• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field

    2022-08-31 10:00:00YilinLi李屹林HuiZhu朱慧RuiLi李銳JieLiu柳杰JinjuanXiang項金娟NaXie解娜ZengHuang黃增ZhixuanFang方志軒XingLiu劉行andLixingZhou周麗星
    Chinese Physics B 2022年8期
    關(guān)鍵詞:李銳方志

    Yilin Li(李屹林) Hui Zhu(朱慧) Rui Li(李銳) Jie Liu(柳杰) Jinjuan Xiang(項金娟)Na Xie(解娜) Zeng Huang(黃增) Zhixuan Fang(方志軒) Xing Liu(劉行) and Lixing Zhou(周麗星)

    1Faculty of Information Technology,Beijing University of Technology,Beijing 100023,China

    2Institute of Microelectronics,Chinese Academy of Sciences,Beijing 100029,China

    Keywords: wake up,HZO ferroelectric thin-film,cycling electric field,oxygen vacancy

    1. Introduction

    Recently, high-kdielectrics such as HfO2have been extensively implemented in the microelectronics industry. In 2011, HfO2-SiO2thin films were discovered to exhibit ferroelectric properties by B¨osckeet al.[1]HfO2exists in the form of three basic crystal structures, which are monoclinic,tetragonal and cubic. These structures are centrosymmetric and exhibit no ferroelectric polarization.[2,3]By doping HfO2with Si, Zr, Y, etc., an orthorhombic phase can be obtained.The structure exhibits asymmetric centrality,which is responsible for its ferroelectric properties.[4,5]Ferroelectric randomaccess memories using HfO2-based thin films exhibit fast read and write speeds (tens of ns), low operating voltages, and small power consumption. Furthermore, compared to traditional ferroelectric materials (such as PZT), HfO2-based thin films were compatible with existing CMOS semiconductor processes. They had a sufficiently strong polarization strength(15–45 μC/cm2) in the nanometer range (10 nm).[6–9]As a high-kmaterial, the leakage current of HfO2was low, giving it good retention properties (about 10 years).[10]This opens a new path for the development of ferroelectric field-effect transistors.[11]

    A memory device undergoes continuous writing, reading, and data updating, and thus requires a ferroelectric thin film to withstand the large number of switching cycles. This brings about reliability problems, such as the wake-up effect, which refers to the increase in remnant polarization relative to the initial state at the beginning of 103–104switching cycles.[12]A number of wake-up mechanisms have been proposed, including an oxygen vacancy redistribution,[13]field-cycling-induced phase transitions,[14]and domain depinning mechanisms.[12]Oxygen vacancies play an important role because they are positively charged and are mobile at room temperature.[15,16]Under an electric field, a redistribution of oxygen vacancies (V¨O) within the oxide can occur,which de-pins the domain walls and increases the remnant polarization.[13,17]A phase transition from the tetragonal to the ferroelectric orthorhombic phase is another factor in the wake-up effect, and can be stabilized by redistributed oxygen vacancies.[12,18]Starschichet al. reported that the duration of the electric field was essential for the wake-up, indicating the importance of oxygen vacancy movement driven by the field.[13]To study the parameters affecting the wakeup effect in HfO2-based thin-film devices, and to understand the associated property changes, a deeper understanding of the mechanism is needed. Moreover, because oxygen vacancies are thought to play an important role, it is expected to provide valuable information for further discussion of the vacancy changes during the wake-up process. Here, we analyzed the wake-up behavior in the TiN/Hf0.4Zr0.6O2/TiN structure. Various switching waveforms were applied to investigate the dependence of the wake-up effect,and the variations in the remnant polarization, current–voltage(I–V)curve, and capacitance–voltage (C–V) characteristics were analyzed. A mechanism based on oxygen vacancies is proposed.

    2. Experimental methods

    To prepare samples for this work, Hf0.4Zr0.6O2(HZO)thin films with a thickness of 10 nm were deposited on silicon substrates at 300?C under N2carrier gas atmosphere by atomic layer deposition. The deposition process used precursors of tetrakis-(ethylmethylamino)-(hafnium/zirconium) and H2O as the oxygen source. To serve as a bottom electrode, a 10-nm-thick TiN layer was deposited on the silicon substrate by magnetron sputtering. Square TiN top electrodes, with a side width of 100 μm, were deposited on the HZO films by physical vapor deposition. To prevent the top electrode from being oxidized in air,a 75-nm-thick W electrode was DC sputtered on top of it. The TiN/HZO/TiN structures were annealed at a high temperature of 450?C. Polarization–voltage (P–V)hysteresis loops were measured with a radiant precision workstation.I–VandC–Vcurves were acquired with a semiconductor parameter analyzer(Agilent Technologies B1500A).In all tests,the bottom electrode was grounded,and the top electrode was biased with a drive voltage.

    3. Results and discussion

    The HZO thin film was cycled with 1-kHz,±3 V square waveforms. Changes in theP–Vcurves during the cycling are shown in Fig. 1(a). The initial state displayed a double hysteresis, which is a signature of anti-ferroelectric behavior.[20]After repetitive switching, it is transformed into a single ferroelectric hysteresis loop. The evolution of the remnant polarization and coercive voltage as a function of switching cycles are plotted in Figs.1(b)and 1(c). Both the magnitude of remnant polarization(Pr)and coercive voltage(Vc)increased during the first 104cycles. This was consistent with the wake-up effect in the polarization hysteresis of HZO thin films. With a further increase in the number of field cycles,thePrandVcdecreased,which corresponded to fatigue generally observed in many ferroelectrics.In addition,the magnitude of the negative coercive voltageVc?was always less than that of the positive coercive voltageVc+, indicating the presence of an internal built-in electric filed in the HZO film pointing from the bottom to the top interface. We calculated the built-in voltageVbiby(Vc+–Vc?)/2[21]and plotted them as a function switching cycles in Fig.1(c). It can be seen that the magnitude of built-in voltage stayed stable in the wake-up stage,but increased obviously after 104cycles,which should contribute to the shift ofP–Vhysteresis loops.[31]

    Fig. 1. Changes in (a) P–V hysteresis loops, (b) remnant polarization, (c) coercive voltage and built-in voltage with switching cycles under 1-kHz square waves. (d)Changes in remnant polarization as a function of switching cycles under square waves with various frequencies.

    The wake-up test was also performed under various frequencies, as shown in Fig. 1(d). As the switching frequency decreased, fewer switching cycles were needed to reach the same polarization increase relative to that from higher switching frequencies. This was consistent with previous results that a higher number of cycles was necessary to acquire the same remnant polarization at higher wake-up frequencies.[13]

    The dominant conduction mechanism for the HZO thin film was analyzed. It was firstly polarized with +3 V to preset the polarization state. Then theI–Vcurve was measured in the 0→3 V region, as illustrated in Fig. 2(a) with a double-logarithmic scale. As the voltage increased, theI–Vcurve exhibited a linear behavior (slopekof 1.1) at low voltage(<0.6 V),and then a quadratic behavior(k=2.2)at higher voltage.At 1.7 V,the current rose sharply and the slope was 6.9. The conduction behavior was consistent with trapcontrolled space-charge-limited(SCL)conduction,[22–24]with three regions corresponding to Ohmic, SCL, and trap-filledlimited conduction.[25]The origin of the space charges in the ferroelectric material is related to oxygen vacancies.They create trap energy levels in the bandgap for activated electrons to be mobile.[22]Thus, it is reasonable to assign oxygen vacancies as the physical origins for the traps in the film.Figure 2(b)displays theI–Vcurves for various numbers of switching cycles. It reveals that both the linear part (Ohmic conduction)and the SCL current remained stable up to 105cycles,indicating that the number of charge carriers associated with oxygen vacancies did not change in the wake-up process. This was consistent with previous results that no oxygen vacancies were generated in the wake-up stage.[12]

    Fig. 2. (a) The I–V characteristics under positive bias. The arrow denotes the sweep direction. (b) Changes in I–V curves with respect to switching cycles.

    The device was also repetitively switched with 1-kHz,±3 V pulsed waveforms. The pulse width ranged over 0.01–0.5 ms.It can be seen from Fig.3(a)that when the pulse width was less than 0.1 ms,the polarization did not exhibit a wakeup effect. Only when the pulse width was a certain length did the wake-up appear, which implied that the voltage application time in each switching cycle was an important factor. We plotted the remnant polarization over the total duration of the applied field for both square and pulsed waves in Fig. 3(b).The longer voltage application times in each cycle resulted in a faster wake-up. Furthermore,a wake-up also occurred when a DC voltage was applied. In Fig.3(b),the rise of remnant polarization under continuous DC voltage was close to that from the cycling wake-up for the equivalent duration. Hence, we can explain the wake-up effect in terms of the redistribution of oxygen vacancies,although there is no generation of new V¨Oat this stage. The positively charged oxygen vacancies moved under the external electric field. When the application time of each voltage cycle did not reach a certain limit,the vacancies just vibrated in their original positions and did not change their distribution. When the application time was sufficiently long,the V¨Oleft their initial positions, resulting in a net migration and redistribution that contributed to the wake-up process. In that case, both the voltage application time in each cycle and the cumulative electric field duration affected the wake-up process.

    Fig. 3. (a) Change in remnant polarization as a function of switching cycles under 1-kHz waves with various pulse widths. (b) Normalized change in Pr over the duration of the switching electrical field for both square (#cycles/frequency) and pulse waveforms (#cycles×pulse width×2). The results are compared with the rise of Pr under a continuous DC electric field.

    For further verification,C–Vloops were measured for the cycled samples. In Fig. 4(a), the capacitance decreased with the increasing number of electric field cycles. Lomenzoet al.[26,27]suggested that the decreased dielectric constant in the wake-up state was caused by the tetragonal-to-ferroelectric orthorhombic phase transition. Pintilieet al. proposed that theC–Vcurve of a ferroelectric material can be expressed by[17,28]

    whereNeffis the effective charge density in the space-charge region of the Schottky diode,Vbiis the built-in potential in the absence of polarization,δis the distance between the polarization sheet of charge and the physical metal–ferroelectric interface,qis the carrier charge,ε0is the permittivity of free space, andεsis the static dielectric constant. The±sign indicates two possible orientations of polarizationP. TheC–Vcurve in the area enclosed by the green dashed line in Fig.4(a)was chosen and the corresponding slope of 1/C2–Vwas fit to extractNefffor the interface under reverse bias. The inset in Fig.4(b)displays the linear fit of such a relationship to derive the initial charge density near the top electrode/film interface.The dependence ofNeffon switching cycles is illustrated in Fig.4(b)for the top and bottom interfaces.

    Fig.4.(a)Change inC–V characteristics for the HZO thin film with various switching cycles. (b)Change in free-carrier concentration at both top and bottom electrode/film interfaces with respect to the switching cycles. The inset shows the 1/C2–V plot of the initial sample.

    It shows that the effective charge density at the interfaces increased during wake-up. This could also be understood in terms of oxygen vacancy migration which is shown in Figs. 5(a)–5(c). Because the V¨Owith positive charges can attract electrons, they usually act as electron-trapping centers.[17]Initially, the V¨Oaccumulated at the TiN/HZO interface (Fig. 5(a)), where a large number of electrons were needed to fill traps, causing a small density of free charge in the space-charge region. As the wake-up process continued during the initial 104cycles,the oxygen vacancies moved away from the interface and went into the bulk of the HZO film as shown in Fig. 5(b), reducing the amount of V¨Oat the interface. Therefore, the charged-carrier trapping was reduced,which resulted in an increased effective charge density at the interfacial space-charge region. It can also be derived that there should be a higher concentration of V¨Oat the bottom interface than that at the top interface from the comparison ofNeffbetween the two interface as shown in Fig.4(b).This gave rise to an upward built-in voltage[29]consistent with the result shown in Fig.1(c). After the wake-up stage, the film was fatigued to have an obvious reduction in polarization. On the basis of the long-term study of fatigue mechanism,the fatigue behavior is considered to be closely related to the generation of oxygen vacancies in the film.[30,31]The increase of oxygen vacancies caused the reduction of effective charge density after 104cycles as shown in Fig.4(b). It is possible that the difference between the concentration of V¨Oat the top and bottom interface became larger (Fig. 5(c)). As a result, the built-in voltage increased rapidly in the fatigue process as displayed in Fig. 1(c). However, the scenario requires for more investigation in future work.

    Fig.5. Schematic of the migration and generation of oxygen vacancies from(a)initial →(b)wake-up →(c)fatigue state under the repetitive switching process. The hollow circles represent the oxygen vacancies.

    4. Conclusions

    The wake-up effect in the TiN/Hf0.4Zr0.6O2/TiN structure was examined with various electrical cycling conditions. The total duration and the single length of an applied electrical field both affected the increased polarization. The current–voltage characteristics were consistent with space-charge-limited conduction. Both the stable Ohmic and SCL currents in the wakeup process indicated that the trap density in the film did not change during this period. The effective density of charge in the space-charge region demonstrated a decreased trap density at the interface. Considering the important role of oxygen vacancies as trap centers and their migration under an electric field, the wake-up effect and other property changes were attributed to the redistribution of oxygen vacancies.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 61201046) and the Natural Science Foundation of Beijing, China (Grant Nos. 4202009 and 4162013).

    猜你喜歡
    李銳方志
    Effects of O2 addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies
    Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics
    The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry
    黑龍江民國方志所刊名家墨跡選
    書法賞評(2019年2期)2019-07-02 12:10:50
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    綁架
    北京文學(2018年9期)2018-09-13 03:06:56
    李銳作品
    嘉絨藏族地區(qū)的舊方志編纂
    西藏研究(2017年1期)2017-06-05 09:26:11
    攝魂相機
    Average Incremenral Correlarion Analysis Model and Irs Applicarion in Faulr Diagnosis
    国产免费av片在线观看野外av| 嫩草影视91久久| 老女人水多毛片| 国产淫片久久久久久久久| 亚洲av一区综合| 男人舔女人下体高潮全视频| 婷婷精品国产亚洲av| 欧美+日韩+精品| 国产色婷婷99| 国产v大片淫在线免费观看| 欧美日韩乱码在线| 国产一区二区激情短视频| 最新中文字幕久久久久| 午夜福利在线在线| 91在线观看av| 成人一区二区视频在线观看| 亚洲图色成人| 欧美xxxx性猛交bbbb| 两个人视频免费观看高清| 久久人人爽人人爽人人片va| av国产免费在线观看| 精华霜和精华液先用哪个| 成人三级黄色视频| 欧美日韩黄片免| 成年版毛片免费区| 天堂av国产一区二区熟女人妻| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色片子视频| 真人一进一出gif抽搐免费| 国产精品久久久久久av不卡| 国国产精品蜜臀av免费| 99久久中文字幕三级久久日本| 久久精品国产自在天天线| 免费观看在线日韩| 变态另类成人亚洲欧美熟女| 国产精品国产高清国产av| 在线播放国产精品三级| 最近最新免费中文字幕在线| 成人二区视频| 亚洲,欧美,日韩| 九九热线精品视视频播放| 此物有八面人人有两片| 午夜福利高清视频| 欧美一区二区精品小视频在线| 婷婷亚洲欧美| 免费av观看视频| 亚洲天堂国产精品一区在线| 校园春色视频在线观看| 热99re8久久精品国产| 久久久久九九精品影院| 制服丝袜大香蕉在线| 五月玫瑰六月丁香| 免费av毛片视频| 国产三级在线视频| 精品人妻熟女av久视频| 又紧又爽又黄一区二区| 国产激情偷乱视频一区二区| 欧美极品一区二区三区四区| 两人在一起打扑克的视频| 国产美女午夜福利| 给我免费播放毛片高清在线观看| 欧美在线一区亚洲| 日本免费a在线| 狂野欧美激情性xxxx在线观看| 99在线人妻在线中文字幕| 国产免费av片在线观看野外av| 五月伊人婷婷丁香| 色在线成人网| 日韩一本色道免费dvd| 999久久久精品免费观看国产| 伦理电影大哥的女人| 天天一区二区日本电影三级| 色综合色国产| 国产亚洲精品综合一区在线观看| 老师上课跳d突然被开到最大视频| 色尼玛亚洲综合影院| 男人狂女人下面高潮的视频| 啦啦啦啦在线视频资源| 国产成人av教育| 俺也久久电影网| 国产精品女同一区二区软件 | 欧美成人a在线观看| 97超视频在线观看视频| 婷婷精品国产亚洲av在线| 搞女人的毛片| 搡老熟女国产l中国老女人| 88av欧美| 国产精品美女特级片免费视频播放器| 亚洲精品色激情综合| 亚洲综合色惰| 精品久久久久久久久亚洲 | 欧美日韩乱码在线| 深爱激情五月婷婷| 久久久久久久久久成人| 国产在视频线在精品| 国产色婷婷99| 高清在线国产一区| 国产精品伦人一区二区| 女的被弄到高潮叫床怎么办 | 一个人看的www免费观看视频| 国产探花极品一区二区| 一个人看视频在线观看www免费| 亚洲va日本ⅴa欧美va伊人久久| 99热这里只有是精品50| 真实男女啪啪啪动态图| 日本一本二区三区精品| 国产伦精品一区二区三区四那| 欧美日韩国产亚洲二区| 成年版毛片免费区| 免费观看在线日韩| 一级黄色大片毛片| 在线观看免费视频日本深夜| 麻豆久久精品国产亚洲av| 人人妻,人人澡人人爽秒播| 91av网一区二区| 免费电影在线观看免费观看| 国产成人福利小说| 嫩草影院精品99| 亚洲av日韩精品久久久久久密| 国产精品自产拍在线观看55亚洲| 国内毛片毛片毛片毛片毛片| 国产精品久久久久久av不卡| 久久午夜亚洲精品久久| 一级黄片播放器| 美女高潮的动态| 欧美3d第一页| 欧美成人免费av一区二区三区| 蜜桃久久精品国产亚洲av| 国产在线精品亚洲第一网站| 日韩在线高清观看一区二区三区 | 嫩草影视91久久| 97人妻精品一区二区三区麻豆| 少妇人妻一区二区三区视频| 国产免费av片在线观看野外av| 大又大粗又爽又黄少妇毛片口| 色尼玛亚洲综合影院| 色av中文字幕| 级片在线观看| 看片在线看免费视频| 日韩国内少妇激情av| 又紧又爽又黄一区二区| 一区二区三区高清视频在线| 中文字幕av成人在线电影| 村上凉子中文字幕在线| www.色视频.com| 高清日韩中文字幕在线| 亚洲内射少妇av| 男女之事视频高清在线观看| 在线观看午夜福利视频| 亚洲最大成人手机在线| 国产精品一区www在线观看 | 亚洲色图av天堂| 成年女人看的毛片在线观看| 在线观看av片永久免费下载| 搡老岳熟女国产| 国产男人的电影天堂91| 日本色播在线视频| 国产精品,欧美在线| 免费看a级黄色片| 婷婷六月久久综合丁香| 亚洲自偷自拍三级| 欧美日韩乱码在线| 好男人在线观看高清免费视频| 直男gayav资源| 在线国产一区二区在线| 国产精品98久久久久久宅男小说| 亚洲国产高清在线一区二区三| 此物有八面人人有两片| 国产伦精品一区二区三区视频9| 97超视频在线观看视频| 69人妻影院| 国产精品嫩草影院av在线观看 | 国产69精品久久久久777片| 国产综合懂色| av在线亚洲专区| 欧美日韩综合久久久久久 | 少妇的逼好多水| 免费无遮挡裸体视频| 久久精品91蜜桃| 亚洲成人精品中文字幕电影| 欧美黑人欧美精品刺激| 亚洲av一区综合| 国模一区二区三区四区视频| 久久久精品欧美日韩精品| eeuss影院久久| 日本精品一区二区三区蜜桃| av在线天堂中文字幕| 桃红色精品国产亚洲av| 一级av片app| av专区在线播放| 国产黄片美女视频| 国产乱人视频| 国产伦精品一区二区三区视频9| 美女xxoo啪啪120秒动态图| 国产私拍福利视频在线观看| a级毛片免费高清观看在线播放| 丰满的人妻完整版| 亚洲狠狠婷婷综合久久图片| 99riav亚洲国产免费| 亚洲avbb在线观看| 亚洲av中文字字幕乱码综合| 一区二区三区激情视频| 国产av在哪里看| АⅤ资源中文在线天堂| 婷婷色综合大香蕉| 美女免费视频网站| 亚洲狠狠婷婷综合久久图片| 午夜精品在线福利| 欧美日韩亚洲国产一区二区在线观看| 国内久久婷婷六月综合欲色啪| 国产精品电影一区二区三区| 熟妇人妻久久中文字幕3abv| av在线蜜桃| 日韩中字成人| 国产av麻豆久久久久久久| avwww免费| 国产主播在线观看一区二区| 精品久久久久久久久av| 99国产精品一区二区蜜桃av| 欧美3d第一页| 精品久久久久久久久久免费视频| 色综合色国产| 国产精品一区二区性色av| 美女大奶头视频| 欧美一区二区国产精品久久精品| 日韩高清综合在线| 亚洲成a人片在线一区二区| 老司机福利观看| 日日摸夜夜添夜夜添小说| 欧美不卡视频在线免费观看| 人人妻,人人澡人人爽秒播| 国产精品国产三级国产av玫瑰| 一个人免费在线观看电影| 久久九九热精品免费| 日本三级黄在线观看| 搞女人的毛片| av天堂在线播放| 久久中文看片网| 免费人成视频x8x8入口观看| 麻豆av噜噜一区二区三区| 国产伦精品一区二区三区四那| 亚洲人成网站在线播放欧美日韩| 少妇丰满av| 欧美成人性av电影在线观看| 免费在线观看成人毛片| 高清在线国产一区| 日韩国内少妇激情av| 在线观看av片永久免费下载| 深夜精品福利| 久久久久国内视频| 内地一区二区视频在线| 亚洲欧美日韩东京热| 欧美又色又爽又黄视频| 成年女人永久免费观看视频| 最近在线观看免费完整版| 天堂网av新在线| 又紧又爽又黄一区二区| 99热网站在线观看| 日本a在线网址| 日本撒尿小便嘘嘘汇集6| 又黄又爽又刺激的免费视频.| 人妻制服诱惑在线中文字幕| 亚洲真实伦在线观看| 99九九线精品视频在线观看视频| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 永久网站在线| 久久久久久久久大av| 午夜老司机福利剧场| 亚洲国产精品久久男人天堂| 婷婷亚洲欧美| 国产真实伦视频高清在线观看 | 干丝袜人妻中文字幕| 91狼人影院| 91午夜精品亚洲一区二区三区 | 大又大粗又爽又黄少妇毛片口| 日本成人三级电影网站| 免费av毛片视频| 免费观看人在逋| 国产69精品久久久久777片| 在线播放无遮挡| 男女啪啪激烈高潮av片| 日本精品一区二区三区蜜桃| 欧美黑人巨大hd| 一级av片app| 黄色配什么色好看| 国产 一区精品| 精品免费久久久久久久清纯| 国内精品宾馆在线| 一个人免费在线观看电影| 床上黄色一级片| 日韩av在线大香蕉| 国产69精品久久久久777片| 亚洲,欧美,日韩| 午夜影院日韩av| 亚洲aⅴ乱码一区二区在线播放| 亚洲成a人片在线一区二区| 国产伦在线观看视频一区| ponron亚洲| 亚洲内射少妇av| 精品一区二区三区视频在线| 久久久午夜欧美精品| 国内精品一区二区在线观看| 最好的美女福利视频网| 乱人视频在线观看| 中出人妻视频一区二区| 欧美绝顶高潮抽搐喷水| 亚洲成人中文字幕在线播放| 天天躁日日操中文字幕| 亚洲不卡免费看| 在线观看免费视频日本深夜| 亚洲av美国av| 亚洲欧美日韩高清专用| 免费人成在线观看视频色| 三级国产精品欧美在线观看| 哪里可以看免费的av片| 99热6这里只有精品| 少妇的逼水好多| av在线观看视频网站免费| 深爱激情五月婷婷| 成人鲁丝片一二三区免费| 日日摸夜夜添夜夜添av毛片 | 日本 欧美在线| 高清在线国产一区| 99久久九九国产精品国产免费| 欧美日本亚洲视频在线播放| 淫秽高清视频在线观看| 国产亚洲欧美98| 日韩国内少妇激情av| 国内揄拍国产精品人妻在线| 69av精品久久久久久| 亚洲avbb在线观看| 亚洲色图av天堂| 日本 av在线| 69av精品久久久久久| 亚洲第一电影网av| 欧美三级亚洲精品| 久久精品影院6| 1024手机看黄色片| 中文字幕av在线有码专区| 国产av在哪里看| 69av精品久久久久久| 亚洲欧美日韩高清在线视频| av.在线天堂| 欧美精品国产亚洲| 可以在线观看的亚洲视频| 亚洲精华国产精华液的使用体验 | 麻豆国产av国片精品| 日韩大尺度精品在线看网址| 麻豆久久精品国产亚洲av| 亚洲国产欧美人成| 国产人妻一区二区三区在| 看黄色毛片网站| 国产av在哪里看| 校园人妻丝袜中文字幕| 99热这里只有精品一区| 麻豆成人av在线观看| 亚洲国产欧洲综合997久久,| 简卡轻食公司| 亚洲午夜理论影院| 国产一区二区在线观看日韩| 毛片一级片免费看久久久久 | 看免费成人av毛片| 久久精品国产自在天天线| 最后的刺客免费高清国语| 观看免费一级毛片| 国产精品久久久久久久电影| 亚洲18禁久久av| 亚洲欧美激情综合另类| 欧美激情国产日韩精品一区| 久久精品久久久久久噜噜老黄 | 最近在线观看免费完整版| 欧美日韩精品成人综合77777| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 婷婷精品国产亚洲av| 久久人人爽人人爽人人片va| 国产麻豆成人av免费视频| 亚洲成av人片在线播放无| www日本黄色视频网| 免费搜索国产男女视频| 又爽又黄a免费视频| 免费在线观看影片大全网站| 黄色视频,在线免费观看| 精品99又大又爽又粗少妇毛片 | 一夜夜www| 国产在视频线在精品| 两个人的视频大全免费| 长腿黑丝高跟| 无人区码免费观看不卡| 亚洲,欧美,日韩| 高清日韩中文字幕在线| 韩国av在线不卡| 网址你懂的国产日韩在线| 久久久久久久久久黄片| 亚洲国产色片| 久久久久免费精品人妻一区二区| 国产 一区精品| 中国美女看黄片| av黄色大香蕉| 日韩精品青青久久久久久| 亚洲av第一区精品v没综合| 99久久成人亚洲精品观看| 精品人妻偷拍中文字幕| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 大型黄色视频在线免费观看| 91在线精品国自产拍蜜月| 国产又黄又爽又无遮挡在线| 日韩欧美国产一区二区入口| 亚洲七黄色美女视频| 成人一区二区视频在线观看| 久久婷婷人人爽人人干人人爱| 中文字幕精品亚洲无线码一区| 欧美潮喷喷水| 婷婷精品国产亚洲av| 舔av片在线| 乱码一卡2卡4卡精品| 人人妻人人澡欧美一区二区| 51国产日韩欧美| 免费观看在线日韩| 欧美zozozo另类| 日韩在线高清观看一区二区三区 | 午夜亚洲福利在线播放| 国产激情偷乱视频一区二区| 免费av毛片视频| 成年女人毛片免费观看观看9| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 欧美最新免费一区二区三区| 亚洲七黄色美女视频| 欧美日本视频| 变态另类丝袜制服| av在线老鸭窝| 少妇丰满av| 免费看日本二区| 最好的美女福利视频网| 国产美女午夜福利| 人妻夜夜爽99麻豆av| 亚洲精华国产精华精| 亚洲最大成人中文| 偷拍熟女少妇极品色| av专区在线播放| 亚洲熟妇中文字幕五十中出| 久久精品国产鲁丝片午夜精品 | 亚洲男人的天堂狠狠| 成人三级黄色视频| 中文字幕精品亚洲无线码一区| 两个人的视频大全免费| 男插女下体视频免费在线播放| av天堂中文字幕网| 丝袜美腿在线中文| 99久久九九国产精品国产免费| 成人午夜高清在线视频| 91在线观看av| 欧美日韩中文字幕国产精品一区二区三区| 久久国产精品人妻蜜桃| 久久久成人免费电影| 91麻豆av在线| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 一区二区三区高清视频在线| 亚洲av免费高清在线观看| 九九在线视频观看精品| 淫秽高清视频在线观看| 国产激情偷乱视频一区二区| 长腿黑丝高跟| 精品久久久噜噜| 美女高潮喷水抽搐中文字幕| 中文字幕人妻熟人妻熟丝袜美| 波野结衣二区三区在线| 99热6这里只有精品| 午夜福利在线在线| 亚洲av.av天堂| 欧美中文日本在线观看视频| 欧美区成人在线视频| 观看美女的网站| 国产av麻豆久久久久久久| 一进一出好大好爽视频| 国产中年淑女户外野战色| 欧美最新免费一区二区三区| 黄色视频,在线免费观看| 久久久久久久亚洲中文字幕| 黄片wwwwww| 日韩 亚洲 欧美在线| 国产精品久久久久久久电影| 亚洲七黄色美女视频| 久久久久久伊人网av| 99久国产av精品| 18禁黄网站禁片免费观看直播| 日本撒尿小便嘘嘘汇集6| 亚洲第一区二区三区不卡| 日本 欧美在线| 国产伦一二天堂av在线观看| 亚洲精品粉嫩美女一区| 十八禁国产超污无遮挡网站| 亚洲精品成人久久久久久| 午夜激情福利司机影院| 国产精品亚洲一级av第二区| 免费看美女性在线毛片视频| 精品久久久噜噜| 热99在线观看视频| 色视频www国产| 日韩精品青青久久久久久| 在现免费观看毛片| 婷婷精品国产亚洲av| 最近中文字幕高清免费大全6 | 日韩一区二区视频免费看| 精品一区二区免费观看| 老司机福利观看| 亚洲精品日韩av片在线观看| 99精品久久久久人妻精品| 亚洲国产高清在线一区二区三| 在线观看午夜福利视频| 亚洲中文日韩欧美视频| 美女高潮喷水抽搐中文字幕| 欧美国产日韩亚洲一区| 日韩精品有码人妻一区| 欧美丝袜亚洲另类 | 一区二区三区免费毛片| 日韩精品中文字幕看吧| 男女之事视频高清在线观看| 波多野结衣巨乳人妻| 国产精品一区二区三区四区久久| 久久精品国产鲁丝片午夜精品 | 一级av片app| 午夜福利18| 三级毛片av免费| 日韩欧美 国产精品| 嫩草影院入口| 日韩精品中文字幕看吧| 搡老妇女老女人老熟妇| 国产精品不卡视频一区二区| 狂野欧美激情性xxxx在线观看| 天堂av国产一区二区熟女人妻| 哪里可以看免费的av片| 联通29元200g的流量卡| 女生性感内裤真人,穿戴方法视频| av在线老鸭窝| 天堂动漫精品| 一本精品99久久精品77| 日日撸夜夜添| 在线播放国产精品三级| 草草在线视频免费看| 国产v大片淫在线免费观看| 国产精品无大码| 欧美色欧美亚洲另类二区| 日本免费一区二区三区高清不卡| 午夜精品久久久久久毛片777| 动漫黄色视频在线观看| 一边摸一边抽搐一进一小说| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 全区人妻精品视频| 嫁个100分男人电影在线观看| av.在线天堂| 亚洲av免费高清在线观看| 悠悠久久av| 国产成人aa在线观看| 亚洲 国产 在线| 午夜爱爱视频在线播放| 成人毛片a级毛片在线播放| 好男人在线观看高清免费视频| 91久久精品电影网| 简卡轻食公司| 波多野结衣高清无吗| 亚洲欧美激情综合另类| 欧美日本亚洲视频在线播放| 美女高潮的动态| 黄片wwwwww| 高清在线国产一区| 日韩欧美三级三区| 中文字幕久久专区| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 我要看日韩黄色一级片| 特级一级黄色大片| 两个人视频免费观看高清| 欧美激情久久久久久爽电影| 69av精品久久久久久| 在线观看66精品国产| 男插女下体视频免费在线播放| 午夜福利在线观看免费完整高清在 | 嫁个100分男人电影在线观看| 国产极品精品免费视频能看的| 国内精品宾馆在线| 久久热精品热| 午夜激情欧美在线| 99国产极品粉嫩在线观看| 男人狂女人下面高潮的视频| 91av网一区二区| 国内久久婷婷六月综合欲色啪| 91麻豆精品激情在线观看国产| 淫妇啪啪啪对白视频| 少妇的逼好多水| 亚洲精华国产精华液的使用体验 | 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 动漫黄色视频在线观看| 久99久视频精品免费| 此物有八面人人有两片| 亚洲精品456在线播放app | 久久草成人影院| 国产主播在线观看一区二区| 国产真实乱freesex| 日韩欧美国产一区二区入口| 欧美丝袜亚洲另类 | 亚洲一区高清亚洲精品| 美女大奶头视频| 尤物成人国产欧美一区二区三区| 亚洲av免费在线观看| 波多野结衣巨乳人妻| 日韩欧美免费精品| 亚洲精品一卡2卡三卡4卡5卡| 男插女下体视频免费在线播放|