨Oat the bottom interface than that at the top interface from the comparison ofNeffbetween the two interface as shown in Fig.4(b).This gave rise to an upward built-in voltage[29]consistent with the result shown in Fig.1(c). After the wake-up stage, the film was fatigued to have an obvious reduction in polarization. On the basis of the long-term study of fatigue mechanism,the fatigue behavior is considered to be closely related to the generation of oxygen vacancies in the film.[30,31]The increase of oxygen vacancies caused the reduction of effective charge density after 104cycles as shown in Fig.4(b). It is possible that the difference between the concentration of V¨Oat the top and bottom interface became larger (Fig. 5(c)). As a result, the built-in voltage increased rapidly in the fatigue process as displayed in Fig. 1(c). However, the scenario requires for more investigation in future work.

    Fig.5. Schematic of the migration and generation of oxygen vacancies from(a)initial →(b)wake-up →(c)fatigue state under the repetitive switching process. The hollow circles represent the oxygen vacancies.

    4. Conclusions

    The wake-up effect in the TiN/Hf0.4Zr0.6O2/TiN structure was examined with various electrical cycling conditions. The total duration and the single length of an applied electrical field both affected the increased polarization. The current–voltage characteristics were consistent with space-charge-limited conduction. Both the stable Ohmic and SCL currents in the wakeup process indicated that the trap density in the film did not change during this period. The effective density of charge in the space-charge region demonstrated a decreased trap density at the interface. Considering the important role of oxygen vacancies as trap centers and their migration under an electric field, the wake-up effect and other property changes were attributed to the redistribution of oxygen vacancies.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61201046) and the Natural Science Foundation of Beijing, China (Grant Nos. 4202009 and 4162013).

    猜你喜歡
    李銳方志
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics
    The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry
    黑龍江民國方志所刊名家墨跡選
    書法賞評(2019年2期)2019-07-02 12:10:50
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    綁架
    北京文學(2018年9期)2018-09-13 03:06:56
    李銳作品
    嘉絨藏族地區(qū)的舊方志編纂
    西藏研究(2017年1期)2017-06-05 09:26:11
    攝魂相機
    Average Incremenral Correlarion Analysis Model and Irs Applicarion in Faulr Diagnosis
    日韩人妻精品一区2区三区| 精品久久蜜臀av无| 欧美精品av麻豆av| 亚洲专区国产一区二区| 巨乳人妻的诱惑在线观看| 国产91精品成人一区二区三区| 久久中文字幕一级| 男人的好看免费观看在线视频 | av天堂久久9| 国产精品久久久久成人av| 一级a爱视频在线免费观看| 国产亚洲精品第一综合不卡| 91成年电影在线观看| 狠狠狠狠99中文字幕| 99久久国产精品久久久| 久久 成人 亚洲| 久久香蕉精品热| 亚洲成人免费av在线播放| 99re6热这里在线精品视频| 亚洲av欧美aⅴ国产| 人人妻人人澡人人看| 精品第一国产精品| 国产亚洲av高清不卡| 一a级毛片在线观看| 久久精品人人爽人人爽视色| 美女 人体艺术 gogo| 亚洲色图综合在线观看| 日韩欧美国产一区二区入口| 日本黄色日本黄色录像| 久久香蕉激情| 黄色怎么调成土黄色| 一二三四在线观看免费中文在| 国产一区在线观看成人免费| 满18在线观看网站| 日韩欧美在线二视频 | 麻豆av在线久日| 国产精品秋霞免费鲁丝片| 欧美最黄视频在线播放免费 | 纯流量卡能插随身wifi吗| 欧美黑人欧美精品刺激| 日韩欧美一区视频在线观看| av天堂在线播放| 欧美亚洲 丝袜 人妻 在线| 国产免费现黄频在线看| 免费在线观看完整版高清| 高清视频免费观看一区二区| 久久国产精品大桥未久av| 国产精品 国内视频| 精品熟女少妇八av免费久了| 成人国语在线视频| 在线播放国产精品三级| 91老司机精品| 黄色毛片三级朝国网站| 九色亚洲精品在线播放| 亚洲少妇的诱惑av| 热99久久久久精品小说推荐| 欧美日韩中文字幕国产精品一区二区三区 | 人人澡人人妻人| 国产极品粉嫩免费观看在线| 青草久久国产| 俄罗斯特黄特色一大片| 日韩熟女老妇一区二区性免费视频| 亚洲精品美女久久久久99蜜臀| 日韩熟女老妇一区二区性免费视频| 亚洲一码二码三码区别大吗| 成人手机av| 女人精品久久久久毛片| 高清在线国产一区| 黑人操中国人逼视频| av免费在线观看网站| 天天躁夜夜躁狠狠躁躁| 国产欧美日韩一区二区三| 欧美日韩中文字幕国产精品一区二区三区 | 最新美女视频免费是黄的| 亚洲中文字幕日韩| 国产一区二区三区综合在线观看| 99热只有精品国产| 日日爽夜夜爽网站| 成人av一区二区三区在线看| 日本黄色视频三级网站网址 | 露出奶头的视频| 满18在线观看网站| 久久香蕉激情| 午夜久久久在线观看| 啦啦啦视频在线资源免费观看| 成年版毛片免费区| 自线自在国产av| 久热这里只有精品99| 露出奶头的视频| 1024视频免费在线观看| 亚洲第一欧美日韩一区二区三区| 欧美乱色亚洲激情| 一a级毛片在线观看| 中亚洲国语对白在线视频| 欧美精品av麻豆av| 999精品在线视频| 日韩三级视频一区二区三区| 少妇的丰满在线观看| 国产精品乱码一区二三区的特点 | 18禁观看日本| 在线看a的网站| 国产精品 欧美亚洲| 一级黄色大片毛片| 亚洲av日韩精品久久久久久密| 日本wwww免费看| 看片在线看免费视频| 一级毛片精品| 日韩欧美免费精品| 精品国产一区二区三区久久久樱花| 久久精品人人爽人人爽视色| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| 亚洲欧洲精品一区二区精品久久久| 黑人操中国人逼视频| 欧美精品亚洲一区二区| 国产男靠女视频免费网站| 午夜福利免费观看在线| 69精品国产乱码久久久| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人添人人爽欧美一区卜| 韩国av一区二区三区四区| 热99国产精品久久久久久7| 国产成人欧美| 捣出白浆h1v1| 狠狠狠狠99中文字幕| 精品欧美一区二区三区在线| 亚洲欧美一区二区三区久久| 日韩中文字幕欧美一区二区| 手机成人av网站| 飞空精品影院首页| 老司机靠b影院| 欧美+亚洲+日韩+国产| 亚洲视频免费观看视频| 日韩欧美免费精品| 国产欧美日韩综合在线一区二区| 国产人伦9x9x在线观看| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 一边摸一边抽搐一进一小说 | 女同久久另类99精品国产91| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品国产精品久久久不卡| 久久久久国内视频| 精品国内亚洲2022精品成人 | 亚洲一卡2卡3卡4卡5卡精品中文| 免费在线观看视频国产中文字幕亚洲| 亚洲成av片中文字幕在线观看| 一级作爱视频免费观看| 欧美性长视频在线观看| 午夜福利,免费看| 无人区码免费观看不卡| 亚洲专区国产一区二区| 国产精品av久久久久免费| 色综合欧美亚洲国产小说| 亚洲欧美激情在线| 俄罗斯特黄特色一大片| 精品一区二区三区av网在线观看| 国产亚洲精品第一综合不卡| 欧美精品一区二区免费开放| 欧美国产精品一级二级三级| 一区二区三区国产精品乱码| 亚洲国产中文字幕在线视频| netflix在线观看网站| 久久精品国产a三级三级三级| 亚洲男人天堂网一区| 亚洲精品自拍成人| av网站在线播放免费| 色尼玛亚洲综合影院| 国产1区2区3区精品| 午夜激情av网站| 亚洲美女黄片视频| 国产精品一区二区在线观看99| 久久性视频一级片| 男女高潮啪啪啪动态图| 又黄又爽又免费观看的视频| 久久国产乱子伦精品免费另类| 国产男女超爽视频在线观看| 中文字幕人妻熟女乱码| 两个人看的免费小视频| 水蜜桃什么品种好| 国产蜜桃级精品一区二区三区 | 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 亚洲精品国产一区二区精华液| 建设人人有责人人尽责人人享有的| 岛国毛片在线播放| 免费久久久久久久精品成人欧美视频| 美女视频免费永久观看网站| 日韩人妻精品一区2区三区| 50天的宝宝边吃奶边哭怎么回事| 久久国产乱子伦精品免费另类| 视频在线观看一区二区三区| 99久久99久久久精品蜜桃| 国产真人三级小视频在线观看| 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费 | 19禁男女啪啪无遮挡网站| 亚洲精品美女久久av网站| 少妇裸体淫交视频免费看高清 | 天堂中文最新版在线下载| 国产片内射在线| 日韩免费av在线播放| 91av网站免费观看| 中文字幕av电影在线播放| 国产真人三级小视频在线观看| 久久精品亚洲av国产电影网| 色老头精品视频在线观看| 久久久久精品人妻al黑| 国产精品免费大片| 国产男靠女视频免费网站| 丝袜人妻中文字幕| 色播在线永久视频| 午夜福利乱码中文字幕| 国产麻豆69| 欧美日韩精品网址| 亚洲性夜色夜夜综合| 91大片在线观看| www.自偷自拍.com| 91国产中文字幕| 黑人操中国人逼视频| 精品视频人人做人人爽| 极品人妻少妇av视频| 国产精品一区二区精品视频观看| 女人久久www免费人成看片| 国产成人啪精品午夜网站| 一进一出抽搐gif免费好疼 | 男女高潮啪啪啪动态图| 国产亚洲精品第一综合不卡| 在线观看免费午夜福利视频| 精品福利观看| 丝袜美腿诱惑在线| 国产精品电影一区二区三区 | 亚洲在线自拍视频| 人人妻,人人澡人人爽秒播| 交换朋友夫妻互换小说| 看黄色毛片网站| 欧美黑人精品巨大| 性少妇av在线| 欧美亚洲日本最大视频资源| 久久精品国产亚洲av高清一级| 我的亚洲天堂| 午夜福利乱码中文字幕| 亚洲精品乱久久久久久| 国产精品亚洲一级av第二区| 欧美在线一区亚洲| 无限看片的www在线观看| 一二三四社区在线视频社区8| 亚洲精品乱久久久久久| 精品人妻1区二区| 久久精品亚洲av国产电影网| 变态另类成人亚洲欧美熟女 | 天堂√8在线中文| 女人被狂操c到高潮| 精品国产亚洲在线| 交换朋友夫妻互换小说| 免费在线观看视频国产中文字幕亚洲| 亚洲av日韩精品久久久久久密| 伦理电影免费视频| 国产不卡一卡二| 精品无人区乱码1区二区| 亚洲欧美精品综合一区二区三区| 高清黄色对白视频在线免费看| 久久久久视频综合| 九色亚洲精品在线播放| 久久99一区二区三区| 亚洲欧美日韩高清在线视频| 啦啦啦免费观看视频1| 人成视频在线观看免费观看| 成人18禁高潮啪啪吃奶动态图| 国产精品影院久久| 久久久久久久精品吃奶| 欧美久久黑人一区二区| 人妻 亚洲 视频| 久久久久久亚洲精品国产蜜桃av| 午夜精品国产一区二区电影| 成人免费观看视频高清| 久久九九热精品免费| 亚洲五月天丁香| 久久国产乱子伦精品免费另类| 电影成人av| 国产精品一区二区免费欧美| 久久久精品区二区三区| 久久香蕉国产精品| 国产激情久久老熟女| 丰满饥渴人妻一区二区三| 亚洲男人天堂网一区| a级毛片在线看网站| 精品国产乱子伦一区二区三区| 丁香欧美五月| 久9热在线精品视频| 欧美国产精品va在线观看不卡| 一进一出好大好爽视频| 欧美色视频一区免费| 一级毛片精品| 亚洲av成人不卡在线观看播放网| 亚洲五月天丁香| 窝窝影院91人妻| 久久精品熟女亚洲av麻豆精品| 在线观看免费日韩欧美大片| 成人国语在线视频| 亚洲精品成人av观看孕妇| 亚洲中文av在线| 老司机午夜福利在线观看视频| 激情视频va一区二区三区| videosex国产| 国内久久婷婷六月综合欲色啪| 成人特级黄色片久久久久久久| 日本黄色日本黄色录像| 高清av免费在线| 久久婷婷成人综合色麻豆| 国产精品.久久久| 亚洲欧美激情综合另类| 久久精品亚洲精品国产色婷小说| 日本五十路高清| 极品教师在线免费播放| 欧美黄色淫秽网站| 999久久久国产精品视频| 视频在线观看一区二区三区| 欧美日韩精品网址| 精品福利永久在线观看| 免费日韩欧美在线观看| 成人免费观看视频高清| 99国产精品99久久久久| 成人免费观看视频高清| 精品国产乱子伦一区二区三区| 一进一出好大好爽视频| 午夜成年电影在线免费观看| 亚洲精品久久成人aⅴ小说| 久久久久久亚洲精品国产蜜桃av| 国产野战对白在线观看| 亚洲成a人片在线一区二区| 纯流量卡能插随身wifi吗| 久久精品亚洲av国产电影网| 亚洲中文字幕日韩| 99riav亚洲国产免费| 激情在线观看视频在线高清 | 中文字幕最新亚洲高清| 成在线人永久免费视频| 国产成人影院久久av| 色尼玛亚洲综合影院| 天堂俺去俺来也www色官网| 国产免费现黄频在线看| 高清av免费在线| 国产无遮挡羞羞视频在线观看| 国产成人精品在线电影| 色尼玛亚洲综合影院| 欧美亚洲日本最大视频资源| 久久精品亚洲av国产电影网| 日韩中文字幕欧美一区二区| 在线观看免费日韩欧美大片| 欧美精品亚洲一区二区| 国产黄色免费在线视频| 久久久精品区二区三区| 午夜精品在线福利| 建设人人有责人人尽责人人享有的| 国产精品 国内视频| 亚洲一区中文字幕在线| 久久亚洲真实| 亚洲精品一卡2卡三卡4卡5卡| 欧美在线一区亚洲| 国产精品99久久99久久久不卡| 亚洲av熟女| av电影中文网址| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 五月开心婷婷网| 精品国产乱子伦一区二区三区| 在线免费观看的www视频| svipshipincom国产片| 久久狼人影院| 国产成人啪精品午夜网站| 国产淫语在线视频| 欧美国产精品一级二级三级| 国产不卡av网站在线观看| 久久久久精品国产欧美久久久| av视频免费观看在线观看| 人妻久久中文字幕网| 极品少妇高潮喷水抽搐| 久久精品国产99精品国产亚洲性色 | 亚洲九九香蕉| 搡老熟女国产l中国老女人| 国产午夜精品久久久久久| 久久青草综合色| 捣出白浆h1v1| 午夜日韩欧美国产| 亚洲性夜色夜夜综合| 欧美日韩国产mv在线观看视频| 天天添夜夜摸| 国产在视频线精品| 一夜夜www| 精品高清国产在线一区| 叶爱在线成人免费视频播放| 国产1区2区3区精品| 国产午夜精品久久久久久| 多毛熟女@视频| 久久婷婷成人综合色麻豆| 俄罗斯特黄特色一大片| 久久国产精品人妻蜜桃| 日本精品一区二区三区蜜桃| 看免费av毛片| 国产精品.久久久| 黄色a级毛片大全视频| 宅男免费午夜| av天堂久久9| 久久天堂一区二区三区四区| 50天的宝宝边吃奶边哭怎么回事| 国产亚洲欧美在线一区二区| 精品久久久精品久久久| 久久99一区二区三区| 老司机亚洲免费影院| а√天堂www在线а√下载 | 免费看十八禁软件| 亚洲中文字幕日韩| 欧美成狂野欧美在线观看| 亚洲精品国产区一区二| 三级毛片av免费| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 免费少妇av软件| 18禁裸乳无遮挡动漫免费视频| 国产精品久久久av美女十八| 高清在线国产一区| 男女床上黄色一级片免费看| 美女福利国产在线| 国产av精品麻豆| 国产在视频线精品| 欧美在线一区亚洲| 下体分泌物呈黄色| av超薄肉色丝袜交足视频| 欧美性长视频在线观看| 久久天躁狠狠躁夜夜2o2o| 女同久久另类99精品国产91| 欧美精品一区二区免费开放| 自线自在国产av| 很黄的视频免费| 免费黄频网站在线观看国产| 91麻豆av在线| 久久天堂一区二区三区四区| 亚洲情色 制服丝袜| 亚洲久久久国产精品| 看免费av毛片| 久久人妻福利社区极品人妻图片| 欧美精品啪啪一区二区三区| 欧美一级毛片孕妇| 日韩 欧美 亚洲 中文字幕| av一本久久久久| 99精品欧美一区二区三区四区| 国产激情欧美一区二区| 欧美激情高清一区二区三区| 水蜜桃什么品种好| 男人操女人黄网站| 国产精品影院久久| 国产男女内射视频| 免费在线观看完整版高清| 日日摸夜夜添夜夜添小说| 亚洲九九香蕉| 久热爱精品视频在线9| 午夜精品在线福利| av天堂在线播放| 人妻久久中文字幕网| 国产91精品成人一区二区三区| 脱女人内裤的视频| 91av网站免费观看| 女同久久另类99精品国产91| 女警被强在线播放| 天天影视国产精品| 欧美久久黑人一区二区| 国产男女超爽视频在线观看| 美女国产高潮福利片在线看| 国产av又大| 99国产极品粉嫩在线观看| av网站在线播放免费| 宅男免费午夜| 色播在线永久视频| 久久亚洲真实| 成人av一区二区三区在线看| 中文字幕色久视频| 黄片小视频在线播放| 日日摸夜夜添夜夜添小说| 免费观看人在逋| 国产精品1区2区在线观看. | 激情视频va一区二区三区| 国产成人一区二区三区免费视频网站| 啦啦啦免费观看视频1| 精品第一国产精品| 大陆偷拍与自拍| 成年人午夜在线观看视频| 国产成人影院久久av| 亚洲 国产 在线| 国产97色在线日韩免费| videos熟女内射| 亚洲精品乱久久久久久| 欧美av亚洲av综合av国产av| 中出人妻视频一区二区| 亚洲av美国av| 午夜福利影视在线免费观看| 国产成人影院久久av| 韩国精品一区二区三区| 欧洲精品卡2卡3卡4卡5卡区| 国产一区二区三区综合在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品成人在线| 极品少妇高潮喷水抽搐| 亚洲欧洲精品一区二区精品久久久| 久久香蕉国产精品| 激情在线观看视频在线高清 | 欧美精品高潮呻吟av久久| 欧美精品av麻豆av| 国产免费现黄频在线看| 水蜜桃什么品种好| 一进一出抽搐动态| 国产不卡一卡二| xxxhd国产人妻xxx| 成人亚洲精品一区在线观看| 国产精品99久久99久久久不卡| 99精品久久久久人妻精品| 日本欧美视频一区| 黄色a级毛片大全视频| 一个人免费在线观看的高清视频| 一二三四在线观看免费中文在| 99热国产这里只有精品6| 国产野战对白在线观看| 精品午夜福利视频在线观看一区| 啦啦啦免费观看视频1| 黄色a级毛片大全视频| 欧美日韩乱码在线| 欧美日韩黄片免| 久久精品国产99精品国产亚洲性色 | 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区在线臀色熟女 | 午夜免费观看网址| 看黄色毛片网站| 久久精品91无色码中文字幕| 亚洲 国产 在线| 多毛熟女@视频| 视频区欧美日本亚洲| av免费在线观看网站| 午夜老司机福利片| 日韩欧美一区二区三区在线观看 | 国产一区二区三区综合在线观看| 亚洲国产精品合色在线| 99热国产这里只有精品6| 精品一品国产午夜福利视频| 成人精品一区二区免费| 在线观看午夜福利视频| 精品人妻1区二区| 成人影院久久| 免费高清在线观看日韩| 黄网站色视频无遮挡免费观看| 久久久久久亚洲精品国产蜜桃av| 欧美黑人欧美精品刺激| 欧美精品啪啪一区二区三区| 日韩有码中文字幕| av视频免费观看在线观看| 午夜日韩欧美国产| 超色免费av| 天天躁狠狠躁夜夜躁狠狠躁| 一级毛片女人18水好多| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线| svipshipincom国产片| 亚洲人成77777在线视频| 国产视频一区二区在线看| 国产麻豆69| 欧美老熟妇乱子伦牲交| 不卡av一区二区三区| 制服诱惑二区| 精品一品国产午夜福利视频| 99久久99久久久精品蜜桃| 在线观看免费日韩欧美大片| 久久国产精品男人的天堂亚洲| 啦啦啦在线免费观看视频4| 日本a在线网址| 三上悠亚av全集在线观看| 欧美中文综合在线视频| 国产男女超爽视频在线观看| 亚洲精品在线美女| 欧美成人免费av一区二区三区 | 91老司机精品| 亚洲aⅴ乱码一区二区在线播放 | 亚洲性夜色夜夜综合| 亚洲精品在线美女| 国产亚洲欧美精品永久| 国产精品一区二区在线观看99| 亚洲三区欧美一区| 首页视频小说图片口味搜索| 99在线人妻在线中文字幕 | 久9热在线精品视频| 国产高清激情床上av| 亚洲欧美一区二区三区久久| 制服诱惑二区| 国产主播在线观看一区二区| 咕卡用的链子| 久9热在线精品视频| av视频免费观看在线观看| 成人永久免费在线观看视频| 午夜精品久久久久久毛片777| 午夜福利一区二区在线看| 日韩免费高清中文字幕av| tocl精华| 国产精品香港三级国产av潘金莲| 丝袜美足系列| 中文欧美无线码| av欧美777| 女人爽到高潮嗷嗷叫在线视频| 一区在线观看完整版| 另类亚洲欧美激情| 韩国av一区二区三区四区| 一区在线观看完整版| 另类亚洲欧美激情| 久久精品亚洲熟妇少妇任你| 在线观看免费午夜福利视频| 欧美老熟妇乱子伦牲交| 又黄又爽又免费观看的视频|