• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    New insight into the mechanism of DNA polymerase I revealed by single-molecule FRET studies of Klenow fragment

    2022-08-31 10:00:04RokshanaParvinQiJia賈棋JianbingMa馬建兵ChunhuaXu徐春華YingLu陸穎FangfuYe葉方富andMingLi李明
    Chinese Physics B 2022年8期
    關(guān)鍵詞:春華李明

    Rokshana Parvin Qi Jia(賈棋) Jianbing Ma(馬建兵) Chunhua Xu(徐春華)Ying Lu(陸穎) Fangfu Ye(葉方富) and Ming Li(李明)

    1Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China

    2School of Physical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    Keywords: smFRET,Klenow fragment,GC-richness,strand displacement

    1. Introduction

    Interactions between DNA and protein complexes are the center of essential cellular processes such as transcription,cell division, metabolism, and development of organisms.[1]DNA polymerases (DNA pols) play a vital role in DNA replication[2,3]and repair.[4]DNA pols have been utilized in many molecular biological applications like polymerase chain reactions(PCR)[5,6]and DNA sequencing.[7]Escherichia coliDNA pol I (Klenow fragment [KF]), a multifunctional active truncated proteolytic form of polymerase I,consists of a polymerase active site(5′→3′)that incorporates nucleotides and a 3′→5′exonuclease active site that excises wrongly incorporated nucleotides, and it does not contain any 5′→3′exonuclease active site. This property of the KF makes it very suitable for use in manipulating DNA fragments in a test tube.It is extremely useful in molecular cloning and DNA labeling experiments,and also in a variety of techniques to achieve insight into mechanisms of different polymerases and nucleic acid—protein interactions.

    In this article, we study how the richness of GC pairs of DNA chains may influence the interaction between KF and DNA. It has been well known that GC-rich DNA sequences have importance in DNA replication, transcription, cell cycle control, methylation, chromatin structure, and development.Sequences with more GC-content are more stable than sequences with less GC-content. This stability is mainly due to base stacking interactions.[8]When GC-rich constructs form secondary structures, particularly hairpin and loops, they are very stable and do not melt well at usual PCR denaturation temperatures.[9,10]Here we are interested in how this stability may influence the strand displacement mechanism of Klenow fragment.

    We use single molecule fluorescence resonance energy transfer (smFRET) and adopt the newly-developed D-loopbased technique[11]to investigate the mechanism of KF. sm-FRET is a powerful[12–14]and widely used[13,15]technique for studying biological molecules,their conformation and conformational dynamics,[16]and detailed kinetics of complex biochemical reactions, particularly, those between proteins and nucleic acids. It acts as a spectroscopic ruler,[14,17]which exploits strong donor–acceptor distance-dependence to resolve distance changes at nanometer scale.[18]The newly-developed D-loop-based technique is used to improve resolution for KFDNA interaction results throughout smFRET measurements.Our assay enables us to investigate the dynamics of strand displacement by KF in real time,and our results reveals that KF may backslide during the strand displacement and the probability of backsliding is strongly influenced by the GC-richness of DNA sequences.

    2. Materials and methods

    2.1. Purification and labeling of DNA substrates

    To prepare the DNA substrates, all the required oligonucleotides were purchased from Sangon Biotech Ltd. (Shanghai, China). The double-stranded DNA molecules were annealed by incubating the mixture at 95?C for 5 minutes, and then slowly cooled down in room temperature for 7 hours.The annealing was carried out in an annealing buffer containing 100-mM NaCl, 25-mM Tris-HCl, pH 7.5. A 2% agarose gel was used to purify the dsDNA to ensure the absence of free single-stranded DNA. The DNAs were labeled with Cy3 and Cy5 dyes.

    2.2. Klenow fragment(3′→5′exo-)

    We used KF(3′→5′exo-)which is an N-terminal truncation of DNA pol I that retains 5′→3′polymerase activity,but lacks the 5′→3′exonuclease activity and has two mutations(D355A,E357A)which abolish the 3′→5′exonuclease activity.[19,20]The elimination of exonuclease activity makes KF exo- the enzyme of choice for biotin labeling of DNA probes by random primed method,[21]and for DNA sequencing by the Sanger dideoxy method.[22]The Klenow fragments(200 units,5000 U/mL)were purchased from NEB(New England Biolabs,Inc.).

    2.3. Buffers

    The 10× NE Buffer2 was purchased from NEB (New England Biolabs, Inc.), and the 1× Buffer2 contains 50-mM NaCl,10-mM Tris-HCl,10-mM MgCl2,1-mM DTT,pH 7.9.The T50 buffer contains 50-mM NaCl, 20-mM Tris-HCl,pH 7.5. A dNTP mixture(2.5-mM each)was purchased from TaKaRa Bio USA,Inc.

    2.4. Single molecule measurements for KF

    The single molecule FRET measurements were carried out with a home-built objective type total internal reflection fluorescence(TIRF)microscope. An oil immersion objective(100×,N.A.1.49)was used to create an evanescent field of illumination. Cy3 was excited by a 532-nm sapphire laser(Coherent,Inc.USA).The fluorescence signals from Cy3 and Cy5 were separated by a dichroic mirror, and were collected by an electron multiplying charge-coupled device camera(iXON,Andor technology,South Windsor,CT,USA).The coverslips(Fisher Scientific, USA) and slides were cleaned throughout a process by using acetone, methanol, a mixture of sulfuric acid and hydrogen per oxide at a ratio of 7:3, a mixture of sodium hydroxide and ethanol, and finally with a mixture of 47.5-mL methanol, 2.5-mL acetic acid and 0.5-mL APTES(Roche Diagnostics). The coverslips were coated with a mixture of 99% mPEG-SVA (MW 5000, Laysan Bio, Inc.) and 1% biotin-PEG-SVA (MW 5000, Laysan Bio, Inc.). Streptavidin was applied to the micro chamber before the immobilization of biotinylated DNA, and was incubated for 10 minutes.After washing,20-pM–70-pM DNA was added into the chamber and incubated for 5 minutes. After removal of free DNA molecules with 200-μL T50 buffer,an oxygen scavenging system(0.8%D-glucose, 1-mg/mL glucose oxidase, 0.4-mg/mL catalase, and 1-mM Trolox) was added to the reaction buffer and then flowed into the chamber to initiate imaging. Then,10 unit of KF with reaction buffer were added into the chamber for KF-DNA binding reaction,and imaging was initiated.After the initiation of imaging,KF and dNTP were flowed into the chamber. All the single molecule measurements were carried out at an exposure time of 50 ms–100 ms and a constant temperature of 22?C.The FRET efficiency was calculated asIA/(ID+IA), whereIDandIAare the corrected emission intensities of the donor and acceptor,respectively.

    3. Results

    3.1. Strand displacement on Y-shaped DNA

    A home-built total internal reflection fluorescence(TIRF)microscope was used to monitor the interaction between unlabeled KF and donor-acceptor labeled DNA. We start with monitoring the interaction between KF and Y-shaped DNA.As shown in Fig.1(a),the Y-shaped DNA is formed by 3 strands of ssDNA. The FRET donor (Cy3) was labeled at the primer and the FRET acceptor (Cy5) was labeled at the opening of DNA fork. Strand displacement of KF will unwind the DNA fork and increase the distance between Cy3 and Cy5, leading to the decrease of the FRET value;on the other hand,the backsliding of KF increases the FRET value. Therefore we can monitor the dynamics of strand displacement by measuring the FRET value changes.

    Fig.1. Strand displacement on Y-shaped DNA.(a)Cy3(green)and Cy5(red)labeled Y-shaped DNA;(b)typical trace for strand displacement;(c)distribution of the ending FRET value of strand displacement by KF on Y-shaped DNA.

    Figure 1(b)gives a typical FRET trace resulting from the strand displacement. We can see there exist several jumps of the FRET value change.Most of them are from a higher FRET value to a lower one, which correspond to the unwinding behavior of the DNA by KF.As KF continuously unwinds DNA,the FRET traces decrease to a value~0.2. The distribution of the ending values of the FRET traces is given in Fig.1(c).Note that there also exist in the FRET traces very few jumps from lower FRET values to higher ones, which probably represent the backsliding of KF on the DNA.

    3.2. Strand displacement on D-loop DNA

    We proceed to study the interaction between KF and Dloop DNA As shown in Fig.2(a),the arc of the D-loop DNA molecules we use is a 60-bp long dsDNA,with the string being consisted of a 31-nt DNA.A 25-mer primer sequence-(5′-TGTACATTCAATCACCGACG(T)TTCC-3′) is labeled with Cy3 FRET donor. The biotin group is labeled at 5′-PHOCy5 FRET acceptor is labeled at the 5′end of the 60-bp ds-DNA. The estimated force of the D-loop is about 7 pN. A long hairpin of 100 bp is attached to the D-loop to ensure the full activity of KF. Figure 2(b) gives a typical FRET trace of strand displacement result. After the binding of KF,the FRET value is increased from 0.82 to 0.96; and it is clearly shown that there exist both forward and backward steps,which represent the unwinding and backsliding phenomena by KF,respectively. Figure 2(c) gives the distribution of the ending FRET value. Note that the peak of the distribution locates around 0.08, which is much lower than the corresponding value in the case of Y-shaped DNA. This lowering of the FRET ending value indicates that the D-loop structure helps to enhance the resolution and efficiency of smFRET in studying KF-DNA interaction.

    Fig. 2. Strand displacement on D-loop DNA. (a) Structure of D-loop DNA labeled with Cy3 (green) and Cy5 (red); (b) typical trace for strand displacement,where backward steps are more distinct than those in Y-shaped DNA;(c)distribution of the ending FRET value of strand displacement by KF on D-loop DNA.

    3.3. Influence of GC-pair richness on the strand displacement by KF

    Because GC-rich sequences are important in various cellular mechanisms, we now investigate how GC-pair richness of DNA may influence strand displacement by KF (exo-).Considering the aforementioned advantages of the D-loop structure, we use D-loop for the following studies. We consider two cases: all-GC sequences and non-all-GC sequences.

    We start with non-all-GC sequences. Several representative FRET traces are shown in Figs.3(a)–3(c);and the distribution of the starting value of the ascending FRET jumps is given in Fig.3(d),which shows that KF backsliding occurs more frequently at FRET values from 0.2 to 0.5. In other words, the backsliding is prone to appear after several base pairs of the hairpin having been unwound. As the sequence of the hairpin DNA used in our smFRET assay starts with GTTCGTCG,which has more GC pairs in the rear part,this result indicates that GC-richness helps to increase the backsliding probability.

    We then investigate the backsliding phenomenon in the case that the hairpin DNA is composed of all GC sequences.As qualitatively shown in Figs.4(a)–4(c),the backward steps now appear more frequently and can occur at various FRET values; as clearly shown in Fig. 4(d), which gives the distribution of the starting value of the ascending FRET jumps, a large fraction of the observed backward steps occur at high FRET values (>0.5), indicating that backsliding may occur right after the binding of KF.Compared with the results given in Fig.3,these results for all-GC sequences confirm that backsliding of KF can be facilitated by the GC-richness of DNA sequences.

    Fig.3. (a)–(c)Representative FRET traces for strand displacement on nonall-GC sequences of D-loop DNA; (d) distribution of the starting value of the ascending FRET jumps.

    Fig.4. (a)–(c)Representative FRET traces and(d)distribution of the starting value of the ascending FRET jumps, for strand displacement in all-GC sequences.

    3.4. Influence of dNTP concentration on strand displacement

    We now proceed to investigate how the concentration of dNTP influences the strand displacement phenomenon. At first we use 1-μM concentration of dNTP,and then we change the concentration of dNTP to 10μM and 100μM,respectively.The corresponding representative traces of the FRET value are shown in Fig. 5. When compared to the FRET trace from 1 μM (Fig. 5(a)), those from 10 μM (Fig. 5(b)) and 100 μM(Fig.5(c))seem to have less backward steps. In another word,increasing the dNTP concentration facilitates the unwinding of DNA and thus reduces the possibility of KF backsliding.

    Fig. 5. The dNTP concentration dependence of the strand displacement: (a) typical FRET trace at 1-μM concentration of dNTP, (b) typical FRET trace at 10μM,and(c)typical FRET trace at 100μM.

    4. Discussion and conclusion

    smFRET experiments on DNA pols were designed to measure DNA polymerization rate by strand displacement of polymerases.[23–25]It was previously reported that 85% of pauses in the strand displacement were sequencedependent and located in the GC-rich region of pol I(Klenow fragment).[23]Our results show that the pauses in strand displacement are related to the backsliding of Klenow fragment on DNA, rather than the stalling of Klenow fragment. As GC-rich sequences are more stable due to base stacking, the presence of GC pairs thus enhances the energy barrier of unwinding and accordingly increases the probability of Klenow fragment backsliding. Our results also suggest that the probability of backsliding decreases as the concentration of dNTP increases. Further studies are needed to elucidate the detailed mechanism behind the influences of GC-richness and dNTP concentration on the backsliding of Klenow fragment.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No. 12090051), the CAS Key Research Program of Frontier Sciences (Grant Nos. QYZDJSSW-SYS014 and ZDBS-LY-SLH015), and the Youth Innovation Promotion Association of CAS(Grant No.2017015).

    猜你喜歡
    春華李明
    An improved ISR-WV rumor propagation model based on multichannels with time delay and pulse vaccination
    Single-molecular methodologies for the physical biology of protein machines
    待到春華爛漫時(shí)
    黃河之聲(2020年5期)2020-05-21 08:24:38
    李明
    我們該如何表達(dá)苦難?——讀黃春華《扁腦殼》
    三角函數(shù)熱點(diǎn)連連看
    肉被騙以后
    寒木守春華
    火花(2016年7期)2016-02-27 07:45:24
    春華而后秋實(shí)
    海峽姐妹(2015年3期)2015-02-27 15:10:04
    看什么
    免费少妇av软件| 亚洲国产高清在线一区二区三| 久久久久久久久中文| 久久久久久久久久久丰满| 成人鲁丝片一二三区免费| 欧美激情在线99| 国产精品女同一区二区软件| 国精品久久久久久国模美| 亚洲婷婷狠狠爱综合网| 亚洲精品国产av蜜桃| 亚洲欧美成人精品一区二区| 欧美精品一区二区大全| 男女下面进入的视频免费午夜| 国产成人精品婷婷| 99久久精品国产国产毛片| 免费看日本二区| 国产欧美日韩精品一区二区| 国产永久视频网站| 亚洲内射少妇av| 亚洲va在线va天堂va国产| 亚洲国产成人一精品久久久| 日韩,欧美,国产一区二区三区| 亚洲精品自拍成人| 精品一区在线观看国产| 久久人人爽人人片av| 国产免费又黄又爽又色| 我的老师免费观看完整版| 久久久久久久久大av| 丝袜美腿在线中文| 欧美高清性xxxxhd video| 91狼人影院| 在线观看av片永久免费下载| 国产一区二区亚洲精品在线观看| 久久久久网色| 欧美潮喷喷水| 亚洲精品视频女| 777米奇影视久久| 嫩草影院入口| 乱码一卡2卡4卡精品| 亚洲色图av天堂| 亚洲欧美日韩无卡精品| 激情 狠狠 欧美| 能在线免费观看的黄片| 精品久久久久久久人妻蜜臀av| 欧美xxⅹ黑人| 日韩三级伦理在线观看| 国内精品宾馆在线| 看十八女毛片水多多多| 热99在线观看视频| 午夜福利视频精品| 日韩欧美国产在线观看| 永久网站在线| 日日撸夜夜添| 国产精品熟女久久久久浪| 天堂影院成人在线观看| 国产一级毛片七仙女欲春2| 美女国产视频在线观看| 丰满少妇做爰视频| 国产一区有黄有色的免费视频 | 久久99精品国语久久久| 日韩成人av中文字幕在线观看| 三级国产精品片| 少妇的逼水好多| 国产高潮美女av| 黑人高潮一二区| 午夜老司机福利剧场| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花 | 亚洲精品影视一区二区三区av| 天堂俺去俺来也www色官网 | 国产成人福利小说| 非洲黑人性xxxx精品又粗又长| 精品国内亚洲2022精品成人| 婷婷色麻豆天堂久久| 一级毛片电影观看| 亚洲精品中文字幕在线视频 | 国产成人91sexporn| av卡一久久| 亚洲人成网站在线播| 欧美激情久久久久久爽电影| 3wmmmm亚洲av在线观看| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 国产免费福利视频在线观看| 国产精品日韩av在线免费观看| 在线免费十八禁| 免费人成在线观看视频色| 国内精品美女久久久久久| 中文精品一卡2卡3卡4更新| 国产亚洲av嫩草精品影院| 乱码一卡2卡4卡精品| 夜夜看夜夜爽夜夜摸| 免费av毛片视频| 性色avwww在线观看| 又爽又黄a免费视频| 国产男女超爽视频在线观看| 久久久久久久久大av| 国语对白做爰xxxⅹ性视频网站| 乱码一卡2卡4卡精品| 全区人妻精品视频| 色吧在线观看| 婷婷色综合www| 国产一区有黄有色的免费视频 | av卡一久久| 亚洲av在线观看美女高潮| av天堂中文字幕网| 一级片'在线观看视频| 精品一区二区三区视频在线| 国产成人午夜福利电影在线观看| 黄片wwwwww| 久久6这里有精品| 亚洲人成网站在线播| 欧美最新免费一区二区三区| 午夜激情久久久久久久| av国产久精品久网站免费入址| 亚洲不卡免费看| 国产精品一区二区在线观看99 | 91精品国产九色| 黄色配什么色好看| 日韩大片免费观看网站| 男人爽女人下面视频在线观看| 日韩电影二区| 91午夜精品亚洲一区二区三区| 97在线视频观看| 狂野欧美白嫩少妇大欣赏| 国产亚洲精品av在线| 国产午夜精品久久久久久一区二区三区| 亚洲精品久久午夜乱码| 免费黄频网站在线观看国产| 日韩精品青青久久久久久| 听说在线观看完整版免费高清| 日本黄色片子视频| 看十八女毛片水多多多| 一级片'在线观看视频| 久久97久久精品| 大香蕉97超碰在线| 中文字幕亚洲精品专区| 亚洲国产日韩欧美精品在线观看| 精品国产露脸久久av麻豆 | 国产综合精华液| 午夜免费激情av| 三级国产精品片| 中文在线观看免费www的网站| 午夜免费男女啪啪视频观看| 人妻夜夜爽99麻豆av| 五月伊人婷婷丁香| 国产成人福利小说| 大香蕉97超碰在线| 18禁动态无遮挡网站| 国产日韩欧美在线精品| 久久久久久久久久久免费av| 哪个播放器可以免费观看大片| 日韩大片免费观看网站| 久久6这里有精品| 久久精品夜色国产| 国产探花在线观看一区二区| 国产一级毛片七仙女欲春2| 男女下面进入的视频免费午夜| 淫秽高清视频在线观看| 亚洲人成网站在线播| 国产成人精品久久久久久| 国产视频首页在线观看| 日日啪夜夜爽| 1000部很黄的大片| 免费观看无遮挡的男女| 国产日韩欧美在线精品| 婷婷色综合大香蕉| 亚洲四区av| 欧美高清成人免费视频www| 精华霜和精华液先用哪个| 成人无遮挡网站| 亚洲丝袜综合中文字幕| 亚洲欧洲国产日韩| 午夜激情福利司机影院| 精品不卡国产一区二区三区| 18禁在线播放成人免费| 丝袜喷水一区| 男人舔奶头视频| 女人十人毛片免费观看3o分钟| 日本一本二区三区精品| 国产真实伦视频高清在线观看| videossex国产| 80岁老熟妇乱子伦牲交| 久久久久久久久大av| 亚洲人与动物交配视频| 色综合色国产| 欧美精品国产亚洲| 久久久久久久国产电影| 汤姆久久久久久久影院中文字幕 | 人妻一区二区av| 亚洲国产av新网站| 国产乱来视频区| 网址你懂的国产日韩在线| 一级片'在线观看视频| 免费看日本二区| 亚洲电影在线观看av| or卡值多少钱| 别揉我奶头 嗯啊视频| av网站免费在线观看视频 | kizo精华| 日韩不卡一区二区三区视频在线| 51国产日韩欧美| 白带黄色成豆腐渣| 激情 狠狠 欧美| 久久精品国产鲁丝片午夜精品| 国产精品综合久久久久久久免费| 欧美激情在线99| 成人一区二区视频在线观看| 亚洲成人中文字幕在线播放| 亚洲最大成人手机在线| 亚洲成色77777| 丝瓜视频免费看黄片| 午夜福利在线观看免费完整高清在| 国产精品爽爽va在线观看网站| 久久精品国产鲁丝片午夜精品| 亚洲精品视频女| videossex国产| 亚洲欧美成人精品一区二区| 高清av免费在线| 精品99又大又爽又粗少妇毛片| av在线蜜桃| 两个人视频免费观看高清| 青春草视频在线免费观看| av免费观看日本| 亚洲精品国产av成人精品| 在线播放无遮挡| 最近最新中文字幕免费大全7| 亚洲精品成人av观看孕妇| 最近中文字幕2019免费版| 久久久精品欧美日韩精品| 性色avwww在线观看| 日韩一区二区视频免费看| 精品熟女少妇av免费看| 国产男人的电影天堂91| 高清毛片免费看| 亚洲激情五月婷婷啪啪| 欧美日韩国产mv在线观看视频 | 男插女下体视频免费在线播放| 别揉我奶头 嗯啊视频| 寂寞人妻少妇视频99o| 一级毛片久久久久久久久女| 国产激情偷乱视频一区二区| 最新中文字幕久久久久| 建设人人有责人人尽责人人享有的 | 国模一区二区三区四区视频| 久久久久国产网址| 亚洲av电影在线观看一区二区三区 | 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 亚洲一区高清亚洲精品| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 九九在线视频观看精品| 一个人免费在线观看电影| 精品一区二区三卡| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看成人毛片| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 国产伦理片在线播放av一区| 麻豆国产97在线/欧美| 高清毛片免费看| 亚洲av国产av综合av卡| 亚洲最大成人手机在线| 久久久久久久久久久免费av| 久久精品久久精品一区二区三区| 中文字幕av在线有码专区| 99久久精品热视频| 干丝袜人妻中文字幕| 亚洲av日韩在线播放| 日日摸夜夜添夜夜爱| 午夜视频国产福利| 丰满人妻一区二区三区视频av| 婷婷色av中文字幕| 日产精品乱码卡一卡2卡三| 日本欧美国产在线视频| 一级毛片黄色毛片免费观看视频| 美女内射精品一级片tv| 免费大片黄手机在线观看| 成人特级av手机在线观看| 老女人水多毛片| 亚洲成人中文字幕在线播放| 99热6这里只有精品| 日本黄大片高清| 欧美成人a在线观看| 久久亚洲国产成人精品v| 久久人人爽人人爽人人片va| 又黄又爽又刺激的免费视频.| 日本色播在线视频| 三级男女做爰猛烈吃奶摸视频| 日韩成人av中文字幕在线观看| 99久久精品一区二区三区| 一级毛片 在线播放| 特大巨黑吊av在线直播| 只有这里有精品99| 一级黄片播放器| 国产一级毛片七仙女欲春2| 大片免费播放器 马上看| 伦精品一区二区三区| 国国产精品蜜臀av免费| 成人欧美大片| 亚洲自偷自拍三级| 国产一区有黄有色的免费视频 | 成年免费大片在线观看| 蜜臀久久99精品久久宅男| 老司机影院成人| 美女脱内裤让男人舔精品视频| 久久精品久久精品一区二区三区| 搞女人的毛片| 最近视频中文字幕2019在线8| 精品久久久噜噜| 精品一区二区免费观看| 久久精品国产鲁丝片午夜精品| 哪个播放器可以免费观看大片| 免费在线观看成人毛片| 国产精品国产三级专区第一集| 午夜精品在线福利| av天堂中文字幕网| 成人无遮挡网站| 国产精品.久久久| 国产黄色小视频在线观看| 免费看不卡的av| 国产成人福利小说| 日韩一区二区视频免费看| 亚洲18禁久久av| 精品人妻一区二区三区麻豆| 久久久久久久久大av| 亚洲美女搞黄在线观看| 婷婷六月久久综合丁香| 内地一区二区视频在线| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 日韩精品青青久久久久久| 简卡轻食公司| 午夜福利网站1000一区二区三区| 简卡轻食公司| 麻豆久久精品国产亚洲av| 亚洲婷婷狠狠爱综合网| 色网站视频免费| 91久久精品国产一区二区成人| 国产伦一二天堂av在线观看| 欧美一区二区亚洲| 搞女人的毛片| 亚洲av一区综合| 91精品一卡2卡3卡4卡| 97在线视频观看| 国产欧美日韩精品一区二区| 亚洲18禁久久av| 丝袜喷水一区| 日韩大片免费观看网站| 亚洲av成人精品一区久久| 99久久中文字幕三级久久日本| 精品亚洲乱码少妇综合久久| 久久久久久久久大av| 色尼玛亚洲综合影院| 国产不卡一卡二| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 三级毛片av免费| 天天躁夜夜躁狠狠久久av| 国产人妻一区二区三区在| 亚洲电影在线观看av| 久久久久九九精品影院| 夜夜看夜夜爽夜夜摸| 18禁裸乳无遮挡免费网站照片| 亚洲av二区三区四区| 久久6这里有精品| 成人高潮视频无遮挡免费网站| 国产综合精华液| 国产伦一二天堂av在线观看| 久久99热这里只频精品6学生| 伦精品一区二区三区| 国产综合精华液| 欧美激情国产日韩精品一区| 久久6这里有精品| 九草在线视频观看| 18禁在线无遮挡免费观看视频| 国产精品.久久久| 亚洲国产精品成人综合色| 黄色配什么色好看| 精品久久久久久久末码| 夫妻性生交免费视频一级片| 性色avwww在线观看| 高清午夜精品一区二区三区| 国产老妇伦熟女老妇高清| 两个人的视频大全免费| 国产黄色视频一区二区在线观看| 亚洲精品乱码久久久久久按摩| 国产成人aa在线观看| 亚洲精品亚洲一区二区| 啦啦啦啦在线视频资源| 男人舔女人下体高潮全视频| 日本三级黄在线观看| 婷婷六月久久综合丁香| 真实男女啪啪啪动态图| 高清av免费在线| 午夜福利在线观看免费完整高清在| 亚洲欧美清纯卡通| 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 麻豆精品久久久久久蜜桃| 只有这里有精品99| 国产精品久久久久久久久免| 亚洲自拍偷在线| 国产精品久久久久久久久免| 亚洲怡红院男人天堂| av黄色大香蕉| 国产一区亚洲一区在线观看| 美女被艹到高潮喷水动态| 久久精品综合一区二区三区| 国产伦一二天堂av在线观看| 在线观看免费高清a一片| 亚洲av二区三区四区| 丰满少妇做爰视频| 麻豆久久精品国产亚洲av| 能在线免费观看的黄片| 国产精品福利在线免费观看| 国产91av在线免费观看| 最近最新中文字幕免费大全7| 免费少妇av软件| 色哟哟·www| 小蜜桃在线观看免费完整版高清| 深爱激情五月婷婷| 免费大片黄手机在线观看| 嫩草影院入口| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 久久热精品热| 亚洲精品成人av观看孕妇| 91aial.com中文字幕在线观看| 久久久久久久大尺度免费视频| 国产午夜精品久久久久久一区二区三区| 国产v大片淫在线免费观看| 久久这里只有精品中国| 真实男女啪啪啪动态图| 一级毛片电影观看| 国产成人午夜福利电影在线观看| 免费观看性生交大片5| 亚洲经典国产精华液单| 午夜福利视频1000在线观看| 在线观看av片永久免费下载| 成年免费大片在线观看| 草草在线视频免费看| videos熟女内射| 中文精品一卡2卡3卡4更新| 波多野结衣巨乳人妻| 偷拍熟女少妇极品色| 国产精品一区二区三区四区免费观看| 欧美成人a在线观看| 免费观看av网站的网址| 国产麻豆成人av免费视频| 2021天堂中文幕一二区在线观| 如何舔出高潮| 美女国产视频在线观看| 亚洲丝袜综合中文字幕| 免费大片18禁| 三级经典国产精品| 99久国产av精品国产电影| 91午夜精品亚洲一区二区三区| 免费看av在线观看网站| 日韩制服骚丝袜av| 青春草视频在线免费观看| 嫩草影院精品99| www.av在线官网国产| 成人无遮挡网站| 男女国产视频网站| 亚洲在久久综合| 好男人视频免费观看在线| 大话2 男鬼变身卡| 免费在线观看成人毛片| 亚洲欧洲国产日韩| 黄色欧美视频在线观看| 欧美一区二区亚洲| 色网站视频免费| 精品一区二区三区视频在线| 汤姆久久久久久久影院中文字幕 | 神马国产精品三级电影在线观看| 建设人人有责人人尽责人人享有的 | 国产麻豆成人av免费视频| 亚洲熟女精品中文字幕| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 免费播放大片免费观看视频在线观看| 国产免费又黄又爽又色| 欧美日韩视频高清一区二区三区二| 国产精品1区2区在线观看.| 精品一区二区三区视频在线| 国产 一区精品| 伊人久久国产一区二区| 一级毛片电影观看| 欧美不卡视频在线免费观看| 在现免费观看毛片| 国产黄频视频在线观看| 精品久久久久久久久久久久久| 久久人人爽人人爽人人片va| 国产探花极品一区二区| 大香蕉97超碰在线| 国产精品福利在线免费观看| 中文字幕人妻熟人妻熟丝袜美| 精品久久国产蜜桃| 国产又色又爽无遮挡免| 亚洲高清免费不卡视频| 国产一级毛片七仙女欲春2| 2021少妇久久久久久久久久久| 日韩欧美 国产精品| 日韩亚洲欧美综合| 色网站视频免费| 国产精品一区www在线观看| 国产真实伦视频高清在线观看| 久久精品国产鲁丝片午夜精品| 亚洲欧洲日产国产| 日韩,欧美,国产一区二区三区| 99久久精品国产国产毛片| 免费看a级黄色片| 直男gayav资源| 亚洲内射少妇av| 成人高潮视频无遮挡免费网站| 国内精品宾馆在线| 亚洲国产精品sss在线观看| av在线老鸭窝| 一级二级三级毛片免费看| 欧美最新免费一区二区三区| 少妇人妻精品综合一区二区| 亚洲欧洲国产日韩| 波多野结衣巨乳人妻| 91精品伊人久久大香线蕉| 永久免费av网站大全| 亚洲精品456在线播放app| 日韩大片免费观看网站| 天堂av国产一区二区熟女人妻| 色综合站精品国产| 国产伦理片在线播放av一区| 精品久久久久久久末码| 久久久久性生活片| 国产精品无大码| 别揉我奶头 嗯啊视频| 99热网站在线观看| 国产成人精品一,二区| 深爱激情五月婷婷| 国产av码专区亚洲av| 国产中年淑女户外野战色| 久久99热这里只有精品18| 成人午夜精彩视频在线观看| 日韩av在线大香蕉| 在线观看av片永久免费下载| 丝瓜视频免费看黄片| a级毛片免费高清观看在线播放| 亚洲经典国产精华液单| 国产片特级美女逼逼视频| 美女大奶头视频| 国产成人精品一,二区| 亚洲精品久久午夜乱码| 亚洲精品aⅴ在线观看| 中文字幕免费在线视频6| 国产国拍精品亚洲av在线观看| 久久精品国产亚洲av涩爱| 高清欧美精品videossex| 国产 一区精品| 青春草视频在线免费观看| 亚洲欧美日韩卡通动漫| 在线观看av片永久免费下载| 国产在线一区二区三区精| 国产视频首页在线观看| 国产av码专区亚洲av| 啦啦啦啦在线视频资源| 国产男人的电影天堂91| 少妇高潮的动态图| 狂野欧美白嫩少妇大欣赏| 亚洲综合色惰| 欧美人与善性xxx| 五月天丁香电影| 在线观看一区二区三区| 日韩一区二区视频免费看| 亚洲精品久久午夜乱码| 欧美精品一区二区大全| 日本三级黄在线观看| 舔av片在线| 肉色欧美久久久久久久蜜桃 | 夜夜爽夜夜爽视频| 亚洲欧美日韩卡通动漫| 亚洲激情五月婷婷啪啪| 老女人水多毛片| 一级毛片久久久久久久久女| 1000部很黄的大片| 亚洲美女搞黄在线观看| 亚洲av电影在线观看一区二区三区 | 一个人看的www免费观看视频| 国产黄色视频一区二区在线观看| 美女国产视频在线观看| 99re6热这里在线精品视频| 久久久久网色| 亚洲怡红院男人天堂| av在线亚洲专区| 日韩亚洲欧美综合| 日韩不卡一区二区三区视频在线| 91精品一卡2卡3卡4卡| 亚洲av免费高清在线观看| 国产不卡一卡二| kizo精华| 久久久色成人| 日韩精品有码人妻一区| 国产精品不卡视频一区二区| 国产精品嫩草影院av在线观看| 黄片wwwwww| 成人午夜精彩视频在线观看| 亚洲精品国产av成人精品| 少妇被粗大猛烈的视频| 久久久精品免费免费高清| 97热精品久久久久久| 亚洲精品日韩av片在线观看| 午夜视频国产福利| 婷婷色综合www| 最新中文字幕久久久久| 中文资源天堂在线| 在线免费十八禁|