• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field

    2022-08-31 10:00:00YilinLi李屹林HuiZhu朱慧RuiLi李銳JieLiu柳杰JinjuanXiang項金娟NaXie解娜ZengHuang黃增ZhixuanFang方志軒XingLiu劉行andLixingZhou周麗星
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李銳方志

    Yilin Li(李屹林) Hui Zhu(朱慧) Rui Li(李銳) Jie Liu(柳杰) Jinjuan Xiang(項金娟)Na Xie(解娜) Zeng Huang(黃增) Zhixuan Fang(方志軒) Xing Liu(劉行) and Lixing Zhou(周麗星)

    1Faculty of Information Technology,Beijing University of Technology,Beijing 100023,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: wake up,HZO ferroelectric thin-film,cycling electric field,oxygen vacancy

    1. Introduction

    Recently, high-kdielectrics such as HfO2have been extensively implemented in the microelectronics industry. In 2011, HfO2-SiO2thin films were discovered to exhibit ferroelectric properties by B¨osckeet al.[1]HfO2exists in the form of three basic crystal structures, which are monoclinic,tetragonal and cubic. These structures are centrosymmetric and exhibit no ferroelectric polarization.[2,3]By doping HfO2with Si, Zr, Y, etc., an orthorhombic phase can be obtained.The structure exhibits asymmetric centrality,which is responsible for its ferroelectric properties.[4,5]Ferroelectric randomaccess memories using HfO2-based thin films exhibit fast read and write speeds (tens of ns), low operating voltages, and small power consumption. Furthermore, compared to traditional ferroelectric materials (such as PZT), HfO2-based thin films were compatible with existing CMOS semiconductor processes. They had a sufficiently strong polarization strength(15–45 μC/cm2) in the nanometer range (10 nm).[6–9]As a high-kmaterial, the leakage current of HfO2was low, giving it good retention properties (about 10 years).[10]This opens a new path for the development of ferroelectric field-effect transistors.[11]

    A memory device undergoes continuous writing, reading, and data updating, and thus requires a ferroelectric thin film to withstand the large number of switching cycles. This brings about reliability problems, such as the wake-up effect, which refers to the increase in remnant polarization relative to the initial state at the beginning of 103–104switching cycles.[12]A number of wake-up mechanisms have been proposed, including an oxygen vacancy redistribution,[13]field-cycling-induced phase transitions,[14]and domain depinning mechanisms.[12]Oxygen vacancies play an important role because they are positively charged and are mobile at room temperature.[15,16]Under an electric field, a redistribution of oxygen vacancies (V¨O) within the oxide can occur,which de-pins the domain walls and increases the remnant polarization.[13,17]A phase transition from the tetragonal to the ferroelectric orthorhombic phase is another factor in the wake-up effect, and can be stabilized by redistributed oxygen vacancies.[12,18]Starschichet al. reported that the duration of the electric field was essential for the wake-up, indicating the importance of oxygen vacancy movement driven by the field.[13]To study the parameters affecting the wakeup effect in HfO2-based thin-film devices, and to understand the associated property changes, a deeper understanding of the mechanism is needed. Moreover, because oxygen vacancies are thought to play an important role, it is expected to provide valuable information for further discussion of the vacancy changes during the wake-up process. Here, we analyzed the wake-up behavior in the TiN/Hf0.4Zr0.6O2/TiN structure. Various switching waveforms were applied to investigate the dependence of the wake-up effect,and the variations in the remnant polarization, current–voltage(I–V)curve, and capacitance–voltage (C–V) characteristics were analyzed. A mechanism based on oxygen vacancies is proposed.

    2. Experimental methods

    To prepare samples for this work, Hf0.4Zr0.6O2(HZO)thin films with a thickness of 10 nm were deposited on silicon substrates at 300?C under N2carrier gas atmosphere by atomic layer deposition. The deposition process used precursors of tetrakis-(ethylmethylamino)-(hafnium/zirconium) and H2O as the oxygen source. To serve as a bottom electrode, a 10-nm-thick TiN layer was deposited on the silicon substrate by magnetron sputtering. Square TiN top electrodes, with a side width of 100 μm, were deposited on the HZO films by physical vapor deposition. To prevent the top electrode from being oxidized in air,a 75-nm-thick W electrode was DC sputtered on top of it. The TiN/HZO/TiN structures were annealed at a high temperature of 450?C. Polarization–voltage (P–V)hysteresis loops were measured with a radiant precision workstation.I–VandC–Vcurves were acquired with a semiconductor parameter analyzer(Agilent Technologies B1500A).In all tests,the bottom electrode was grounded,and the top electrode was biased with a drive voltage.

    3. Results and discussion

    The HZO thin film was cycled with 1-kHz,±3 V square waveforms. Changes in theP–Vcurves during the cycling are shown in Fig. 1(a). The initial state displayed a double hysteresis, which is a signature of anti-ferroelectric behavior.[20]After repetitive switching, it is transformed into a single ferroelectric hysteresis loop. The evolution of the remnant polarization and coercive voltage as a function of switching cycles are plotted in Figs.1(b)and 1(c). Both the magnitude of remnant polarization(Pr)and coercive voltage(Vc)increased during the first 104cycles. This was consistent with the wake-up effect in the polarization hysteresis of HZO thin films. With a further increase in the number of field cycles,thePrandVcdecreased,which corresponded to fatigue generally observed in many ferroelectrics.In addition,the magnitude of the negative coercive voltageVc?was always less than that of the positive coercive voltageVc+, indicating the presence of an internal built-in electric filed in the HZO film pointing from the bottom to the top interface. We calculated the built-in voltageVbiby(Vc+–Vc?)/2[21]and plotted them as a function switching cycles in Fig.1(c). It can be seen that the magnitude of built-in voltage stayed stable in the wake-up stage,but increased obviously after 104cycles,which should contribute to the shift ofP–Vhysteresis loops.[31]

    Fig. 1. Changes in (a) P–V hysteresis loops, (b) remnant polarization, (c) coercive voltage and built-in voltage with switching cycles under 1-kHz square waves. (d)Changes in remnant polarization as a function of switching cycles under square waves with various frequencies.

    The wake-up test was also performed under various frequencies, as shown in Fig. 1(d). As the switching frequency decreased, fewer switching cycles were needed to reach the same polarization increase relative to that from higher switching frequencies. This was consistent with previous results that a higher number of cycles was necessary to acquire the same remnant polarization at higher wake-up frequencies.[13]

    The dominant conduction mechanism for the HZO thin film was analyzed. It was firstly polarized with +3 V to preset the polarization state. Then theI–Vcurve was measured in the 0→3 V region, as illustrated in Fig. 2(a) with a double-logarithmic scale. As the voltage increased, theI–Vcurve exhibited a linear behavior (slopekof 1.1) at low voltage(<0.6 V),and then a quadratic behavior(k=2.2)at higher voltage.At 1.7 V,the current rose sharply and the slope was 6.9. The conduction behavior was consistent with trapcontrolled space-charge-limited(SCL)conduction,[22–24]with three regions corresponding to Ohmic, SCL, and trap-filledlimited conduction.[25]The origin of the space charges in the ferroelectric material is related to oxygen vacancies.They create trap energy levels in the bandgap for activated electrons to be mobile.[22]Thus, it is reasonable to assign oxygen vacancies as the physical origins for the traps in the film.Figure 2(b)displays theI–Vcurves for various numbers of switching cycles. It reveals that both the linear part (Ohmic conduction)and the SCL current remained stable up to 105cycles,indicating that the number of charge carriers associated with oxygen vacancies did not change in the wake-up process. This was consistent with previous results that no oxygen vacancies were generated in the wake-up stage.[12]

    Fig. 2. (a) The I–V characteristics under positive bias. The arrow denotes the sweep direction. (b) Changes in I–V curves with respect to switching cycles.

    The device was also repetitively switched with 1-kHz,±3 V pulsed waveforms. The pulse width ranged over 0.01–0.5 ms.It can be seen from Fig.3(a)that when the pulse width was less than 0.1 ms,the polarization did not exhibit a wakeup effect. Only when the pulse width was a certain length did the wake-up appear, which implied that the voltage application time in each switching cycle was an important factor. We plotted the remnant polarization over the total duration of the applied field for both square and pulsed waves in Fig. 3(b).The longer voltage application times in each cycle resulted in a faster wake-up. Furthermore,a wake-up also occurred when a DC voltage was applied. In Fig.3(b),the rise of remnant polarization under continuous DC voltage was close to that from the cycling wake-up for the equivalent duration. Hence, we can explain the wake-up effect in terms of the redistribution of oxygen vacancies,although there is no generation of new V¨Oat this stage. The positively charged oxygen vacancies moved under the external electric field. When the application time of each voltage cycle did not reach a certain limit,the vacancies just vibrated in their original positions and did not change their distribution. When the application time was sufficiently long,the V¨Oleft their initial positions, resulting in a net migration and redistribution that contributed to the wake-up process. In that case, both the voltage application time in each cycle and the cumulative electric field duration affected the wake-up process.

    Fig. 3. (a) Change in remnant polarization as a function of switching cycles under 1-kHz waves with various pulse widths. (b) Normalized change in Pr over the duration of the switching electrical field for both square (#cycles/frequency) and pulse waveforms (#cycles×pulse width×2). The results are compared with the rise of Pr under a continuous DC electric field.

    For further verification,C–Vloops were measured for the cycled samples. In Fig. 4(a), the capacitance decreased with the increasing number of electric field cycles. Lomenzoet al.[26,27]suggested that the decreased dielectric constant in the wake-up state was caused by the tetragonal-to-ferroelectric orthorhombic phase transition. Pintilieet al. proposed that theC–Vcurve of a ferroelectric material can be expressed by[17,28]

    whereNeffis the effective charge density in the space-charge region of the Schottky diode,Vbiis the built-in potential in the absence of polarization,δis the distance between the polarization sheet of charge and the physical metal–ferroelectric interface,qis the carrier charge,ε0is the permittivity of free space, andεsis the static dielectric constant. The±sign indicates two possible orientations of polarizationP. TheC–Vcurve in the area enclosed by the green dashed line in Fig.4(a)was chosen and the corresponding slope of 1/C2–Vwas fit to extractNefffor the interface under reverse bias. The inset in Fig.4(b)displays the linear fit of such a relationship to derive the initial charge density near the top electrode/film interface.The dependence ofNeffon switching cycles is illustrated in Fig.4(b)for the top and bottom interfaces.

    Fig.4.(a)Change inC–V characteristics for the HZO thin film with various switching cycles. (b)Change in free-carrier concentration at both top and bottom electrode/film interfaces with respect to the switching cycles. The inset shows the 1/C2–V plot of the initial sample.

    It shows that the effective charge density at the interfaces increased during wake-up. This could also be understood in terms of oxygen vacancy migration which is shown in Figs. 5(a)–5(c). Because the V¨Owith positive charges can attract electrons, they usually act as electron-trapping centers.[17]Initially, the V¨Oaccumulated at the TiN/HZO interface (Fig. 5(a)), where a large number of electrons were needed to fill traps, causing a small density of free charge in the space-charge region. As the wake-up process continued during the initial 104cycles,the oxygen vacancies moved away from the interface and went into the bulk of the HZO film as shown in Fig. 5(b), reducing the amount of V¨Oat the interface. Therefore, the charged-carrier trapping was reduced,which resulted in an increased effective charge density at the interfacial space-charge region. It can also be derived that there should be a higher concentration of V¨Oat the bottom interface than that at the top interface from the comparison ofNeffbetween the two interface as shown in Fig.4(b).This gave rise to an upward built-in voltage[29]consistent with the result shown in Fig.1(c). After the wake-up stage, the film was fatigued to have an obvious reduction in polarization. On the basis of the long-term study of fatigue mechanism,the fatigue behavior is considered to be closely related to the generation of oxygen vacancies in the film.[30,31]The increase of oxygen vacancies caused the reduction of effective charge density after 104cycles as shown in Fig.4(b). It is possible that the difference between the concentration of V¨Oat the top and bottom interface became larger (Fig. 5(c)). As a result, the built-in voltage increased rapidly in the fatigue process as displayed in Fig. 1(c). However, the scenario requires for more investigation in future work.

    Fig.5. Schematic of the migration and generation of oxygen vacancies from(a)initial →(b)wake-up →(c)fatigue state under the repetitive switching process. The hollow circles represent the oxygen vacancies.

    4. Conclusions

    The wake-up effect in the TiN/Hf0.4Zr0.6O2/TiN structure was examined with various electrical cycling conditions. The total duration and the single length of an applied electrical field both affected the increased polarization. The current–voltage characteristics were consistent with space-charge-limited conduction. Both the stable Ohmic and SCL currents in the wakeup process indicated that the trap density in the film did not change during this period. The effective density of charge in the space-charge region demonstrated a decreased trap density at the interface. Considering the important role of oxygen vacancies as trap centers and their migration under an electric field, the wake-up effect and other property changes were attributed to the redistribution of oxygen vacancies.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61201046) and the Natural Science Foundation of Beijing, China (Grant Nos. 4202009 and 4162013).

    猜你喜歡
    李銳方志
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics
    The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry
    黑龍江民國方志所刊名家墨跡選
    書法賞評(2019年2期)2019-07-02 12:10:50
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    綁架
    北京文學(2018年9期)2018-09-13 03:06:56
    李銳作品
    嘉絨藏族地區(qū)的舊方志編纂
    西藏研究(2017年1期)2017-06-05 09:26:11
    攝魂相機
    Average Incremenral Correlarion Analysis Model and Irs Applicarion in Faulr Diagnosis
    男人舔女人的私密视频| 免费在线观看视频国产中文字幕亚洲 | 国产精品欧美亚洲77777| 美女福利国产在线| 日韩中文字幕欧美一区二区| 久久亚洲精品不卡| 在线看a的网站| 国产极品粉嫩免费观看在线| 久久国产亚洲av麻豆专区| 天堂俺去俺来也www色官网| 国产在线观看jvid| 久久人妻福利社区极品人妻图片| 在线av久久热| 亚洲欧美日韩高清在线视频 | av视频免费观看在线观看| 天堂中文最新版在线下载| 日韩制服骚丝袜av| 天天躁日日躁夜夜躁夜夜| 妹子高潮喷水视频| 狂野欧美激情性bbbbbb| 91字幕亚洲| 老汉色av国产亚洲站长工具| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色毛片三级朝国网站| www.自偷自拍.com| 国产精品自产拍在线观看55亚洲 | av网站免费在线观看视频| 极品人妻少妇av视频| 一级毛片女人18水好多| 亚洲国产成人一精品久久久| 国产三级黄色录像| 国产欧美日韩综合在线一区二区| 丝袜美足系列| 久久久国产欧美日韩av| 大型av网站在线播放| 久久久久视频综合| 亚洲午夜精品一区,二区,三区| 在线观看一区二区三区激情| 永久免费av网站大全| 久久久久视频综合| 一二三四在线观看免费中文在| 久久狼人影院| 中亚洲国语对白在线视频| 欧美中文综合在线视频| 欧美日韩av久久| 搡老岳熟女国产| 国产有黄有色有爽视频| 中文字幕色久视频| 不卡av一区二区三区| 免费黄频网站在线观看国产| 日韩欧美免费精品| 亚洲欧洲日产国产| 一二三四在线观看免费中文在| 80岁老熟妇乱子伦牲交| 青草久久国产| 午夜福利视频精品| 搡老岳熟女国产| 久久精品国产亚洲av高清一级| 国产精品亚洲av一区麻豆| 天天躁日日躁夜夜躁夜夜| 97在线人人人人妻| 国内毛片毛片毛片毛片毛片| 狂野欧美激情性xxxx| 午夜福利影视在线免费观看| 精品视频人人做人人爽| 中亚洲国语对白在线视频| 男女国产视频网站| 999精品在线视频| 成年人免费黄色播放视频| 一区在线观看完整版| 久久久久久久精品精品| 新久久久久国产一级毛片| av有码第一页| 日本vs欧美在线观看视频| netflix在线观看网站| 亚洲伊人色综图| 日韩熟女老妇一区二区性免费视频| 久久精品久久久久久噜噜老黄| 一级毛片精品| 久久久国产欧美日韩av| cao死你这个sao货| 黑人猛操日本美女一级片| 一级黄色大片毛片| 91精品三级在线观看| 亚洲天堂av无毛| 一级毛片女人18水好多| 日本91视频免费播放| 成年美女黄网站色视频大全免费| 精品久久蜜臀av无| 午夜激情av网站| 欧美变态另类bdsm刘玥| 亚洲av国产av综合av卡| 国产av国产精品国产| 另类精品久久| 日韩三级视频一区二区三区| 日本一区二区免费在线视频| 啦啦啦视频在线资源免费观看| 女人被躁到高潮嗷嗷叫费观| 男女之事视频高清在线观看| 欧美少妇被猛烈插入视频| 秋霞在线观看毛片| 女人久久www免费人成看片| 人人妻人人澡人人看| 一区二区三区乱码不卡18| 少妇精品久久久久久久| 汤姆久久久久久久影院中文字幕| 黄色毛片三级朝国网站| 亚洲国产毛片av蜜桃av| 色精品久久人妻99蜜桃| 窝窝影院91人妻| 男人舔女人的私密视频| 久久人妻熟女aⅴ| 午夜激情久久久久久久| 黑人巨大精品欧美一区二区mp4| 欧美老熟妇乱子伦牲交| 欧美日韩视频精品一区| 免费在线观看视频国产中文字幕亚洲 | 久久九九热精品免费| 脱女人内裤的视频| 国产野战对白在线观看| 亚洲av国产av综合av卡| 免费一级毛片在线播放高清视频 | 国产精品一区二区在线观看99| 免费不卡黄色视频| 亚洲精品一卡2卡三卡4卡5卡 | www.精华液| 久久人人爽人人片av| 欧美黑人欧美精品刺激| 桃花免费在线播放| 午夜激情av网站| 高清视频免费观看一区二区| 十分钟在线观看高清视频www| 五月天丁香电影| 国产精品久久久人人做人人爽| 成人手机av| 国产免费视频播放在线视频| h视频一区二区三区| 欧美亚洲 丝袜 人妻 在线| 人人妻人人添人人爽欧美一区卜| 在线观看一区二区三区激情| 久久精品成人免费网站| 精品少妇内射三级| 国产精品久久久人人做人人爽| 国产黄频视频在线观看| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区四区第35| 这个男人来自地球电影免费观看| 精品卡一卡二卡四卡免费| 在线观看人妻少妇| 麻豆av在线久日| 精品一区二区三区av网在线观看 | h视频一区二区三区| 国产欧美日韩一区二区三 | 在线 av 中文字幕| 国产一区二区三区综合在线观看| 亚洲国产欧美在线一区| 老汉色∧v一级毛片| 久久女婷五月综合色啪小说| av又黄又爽大尺度在线免费看| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人爽人人夜夜| 老司机午夜福利在线观看视频 | 老熟女久久久| 免费人妻精品一区二区三区视频| 一区二区三区乱码不卡18| 精品人妻在线不人妻| 中文字幕人妻熟女乱码| 国产老妇伦熟女老妇高清| 人人妻人人爽人人添夜夜欢视频| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 啦啦啦 在线观看视频| 日韩中文字幕视频在线看片| 建设人人有责人人尽责人人享有的| 国产免费现黄频在线看| 国产亚洲欧美精品永久| 日韩制服丝袜自拍偷拍| 久久久久国内视频| 日韩免费高清中文字幕av| 日韩欧美一区视频在线观看| 99热网站在线观看| 国产成人欧美| 香蕉丝袜av| 国产高清videossex| 在线亚洲精品国产二区图片欧美| 国产精品 国内视频| 国产99久久九九免费精品| 亚洲精品一区蜜桃| 国产色视频综合| 国产在视频线精品| 欧美黄色片欧美黄色片| 久久精品国产亚洲av高清一级| 性少妇av在线| 欧美日韩福利视频一区二区| 国产成人精品久久二区二区91| 中文精品一卡2卡3卡4更新| 国产1区2区3区精品| 男人爽女人下面视频在线观看| 日韩制服丝袜自拍偷拍| 在线精品无人区一区二区三| cao死你这个sao货| 人妻久久中文字幕网| 99国产精品一区二区三区| 午夜福利视频在线观看免费| 亚洲人成77777在线视频| 99精品久久久久人妻精品| 9色porny在线观看| 超碰97精品在线观看| 欧美变态另类bdsm刘玥| 国产精品 国内视频| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| 巨乳人妻的诱惑在线观看| 天天操日日干夜夜撸| 中文精品一卡2卡3卡4更新| 老熟妇乱子伦视频在线观看 | 久久香蕉激情| a 毛片基地| 亚洲av日韩精品久久久久久密| 黑人猛操日本美女一级片| 黑人巨大精品欧美一区二区蜜桃| 大香蕉久久成人网| 美女国产高潮福利片在线看| 精品少妇黑人巨大在线播放| 波多野结衣一区麻豆| 国产男女内射视频| 国产真人三级小视频在线观看| 国产精品一区二区在线观看99| 日本猛色少妇xxxxx猛交久久| 老熟妇乱子伦视频在线观看 | 午夜福利,免费看| 欧美精品一区二区免费开放| 91精品国产国语对白视频| 三上悠亚av全集在线观看| 久久精品人人爽人人爽视色| cao死你这个sao货| 久久久国产一区二区| 国产精品久久久久成人av| 国产在线观看jvid| 满18在线观看网站| 美女扒开内裤让男人捅视频| 老司机亚洲免费影院| 国产日韩欧美在线精品| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美在线一区| 久久久久网色| 日韩视频在线欧美| 午夜福利在线观看吧| av网站在线播放免费| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 欧美日韩亚洲高清精品| 中文欧美无线码| 五月天丁香电影| 久久久国产精品麻豆| 国产高清videossex| 丝袜喷水一区| 99久久国产精品久久久| 久久久久久久大尺度免费视频| 电影成人av| 黑人操中国人逼视频| 久久亚洲国产成人精品v| 欧美黄色淫秽网站| 久久精品国产a三级三级三级| 亚洲激情五月婷婷啪啪| 一本综合久久免费| 老汉色av国产亚洲站长工具| 久久热在线av| 人妻 亚洲 视频| 99久久精品国产亚洲精品| 日韩一区二区三区影片| 亚洲av欧美aⅴ国产| 丰满少妇做爰视频| 美女高潮到喷水免费观看| 伦理电影免费视频| 一区二区日韩欧美中文字幕| 一本—道久久a久久精品蜜桃钙片| 妹子高潮喷水视频| 国产成人影院久久av| 热99国产精品久久久久久7| 在线天堂中文资源库| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 亚洲免费av在线视频| 免费在线观看影片大全网站| 日本av免费视频播放| 国产精品免费视频内射| cao死你这个sao货| 色老头精品视频在线观看| 99精国产麻豆久久婷婷| 精品卡一卡二卡四卡免费| 深夜精品福利| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 夫妻午夜视频| 国产精品久久久av美女十八| 少妇的丰满在线观看| av线在线观看网站| bbb黄色大片| 视频在线观看一区二区三区| 色婷婷久久久亚洲欧美| 亚洲精品中文字幕一二三四区 | 在线亚洲精品国产二区图片欧美| 久久香蕉激情| 12—13女人毛片做爰片一| 中国美女看黄片| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 成年人午夜在线观看视频| 日韩欧美免费精品| 亚洲欧美清纯卡通| 少妇裸体淫交视频免费看高清 | 一本一本久久a久久精品综合妖精| 欧美日韩视频精品一区| 免费久久久久久久精品成人欧美视频| 久久精品久久久久久噜噜老黄| 91精品伊人久久大香线蕉| 嫩草影视91久久| 国产精品av久久久久免费| 在线观看免费午夜福利视频| 亚洲国产欧美网| 亚洲国产毛片av蜜桃av| 天天操日日干夜夜撸| h视频一区二区三区| 大型av网站在线播放| 欧美久久黑人一区二区| 99热全是精品| 老汉色av国产亚洲站长工具| 免费av中文字幕在线| av天堂在线播放| 久久九九热精品免费| 老司机在亚洲福利影院| www.av在线官网国产| 别揉我奶头~嗯~啊~动态视频 | 国产免费av片在线观看野外av| 日韩一卡2卡3卡4卡2021年| 美女国产高潮福利片在线看| 美女高潮到喷水免费观看| 制服人妻中文乱码| 青春草视频在线免费观看| 精品国产一区二区久久| 国产精品国产三级国产专区5o| 久久人妻福利社区极品人妻图片| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲五月婷婷丁香| 欧美 亚洲 国产 日韩一| 国产伦理片在线播放av一区| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 免费高清在线观看视频在线观看| 夜夜骑夜夜射夜夜干| 精品亚洲成国产av| 欧美精品一区二区大全| 天堂8中文在线网| 极品少妇高潮喷水抽搐| 丝袜美足系列| 91成人精品电影| 一级片免费观看大全| 看免费av毛片| 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 色老头精品视频在线观看| 日本黄色日本黄色录像| 亚洲第一欧美日韩一区二区三区 | 成人国产av品久久久| 黑人操中国人逼视频| kizo精华| 日本vs欧美在线观看视频| 国产视频一区二区在线看| 久久国产精品大桥未久av| 两个人看的免费小视频| 午夜影院在线不卡| 99热网站在线观看| 在线亚洲精品国产二区图片欧美| 久久精品成人免费网站| 一区二区三区四区激情视频| 久久久久精品人妻al黑| 精品少妇内射三级| 肉色欧美久久久久久久蜜桃| 色婷婷久久久亚洲欧美| 1024视频免费在线观看| 婷婷色av中文字幕| 精品国产乱码久久久久久小说| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| tube8黄色片| 国产男人的电影天堂91| 久久毛片免费看一区二区三区| 久久ye,这里只有精品| 亚洲第一青青草原| 日日爽夜夜爽网站| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 伊人亚洲综合成人网| 久久久久国产精品人妻一区二区| 桃红色精品国产亚洲av| 久久久久久久大尺度免费视频| 女警被强在线播放| 嫩草影视91久久| 免费不卡黄色视频| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91| h视频一区二区三区| 正在播放国产对白刺激| 国产欧美日韩精品亚洲av| 一级毛片精品| 欧美激情高清一区二区三区| 色老头精品视频在线观看| 中亚洲国语对白在线视频| 亚洲成人免费电影在线观看| 欧美日韩一级在线毛片| 国产野战对白在线观看| www.精华液| 亚洲成人国产一区在线观看| 久久综合国产亚洲精品| 国产亚洲欧美在线一区二区| 一区二区三区乱码不卡18| 狠狠狠狠99中文字幕| 下体分泌物呈黄色| 国产色视频综合| 纯流量卡能插随身wifi吗| 国产成人一区二区三区免费视频网站| 国产精品久久久av美女十八| 久久久久精品国产欧美久久久 | 少妇的丰满在线观看| 精品视频人人做人人爽| 黑人欧美特级aaaaaa片| 日韩熟女老妇一区二区性免费视频| 在线观看舔阴道视频| 久久精品国产亚洲av高清一级| 国产精品99久久99久久久不卡| 亚洲精品日韩在线中文字幕| 久久久久久人人人人人| 十分钟在线观看高清视频www| 亚洲第一av免费看| 夫妻午夜视频| 一二三四社区在线视频社区8| 久久国产亚洲av麻豆专区| 亚洲九九香蕉| 亚洲欧美精品综合一区二区三区| 亚洲天堂av无毛| 亚洲伊人色综图| 欧美一级毛片孕妇| 久久天堂一区二区三区四区| 久久 成人 亚洲| 91av网站免费观看| 亚洲五月色婷婷综合| tocl精华| 新久久久久国产一级毛片| 国产亚洲欧美精品永久| 熟女少妇亚洲综合色aaa.| 国产xxxxx性猛交| 一级毛片电影观看| 国产精品久久久av美女十八| 亚洲人成电影免费在线| 午夜福利视频精品| 亚洲国产毛片av蜜桃av| 国产色视频综合| 一级毛片精品| 三上悠亚av全集在线观看| 在线观看免费日韩欧美大片| 一边摸一边做爽爽视频免费| a在线观看视频网站| 一二三四在线观看免费中文在| 永久免费av网站大全| 在线 av 中文字幕| 国产福利在线免费观看视频| 我要看黄色一级片免费的| 少妇裸体淫交视频免费看高清 | 免费观看av网站的网址| 少妇猛男粗大的猛烈进出视频| 亚洲精品美女久久久久99蜜臀| 看免费av毛片| 性色av乱码一区二区三区2| av免费在线观看网站| 国产熟女午夜一区二区三区| 国产亚洲av片在线观看秒播厂| 欧美国产精品一级二级三级| 国产在线免费精品| 国产精品熟女久久久久浪| 亚洲人成电影观看| av天堂在线播放| 欧美中文综合在线视频| 19禁男女啪啪无遮挡网站| 欧美人与性动交α欧美软件| 一级,二级,三级黄色视频| 悠悠久久av| 女人精品久久久久毛片| av视频免费观看在线观看| 精品少妇久久久久久888优播| 免费高清在线观看日韩| 97人妻天天添夜夜摸| 制服诱惑二区| 免费黄频网站在线观看国产| 成人18禁高潮啪啪吃奶动态图| 亚洲av日韩精品久久久久久密| 国产老妇伦熟女老妇高清| 成年人黄色毛片网站| 99国产极品粉嫩在线观看| 国产精品 欧美亚洲| 精品人妻熟女毛片av久久网站| 日韩免费高清中文字幕av| 久久精品成人免费网站| 久久精品国产a三级三级三级| 国产激情久久老熟女| 日韩三级视频一区二区三区| 女性被躁到高潮视频| 91国产中文字幕| 男女午夜视频在线观看| 精品一区在线观看国产| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 如日韩欧美国产精品一区二区三区| 精品亚洲成国产av| 国产精品一区二区免费欧美 | 99热全是精品| 国产欧美日韩综合在线一区二区| 一区福利在线观看| 国产免费视频播放在线视频| 老鸭窝网址在线观看| 亚洲全国av大片| av网站在线播放免费| 捣出白浆h1v1| 热99国产精品久久久久久7| 黄片大片在线免费观看| 久久久国产欧美日韩av| 天堂8中文在线网| 免费观看av网站的网址| 蜜桃国产av成人99| 日韩中文字幕视频在线看片| 精品人妻熟女毛片av久久网站| 亚洲va日本ⅴa欧美va伊人久久 | 又紧又爽又黄一区二区| 三级毛片av免费| 国产av一区二区精品久久| 热re99久久国产66热| 午夜福利在线观看吧| 国产精品影院久久| 久久久久精品国产欧美久久久 | 亚洲 欧美一区二区三区| 亚洲一码二码三码区别大吗| 在线亚洲精品国产二区图片欧美| 午夜久久久在线观看| 日韩熟女老妇一区二区性免费视频| 午夜激情av网站| 国产精品秋霞免费鲁丝片| 欧美变态另类bdsm刘玥| 男男h啪啪无遮挡| 免费看十八禁软件| 日本五十路高清| 国产日韩一区二区三区精品不卡| 国产亚洲精品久久久久5区| 激情视频va一区二区三区| 日韩大片免费观看网站| 亚洲精品美女久久久久99蜜臀| 色婷婷久久久亚洲欧美| 免费在线观看黄色视频的| 久久精品国产亚洲av香蕉五月 | 黄色怎么调成土黄色| 亚洲一码二码三码区别大吗| 91字幕亚洲| 多毛熟女@视频| 久久国产精品大桥未久av| 一区二区三区激情视频| 欧美一级毛片孕妇| 亚洲中文av在线| 777久久人妻少妇嫩草av网站| 国产麻豆69| 亚洲精品一二三| 一本综合久久免费| 麻豆国产av国片精品| h视频一区二区三区| 精品卡一卡二卡四卡免费| 在线观看免费日韩欧美大片| 国产xxxxx性猛交| 在线观看免费高清a一片| 丝袜人妻中文字幕| 在线观看一区二区三区激情| 久久青草综合色| 国产免费福利视频在线观看| 三上悠亚av全集在线观看| 正在播放国产对白刺激| 狠狠婷婷综合久久久久久88av| 国产精品久久久久久精品古装| 婷婷丁香在线五月| 国产在线免费精品| 99热全是精品| 777米奇影视久久| 久久精品人人爽人人爽视色| 黄网站色视频无遮挡免费观看| 777米奇影视久久| 视频区欧美日本亚洲| 建设人人有责人人尽责人人享有的| 精品欧美一区二区三区在线| 女性生殖器流出的白浆| 日韩中文字幕欧美一区二区| 午夜激情久久久久久久| 欧美日韩中文字幕国产精品一区二区三区 | 黄片播放在线免费| 男女免费视频国产| 99久久人妻综合| 人人妻人人添人人爽欧美一区卜| 老鸭窝网址在线观看| 丁香六月天网| 久久99热这里只频精品6学生| 伊人亚洲综合成人网| 91成人精品电影| 丁香六月欧美| 亚洲精品日韩在线中文字幕| 亚洲第一av免费看| 大片免费播放器 马上看| 国产一区二区三区av在线| 日韩欧美一区视频在线观看|