• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?

    2019-05-31 03:37:58ChangyouWANG王長有NanLI李楠YuqianZHOU周鈺謙
    關(guān)鍵詞:李銳李楠

    Changyou WANG(王長有)Nan LI(李楠) Yuqian ZHOU(周鈺謙)

    1.College of Applied Mathematics,Chengdu University of Information Technology,Chengdu 610225,China

    2.Department of Applied Mathematics,Southwestern University of Finance and Economics,Chengdu 610074,China E-mail:wangchangyou417@163.com;2972028881@qq.com;cs97zyq@cuit.edu.cn

    Xingcheng PU(蒲興成)Rui LI(李銳)

    College of Automation,Chongqing University of Posts and Telecommunications,Chongqing 400065,China E-mail:puxc@cqupt.edu.cn;liruimath@qq.com

    Abstract This article is focusing on a class of multi-delay predator-prey model with feedback controls and prey di ff usion.By developing some new analysis methods and using the theory of di ff erential inequalities as well as constructing a suitable Lyapunov function,we establish a set of easily veri fiable sufficient conditions which guarantee the permanence of the system and the globally attractivity of positive solution for the predator-prey system.Furthermore,some conditions for the existence,uniqueness and stability of positive periodic solution for the corresponding periodic system are obtained by using the fixed point theory and some new analysis techniques.In additional,some numerical solutions of the equations describing the system are given to verify the obtained criteria are new,general,and easily veri fiable.Finally,we still solve numerically the corresponding stochastic predator-prey models with multiplicative noise sources,and obtain some new interesting dynamical behaviors of the system.

    Key words predator-prey model;delay;di ff usion;permanence;attractivity;periodic solution

    1 Introduction

    From a biological point of view,it is very important to obtain some conditions which ensures all species in multispecies community are permanent,attractive and stability.The Lotka-Volterra predator-prey model is one of the important models describing interactions among species.As we well know,species can di ff use between multiple patches.The prey species growing in weak environment often spread to advantageous environment in order to better survival and breeding of the species.So,the Lotka-Volterra model with the di ff usion can more accurately describe the interrelationships among species(see[1–3]).Song and Chen in[4]studied a two-species predator-prey system in which prey species can di ff use between two patches,and obtained some sufficient conditions which guarantee the permanence of the system and the globally attractivity of positive solution for the predator-prey system.In 2010,Wei et al.in[5]considered the periodic solution and global stability of a nonautonomous competitive Lotka-Volterra di ff usion system by using the Brouwer fixed point theorem and constructing a suitable Liapunov function.In general,in the real world,the growth rate of a natural species will not often respond immediately to changes in its own population or that of an interacting species,but will rather do so after a time lag[6].Therefore,the delay was introduced into model foundation,which will have more resemblance to the real ecosystem.There was a lot of literature related to the study of Lotka-Volterra-type population mutualism dynamical systems with delays.In[7],the authors considered a three-species Lotka-Volterra type competitivemutualism systems with discrete time delays,and some sufficient conditions on the permanence of species and the global attractivity of the system are established.Moreover,some researchers were focused on the combined e ff ects of dispersion and time-delays.In 2004,Xu et al.[8]studied a Lotka-Volterra predator-prey model with dispersion and time-delays,obtained some sufficient conditions for the existence,uniqueness and global stability of positive periodic solutions of the system by using Gaines and Mawhin!s continuation theorem of coincidence degree theory and constructing a suitable Lyapunov functional.In[9],Zhou,Shi and Song considered a nonautonomous predator-prey model with nonlinear di ff usion and time-delays.It is proved that the system is uniformly persistent under appropriate conditions,and some sufficient conditions are given for the global stability of the system by constructing a suitable Lyapunov functional.More work on di ff usion and time-delays can be found in(cf.[10–12]and the references cited therein).

    On the other hand,it is very interesting in the control of ecology balance that people may wish to change the conditions of the system stability but to keep its stability still in some situation.One of the methods for the realization of it is to alter the system structurally by introducing some feedback control variables.The realization of the feedback control mechanism might be implemented by harvesting procedure or by means of some biological control scheme.In fact,in recent decade,the dynamical behavior of species for the various Lotka-Volterra systems with feedback controls have been studied in much literature,for example,see[13–16]and the references cited therein.Many interesting and important research methods and results were obtained.In 2003,Gopalsamy et al.[13]studied a two species competition system with feedback controls.And they obtained some conditions for the existence of a globally attracting positive equilibrium of the system.In[16],Chen et al.proposed a two species Lotka-volterra predator-prey system with feedback controls.By constructing two suitable Lyapunov functions,sufficient conditions which guarantee the global attractivity of the positive equilibrium are obtained,which show that enough large feedback controls could lead to the extinction of the predator species.Moreover,in recent years,attention was given to some ecosystem models with both feedback control and time delay or di ff usion(see[17–20]).In order to show that whether the feedback control variables play an essential role on the persistent property of Lotka-Volterra cooperative systems or not,Xu and Chen in[19]studied the system with time delay and feedback control,obtained some new sufficient conditions which ensure the system to be permanent,and showed that feedback control variables have no in fluence on the permanence of the system.To study the in fluence of the patch di ff usion and feedback control on existence of periodic solution,Xie and Weng in[20]considered a predator-prey model with patch-di ff usion and feedback control,and proved that the model has at least one positive periodic solution by developing some new analysis methods.

    Commonly,an ecological system such as that represented by the deterministic Lotka-Volterra model is not suitable to describe the real behavior of the population dynamics.What we claim as “eedback control variables” which is mentioned above,is strictly connected to the environmental noise e ff ect.It is necessary to include the e ff ect of the environmental variables that can be deterministic,such as the variation of the temperature due to atmospheric conditions,and stochastic,due to the stochastic varaiability of all the other variables,such as growth rate,resources etc(cf.[21–28]).Moreover,the study of nonlinear dynamical systems in the presence of external noise has led to the discovery of a number of counterintuitive phenomena,with a constructive role of the noise and high fundamental and practical interests in many scienti fic areas.The presence of a noise source can change the stabiltiy of the ecological system[29].In recent years many theoretical investigations were done on noise-induced e ff ects in population dynamics[30–35].Finally,the noise source can be non-Caussian and this further enriches the dynamics[36–40].

    More related works on feedback controls and time delay can be found in[41–50].However,to the best of the authors’knowledge,to this day,still less scholars consider the general nonautonomous Lotka-Volterra predator-prey system with time-delays,prey di ff usion and feedback controls.Motivated by the above works,in this paper,we propose and investigate the following two species Lotka-Volterra multi-delay predator-prey system with feedback controls and prey patch-di ff usion

    where x1(t)and x2(t)denote the density of prey species in patch 1 and patch 2,respectively,x3(t)is the density of predator species,while the prey can di ff use between two patches;ri(t)(i=1,2)denote the intrinsic growth rate of the prey species at patch 1 and patch 2,r3(t)is the death rate of the predator;aii(t)(i=1,2,3)denote the restriction density of the prey species at patch 1 and patch 2 as well as the predator species,respectively.a13(t)and a23(t)are the capturing rate of the predator,a31(t)and a32(t)are the conversion rate of nutrients of the predator;Di(t)are the dispersion rate of prey species at patch i,(i=1,2),ui(t)(i=1,2,3)are the feedback control terms.Furthermore,in view of the biological signi ficance of the above parameters,we assume that ri(t),aii(t),di(t),ei(t),fi(t),qi(t)(i=1,2,3),a13(t),a23(t),a31(t),a32(t),D1(t)and D2(t)are continuous,bounded and strictly positive functions on[0,+∞), τ1,τ2,τ3are positive constants representing delays.

    Due to biological interpretation of system(1.1),it is reasonable to consider only positive solution of(1.1),in other words,to take admissible initial conditions

    Obviously,the solutions of system(1.1)with the initial values(1.2)are positive for all t≥0.

    This paper is organized as follows:in Section 2,we provide the conditions for the permanence to system(1.1).In Section 3,by constructing a nonnegative Lyapunov function,we shall derive sufficient conditions for the globally attractive of positive solution for system(1.1).In Section 4,some conditions for the existence,uniqueness and stability of a positive periodic solution for the corresponding periodic system are obtained by using the fixed point theory and some new analysis method.Some numerical solutions of the equations describing the system are given in Section 5 to verify the obtained criteria are veri fiable.

    2 Permanance

    In order to establish a permanence result for system(1.1),we introduce firstly the following notations and de finitions.Given a continuous and bounded function g(x)de fined on[0,+∞),we set

    De finition 2.1System(1.1)is called permanent,if there exist positive constants Mi,mi(i=1,2),Ni,ni(i=1,2,3)and T,such that

    for any positive solution Z(t)=(x1(t),x2(t),x3(t),u1(t),u2(t),u3(t))of system(1.1)as t>T.

    As a direct corollary of Lemma 2.1 of Chen[51],we have

    Lemma 2.2If a>0,b>0 andwhen t≥0 and x(0)>0,then we have

    As a direct corollary of Lemma 2.2 of Chen[51],we have

    Lemma 2.3If a>0,b>0 andwhen t≥0 and x(0)>0,then we have

    Lemma 2.4(see[52],Lemma 2.2) Assume that for y(t)>0,it holds that

    with initial conditions y(t)= φ(t)≥ 0 for t∈ [?mτ,0)and φ(0)>0,where

    are constants,then there exist a positive constant My<+∞such that

    where y=y?is the unique solution of the equation y(λ?μy)+D=0.

    Lemma 2.5(see[52],Lemma 2.3) Assume that for y(t)>0,it holds that

    For system(1.1),we let

    Theorem 2.6Assume that system(1.1)satis fies the following conditions

    then system(1.1)is permanent.

    ProofAccording to the first and the second equations of system(1.1),we de fine and calculate the upper right derivative of W1(t)along the positive solution of system(1.1),then we have that

    (P1)If x1(t)≥x2(t),then

    From(P1)and(Q1),we have

    By(2.2)we can derive

    (A1)If W1(0)=max{x1(0),x2(0)}≤M1,then max{x1(t),x2(t)}≤M1,t≥0.

    (B1)If W1(0)=max{x1(0),x2(0)}>M1,take appropriate α>0,we have the following three cases

    (a1)W1(0)=x1(0)>M1,(x1(0)>x2(0));

    (b1)W1(0)=x2(0)>M1,(x1(0)

    (c1)W1(0)=x1(0)=x2(0)>M1.Further,we have

    If(a1)holds,then there exists ε>0 such that W1(t)=x1(t)>M1,t∈ [0,ε).Moreover,it holds that

    If(b1)holds,then there exists ε>0 such that W1(t)=x2(t)>M1,t∈ [0,ε).Thus,we have that

    If(c1)holds,similar to(a1)and(b1),we have

    From what we discuss above,we can conclude that if W1(0)>M1,then W1(t)is strictly monotone decreasing with speed at least α.So there exists T1>0 such that if t ≥ T1,then W1(t)=max{x1(t),x2(t)}≤M1.Moreover,we have

    and

    According to the sixth equation of system(1.1),one has that

    And by Lemma 2.2,we have

    By the third equation of system(1.1),we have that

    And from the Lemma 2.4,we derive that

    For the fourth and the fifth of system(1.1),we have

    and

    By Lemma 2.2,we can get

    and

    On the other hand,according to the first and the second equations of system(1.1),we de fine W2(t)=min{x1(t),x2(t)},then calculating the lower right derivative of W2(t)along the positive solution of system(1.1),we have

    (P2)If x1(t)≤x2(t),then

    (Q2)If x1(t)≥x2(t),then

    From(P2)and(Q2),it is easy to obtain

    By(2.9),we can obtain that

    (A2)If W2(0)=min{x1(0),x2(0)}≥m1,then min{x1(t),x2(t)}≥m1,t≥0.

    (B2)If W2(0)=min{x1(0),x2(0)}0 such that we have the following three possibilities

    (a2)W2(0)=x1(0)

    (b2)W2(0)=x1(0)x2(0));

    (c2)W2(0)=x1(0)=x2(0)

    If(a2)holds,then there exists ε >0 such that W2(t)=x1(t)

    If(b2)holds,then there exists ε>0 such that W2(t)=x2(t)

    If(c2)holds,in the same way,we have that

    From(a2),(b2)and(c2),we can get that if W2(0)0 such that W2(t)=min{x1(t),x2(t)} ≥ m1as t≥T2.Moreover,we have that

    and

    For the third equation of system(1.1),we have

    By Lemma 2.5,we have

    From the fourth and the fifth of system(1.1),we have

    and

    And by Lemma 2.2,we can get

    and

    According to the sixth equation of system(1.1),we have

    From Lemma 2.2,it holds that

    From(2.3)–(2.8)and(2.10)–(2.15),this ends the proof of Theorem 2.6. ?

    3 Globally Attractive

    In this section,we will obtain the sufficient conditions for the global attractivity of system(1.1).Firstly,on the global attractivity of system(1.1),we have the following de finition and Lemma.The strategy of proof is to construct a suitable Lyapunov function.

    De finition 3.1System(1.1)is said to be globally attractive,if there exists a positive solution X(t)=(x1(t),x2(t),x3(t),u1(t),u2(t),u3(t))of system(1.1)such that

    for any other positive solution Y(t)=(y1(t),y2(t),y3(t),v1(t),v2(t),v3(t))of system(1.1).

    Theorem 3.3Assume that system(1.1)satis fies(H1)–(H4)and the following conditions

    where

    Then system(1.1)is globally attractive.

    ProofLet X(t)=(x1(t),x2(t),x3(t),u1(t),u2(t),u3(t))be a positive solution of system(1.1)and Y(t)=(y1(t),y2(t),y3(t),v1(t),v2(t),v3(t))be any positive solution of system(1.1)with initial conditions(1.2).From Theorem 2.6,we know that there exists positive constants M1,M2,m1,m2,Ni,ni,i=1,2,3 and T>0,such that if t≥T,then

    We de fine

    and calculate the upper right derivative of Vi(t),i=1,2 along the solutions of system(1.1),then we have

    where

    (1)if x1(t)>y1(t),then

    (2)if x1(t)

    (3) if x1(t)=y1(t),the same conclusion as(1)and(2)holds.Then,from the above conclusions,we obtain

    Similarly,it is available that

    From(3.1)–(3.3),we have

    De fine V31(t)=|lnx3(t)?lny3(t)|,and calculate the upper derivative of V31(t)along the solution of system(1.1),we obtain

    De fine

    It follows from(3.5)and(3.6),we have

    Now,we de fine

    where

    Then it follows from(3.7)–(3.9)that,for t≥ T+ τ,

    De fine V4(t)=|lnu1(t)?lnv1(t)|,V5(t)=|lnu2(t)?lnv2(t)|,V6(t)=|lnu3(t)?lnv3(t)|,and calculate the upper right derivative of V4(t),V5(t),V6(t)along the solutions of system(1.1),we have

    From assumption(H5),there exists a constant α >0 and T?>T+τ such that for all t≥ T?,we have

    Integrating both sides of(3.14)on interval[T?,t]and by(3.15),we have

    Hence,V(t)is bounded on[T?,+∞]and we obtain

    Therefore,

    By hypothesis(H1)–(H5)and Theorem 2.6,we can obtain that|xi(t)? yi(t)|,|ui(t)? vi(t)|,i=1,2,3 and their derivatives remain bounded on[T?,+∞).As a consequence,|xi(t)?yi(t)|,|ui(t)?vi(t)|,i=1,2,3 are uniformly continuous on[T?,+∞).By Lemma 3.2,we can conclude that

    This completes the proof of Theorem 3.3,and the solutions of system(1.1)is globally attractive.

    4 Periodic Solution

    Assuming that coefficients of system(1.1)are positive continuous,ω-periodic functions,then system(1.1)is changed to periodic system.In this section,we shall obtain conditions for the existence,uniqueness and stability of a positive periodic for system(1.1)by using the fixed point theory and some new analysis method.For convenience,we give firstly the following lemma.

    Lemma 4.1(see[54]) Let S?Rnbe convex and compact.If mapping T:S→S is continuous,then there exists a fixed point.That is to say,there exists x?∈ S such that T(x?)=x?.

    Theorem 4.2Assume that system(1.1)is a periodic system and satis fies conditions(H1)–(H5),then system(1.1)has a positive unique ω-periodic solution,which is globally asymptotically stable.

    ProofAccording to the existence and uniqueness theorem of solutions of functional differential equations,we can de fine a Poincare mapping T:as follow

    where X(t,ω,X0)=(x1(t),x2(t),x3(t),u1(t),u2(t),u3(t))be a positive solution of the system(1.1)with the initial conditions(1.2).And de fine

    5 Numerical Simulation

    In this section,we will give an example to illustrate the results obtained in this paper.To facilitate the validation of the Theorem 4.2 in which the system is ω-period system,so we choose the 2π-periodic function as the coefficients of system(1.1)and consider the following multi-delay periodic predator-prey model with feedback control and prey di ff usion.In view of the conditions of Theorem 4.2,we choose some particular values of parameters shown in models(5.1)–(5.2)according to the calculation.Of course,the selection of the parameters in the models is not unique.By employing the software package MATLAB 7.1,we can get some numerical solutions of the following system(5.1)with the initial conditions(5.2).

    where time delay τ1=0.01,τ2=0.02,τ3=0.03 and the initial conditions are as follows

    By calculating,we have

    Figure 1 The numerical solution of system(5.1)with the initial conditions(5.2)

    Figure 2 The numerical solution of system(5.1)with the di ff erent initial conditions

    Figure 3 The dynamic behavior of systems(5.1)

    It is easy to show that system(5.1)satis fies the conditions of Theorem 2.6,Theorem 3.3 and Theorem 4.2.From Theorem 2.6 and Theorem 3.3,we have that the system is permanent and globally attractive.By means of Theorem 4.2,system(5.1)has a positive unique periodic solution,which is globally asymptotic stability.The simulation of the whole system have been carried out by MATLB,we can get the numerical solutions of system(5.1)which are shown in Figure 1 to Figure 3.Figure 1 shows that the permanence of system(5.1)with time delay and the initial conditions(5.2).From Figure 2,it is not difficult to find that system(5.1)is globally attractive.Figure 3 shows that the dynamic behavior of system(5.1).

    It is well known that the environmental noise is extremely important in modeling natural phenomena such as ecosystems and population dynamics.Nowadays,the dynamics of populations can not be modeled without taking into account the interaction between the ecological system and environmental noise,always present in nature.In fact,the environmental noise acts constructively,producing counter-intuitive e ff ects and interesting noise-induced phenomena,such as stochastic resonance,noise enhanced stability and resonant activation.So,we will consider the following corresponding stochastic predator-prey models with multiplicative noise sources of form

    where the ξi(t)are δ-correlated Gaussian white noise sources with zero mean,that is,hδi(t)i=0 andwith Dithe noise intensities(here,we choose all equal the noise intensities,that is Di=D),time delay τ1=0.01,τ2=0.02,τ3=0.03,and the initial conditions are as follows

    By employing the MATLAB 7.1 software,we can obtain some numerical solutions of models(5.3)–(5.4)with di ff erent noise intensities which are shown in Figure 4 to Figure 6.From Figure 4,we can find that the new stochastic equations(5.3)–(5.4)have a almost deterministic solutions when the noise intensities is very very low.Moreover,Figure 5 shows that the predator species tend to be extinct when the noise intensities increased to 0.2.From Figure 6,it is showed that the prey and predator species all tend to be extinct when the noise intensities increased to 2.2.By comparing the results shown in Figure 4 to Figure 6 with those shown in Figure 1 to Figure 3,it is obvious that the stochastic environmental noise can a ff ects the permanence,periodic and stability of the predator-prey system.

    Figure 4 The numerical solutions of system(5.3)–(5.4)with very low noise intensities

    Figure 5 The numerical solutions of system(5.3)–(5.4)with low noise intensities

    Figure 6 The numerical solutions of system(5.3)–(5.4)with high noise intensities

    6 Conclusion

    In this paper,we propose and investigate a class of two-species Lotka-Volterra multi-delay predator-prey system with feedback controls and prey patch-di ff usion.By using the comparison theorem and some new analysis methods as wall as constructing the appropriate Lyapunov function,the sufficient conditions to ensure the permanence and global stability of the system are obtained.Furthermore,some conditions for the existence,uniqueness and stability of a positive periodic solution for the corresponding periodic system are obtained by de fining a Poincare mapping and using the Brouwer fixed point theorem.In additional,some numerical solutions of the equations describing the system are given to illustrate our results.Finally,we still solve numerically the corresponding stochastic predator-prey models with multiplicative noise sources,and obtain some new interesting dynamical behaviors of the system.

    Time delay and di ff usion are very common phenomenon in the ecological system,but at present,some scholars are not deep enough in these areas.Added time-delay and the di ff usion term in this paper are relatively simple,and can not re flect the more general ecological system,but which is the key points of our future research,including the multi-delay extended to in finite delay and other aspects.By analyzing the system after adding the feedback control,we can find that the feedback control items have in fluence both on the permanence and global stability of the original system.Therefore,in some ecosystems,some species can be controlled to maintain the balance and sustainable development of the ecosystem,and this is also the practical signi ficance of this topic.In additional,by comparing the numerical solutions of equations(5.1)–(5.2)with those of equations(5.3)–(5.4),it is found that the stochastic environmental noise can a ff ects the permanence,periodic and stability of the periodic predator-prey system.

    猜你喜歡
    李銳李楠
    撥開“愛的迷霧”,其實不是不夠愛
    悶葫蘆老公遇上缺愛的妻子
    在研究的路上鐫刻生命的印記
    What Makes You Tired
    Taking Robotics, AI, IoT to the World
    Modeling of thermodynamics of ice and water in seasonal ice-covered reservoir *
    李銳作品
    Reverse motion characteristics of water-vapor mixture in supercavitating flow around a hydrofoil*
    攝魂相機
    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition
    91在线精品国自产拍蜜月| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 一进一出抽搐gif免费好疼| 美女被艹到高潮喷水动态| 能在线免费看毛片的网站| 国产一区亚洲一区在线观看| 亚洲激情五月婷婷啪啪| 波野结衣二区三区在线| 亚洲第一电影网av| 菩萨蛮人人尽说江南好唐韦庄 | 偷拍熟女少妇极品色| 一级黄色大片毛片| av天堂中文字幕网| 熟妇人妻久久中文字幕3abv| 色综合色国产| 99久久九九国产精品国产免费| 边亲边吃奶的免费视频| 久久欧美精品欧美久久欧美| 久久婷婷人人爽人人干人人爱| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 欧美人与善性xxx| 给我免费播放毛片高清在线观看| 午夜亚洲福利在线播放| 色哟哟·www| 日韩欧美一区二区三区在线观看| 寂寞人妻少妇视频99o| a级一级毛片免费在线观看| 亚洲四区av| 日韩成人av中文字幕在线观看| 日韩一本色道免费dvd| 成人永久免费在线观看视频| 日本欧美国产在线视频| 91在线精品国自产拍蜜月| 中国国产av一级| 18禁黄网站禁片免费观看直播| 91久久精品电影网| 成人高潮视频无遮挡免费网站| 国产91av在线免费观看| 久久国内精品自在自线图片| 国产一区二区激情短视频| 波多野结衣高清无吗| 在线a可以看的网站| 赤兔流量卡办理| 级片在线观看| 中文字幕制服av| 日韩 亚洲 欧美在线| 长腿黑丝高跟| 少妇丰满av| 午夜福利在线在线| 变态另类成人亚洲欧美熟女| 国产成人午夜福利电影在线观看| 国产v大片淫在线免费观看| 69人妻影院| 久久精品人妻少妇| 免费无遮挡裸体视频| 亚洲天堂国产精品一区在线| 日本撒尿小便嘘嘘汇集6| av在线播放精品| 91久久精品国产一区二区三区| 色吧在线观看| 日韩欧美精品v在线| 亚洲无线观看免费| 国产精品麻豆人妻色哟哟久久 | 搞女人的毛片| 联通29元200g的流量卡| 亚洲人成网站高清观看| 色尼玛亚洲综合影院| 亚洲四区av| 亚洲国产色片| 精品久久久久久久末码| 欧美日韩乱码在线| 蜜臀久久99精品久久宅男| 特级一级黄色大片| 欧洲精品卡2卡3卡4卡5卡区| 男人和女人高潮做爰伦理| 国产精品爽爽va在线观看网站| 国产成人91sexporn| 91av网一区二区| 亚洲精品久久久久久婷婷小说 | 国产真实乱freesex| av在线播放精品| 亚洲熟妇中文字幕五十中出| 91av网一区二区| 午夜福利高清视频| 国产精品1区2区在线观看.| 日韩在线高清观看一区二区三区| 看片在线看免费视频| 国产大屁股一区二区在线视频| 非洲黑人性xxxx精品又粗又长| 中国美女看黄片| 成人漫画全彩无遮挡| 亚洲国产欧美人成| 天天躁夜夜躁狠狠久久av| 免费人成在线观看视频色| 一卡2卡三卡四卡精品乱码亚洲| 51国产日韩欧美| 日韩 亚洲 欧美在线| 久99久视频精品免费| 一本一本综合久久| 久久久国产成人免费| 春色校园在线视频观看| 好男人视频免费观看在线| 一个人观看的视频www高清免费观看| 校园人妻丝袜中文字幕| 亚洲熟妇中文字幕五十中出| 国内揄拍国产精品人妻在线| 久久精品人妻少妇| 三级男女做爰猛烈吃奶摸视频| 国产伦理片在线播放av一区 | 91狼人影院| 国产av麻豆久久久久久久| 国产激情偷乱视频一区二区| 免费人成在线观看视频色| 亚洲av电影不卡..在线观看| 国产视频内射| 韩国av在线不卡| 狂野欧美白嫩少妇大欣赏| 精品日产1卡2卡| 午夜激情欧美在线| 免费看日本二区| 久久午夜亚洲精品久久| 国产精品一二三区在线看| 亚洲人与动物交配视频| 99在线视频只有这里精品首页| 18禁裸乳无遮挡免费网站照片| 最近中文字幕高清免费大全6| 国产高清视频在线观看网站| 国产成人91sexporn| 国产成人精品婷婷| 亚洲av熟女| 久久精品国产亚洲网站| 成人欧美大片| 1000部很黄的大片| 91久久精品电影网| 亚洲一区二区三区色噜噜| 国产亚洲精品久久久久久毛片| 小说图片视频综合网站| 边亲边吃奶的免费视频| 天堂中文最新版在线下载 | 嫩草影院新地址| 天美传媒精品一区二区| 日韩成人av中文字幕在线观看| 精品免费久久久久久久清纯| 丝袜美腿在线中文| 99久久无色码亚洲精品果冻| 成人无遮挡网站| 欧美成人一区二区免费高清观看| 给我免费播放毛片高清在线观看| 好男人在线观看高清免费视频| 春色校园在线视频观看| 国产精品久久久久久av不卡| 丝袜美腿在线中文| 狠狠狠狠99中文字幕| 色综合站精品国产| 99在线人妻在线中文字幕| 91麻豆精品激情在线观看国产| 国产成人91sexporn| 日韩欧美三级三区| 亚洲自偷自拍三级| 久久精品综合一区二区三区| 嫩草影院精品99| 国产黄色小视频在线观看| 日日摸夜夜添夜夜爱| 国产精品女同一区二区软件| 青青草视频在线视频观看| 免费看美女性在线毛片视频| 国产不卡一卡二| 草草在线视频免费看| 欧美又色又爽又黄视频| 男人舔女人下体高潮全视频| АⅤ资源中文在线天堂| 国产成人精品婷婷| 天堂√8在线中文| 国产成年人精品一区二区| 久久精品国产亚洲av香蕉五月| 搡女人真爽免费视频火全软件| 欧美bdsm另类| 最新中文字幕久久久久| 久久久午夜欧美精品| 人人妻人人澡欧美一区二区| 97人妻精品一区二区三区麻豆| eeuss影院久久| 91麻豆精品激情在线观看国产| 九色成人免费人妻av| 少妇裸体淫交视频免费看高清| 国产高清有码在线观看视频| 亚洲精品国产av成人精品| 久久草成人影院| 尾随美女入室| 中文字幕av成人在线电影| 日韩欧美一区二区三区在线观看| 亚洲国产欧美人成| 国产中年淑女户外野战色| 最近最新中文字幕大全电影3| 国产精品电影一区二区三区| 国产精品人妻久久久久久| 插逼视频在线观看| 亚洲精品色激情综合| 国产精品久久久久久av不卡| 国产亚洲精品久久久com| 97热精品久久久久久| 国产亚洲精品久久久com| 1024手机看黄色片| 国产黄色视频一区二区在线观看 | 丰满乱子伦码专区| 免费大片18禁| 国产黄片视频在线免费观看| av卡一久久| 欧美在线一区亚洲| 在线观看午夜福利视频| 午夜激情福利司机影院| 亚洲三级黄色毛片| 国内精品美女久久久久久| 亚洲中文字幕日韩| 九九在线视频观看精品| 免费av不卡在线播放| 美女脱内裤让男人舔精品视频 | 91精品国产九色| 亚洲一区高清亚洲精品| 国产精品伦人一区二区| 日韩 亚洲 欧美在线| 少妇人妻精品综合一区二区 | 一本一本综合久久| 秋霞在线观看毛片| 婷婷色av中文字幕| 麻豆一二三区av精品| 人人妻人人澡人人爽人人夜夜 | 长腿黑丝高跟| 我要看日韩黄色一级片| 欧美成人a在线观看| 高清毛片免费观看视频网站| 可以在线观看的亚洲视频| 成年免费大片在线观看| 99热这里只有精品一区| 一本精品99久久精品77| 日韩一区二区视频免费看| 亚洲性久久影院| 夫妻性生交免费视频一级片| 一区二区三区高清视频在线| av在线蜜桃| 欧美日韩在线观看h| 丰满的人妻完整版| 国产精品日韩av在线免费观看| 久久综合国产亚洲精品| 一个人观看的视频www高清免费观看| 春色校园在线视频观看| 久久人人爽人人片av| 99热这里只有精品一区| 大又大粗又爽又黄少妇毛片口| 亚洲国产日韩欧美精品在线观看| 国产精品.久久久| 91久久精品电影网| 亚洲精品成人久久久久久| 成人国产麻豆网| 国产高清视频在线观看网站| 一个人免费在线观看电影| 国内精品宾馆在线| 一级黄片播放器| 一本精品99久久精品77| 成人欧美大片| 黄色日韩在线| 亚洲自拍偷在线| АⅤ资源中文在线天堂| 亚洲精品影视一区二区三区av| 97热精品久久久久久| 国产精品久久久久久精品电影小说 | 国产黄色小视频在线观看| 给我免费播放毛片高清在线观看| 男女视频在线观看网站免费| 久久久久性生活片| 晚上一个人看的免费电影| 国产一级毛片在线| 免费人成在线观看视频色| 国产成人freesex在线| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 综合色av麻豆| 国产成人影院久久av| 一级黄片播放器| 在线播放国产精品三级| a级一级毛片免费在线观看| 少妇高潮的动态图| 国产精品综合久久久久久久免费| 亚洲无线在线观看| 中国美女看黄片| 乱系列少妇在线播放| 天堂影院成人在线观看| 日本熟妇午夜| 只有这里有精品99| 国产一区亚洲一区在线观看| 国产一区二区三区在线臀色熟女| av卡一久久| 国产一级毛片在线| 看片在线看免费视频| 天堂中文最新版在线下载 | 亚洲天堂国产精品一区在线| av在线亚洲专区| 精品人妻偷拍中文字幕| 我的女老师完整版在线观看| 欧美在线一区亚洲| 国产日本99.免费观看| 中文字幕免费在线视频6| 中文字幕久久专区| 熟妇人妻久久中文字幕3abv| 三级国产精品欧美在线观看| 亚洲第一区二区三区不卡| 国产av在哪里看| 丰满的人妻完整版| 少妇裸体淫交视频免费看高清| 国产亚洲av嫩草精品影院| 美女高潮的动态| 亚洲三级黄色毛片| 欧美最新免费一区二区三区| 91av网一区二区| 九九热线精品视视频播放| 麻豆乱淫一区二区| 国产成人freesex在线| 一区福利在线观看| 观看美女的网站| 国产美女午夜福利| 亚洲人成网站高清观看| 欧美区成人在线视频| 搡女人真爽免费视频火全软件| 欧美成人a在线观看| 免费黄网站久久成人精品| 老熟妇乱子伦视频在线观看| 男人舔女人下体高潮全视频| 有码 亚洲区| 51国产日韩欧美| 免费一级毛片在线播放高清视频| 国产免费男女视频| 国产精品.久久久| 欧美+亚洲+日韩+国产| 少妇的逼好多水| 美女高潮的动态| 日日摸夜夜添夜夜添av毛片| 欧美日韩精品成人综合77777| 国产一区二区激情短视频| 毛片一级片免费看久久久久| 亚洲精品456在线播放app| 少妇熟女aⅴ在线视频| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 国产精品一二三区在线看| 欧美日韩国产亚洲二区| 欧美精品一区二区大全| 麻豆国产97在线/欧美| 国产片特级美女逼逼视频| 欧美一级a爱片免费观看看| 国产成人精品久久久久久| 91麻豆精品激情在线观看国产| 久久久国产成人免费| 亚洲无线观看免费| 国产极品天堂在线| 欧美一区二区亚洲| 麻豆av噜噜一区二区三区| 日日摸夜夜添夜夜添av毛片| 日本与韩国留学比较| 欧美性猛交╳xxx乱大交人| 久久精品夜色国产| 中文字幕av在线有码专区| 亚洲激情五月婷婷啪啪| 国产一区二区亚洲精品在线观看| 亚洲国产色片| 成人欧美大片| 国产精品福利在线免费观看| 亚洲精品国产成人久久av| 给我免费播放毛片高清在线观看| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看| 天堂中文最新版在线下载 | 国产亚洲精品久久久久久毛片| 不卡一级毛片| 亚洲av中文av极速乱| 日韩欧美精品v在线| 搡女人真爽免费视频火全软件| av免费在线看不卡| 国国产精品蜜臀av免费| 国产黄色小视频在线观看| 午夜福利在线观看吧| 亚洲国产精品成人久久小说 | 国产精品乱码一区二三区的特点| 亚洲电影在线观看av| 亚洲激情五月婷婷啪啪| 亚洲成人中文字幕在线播放| 黑人高潮一二区| 免费大片18禁| av女优亚洲男人天堂| 午夜免费男女啪啪视频观看| 免费看a级黄色片| 黄色视频,在线免费观看| 欧美丝袜亚洲另类| 赤兔流量卡办理| 日韩欧美精品v在线| 亚洲七黄色美女视频| 成人亚洲精品av一区二区| 久久久久久久久久久免费av| 国产成人精品婷婷| a级毛色黄片| 亚洲经典国产精华液单| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 久久久久久久久久成人| 国产精品久久久久久精品电影| 午夜精品在线福利| 色5月婷婷丁香| 亚洲美女视频黄频| 亚洲av免费高清在线观看| 中文资源天堂在线| 少妇被粗大猛烈的视频| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 日韩人妻高清精品专区| 色播亚洲综合网| 日韩欧美国产在线观看| 国产精品一区二区性色av| 淫秽高清视频在线观看| 干丝袜人妻中文字幕| 欧美一区二区精品小视频在线| 日本爱情动作片www.在线观看| 久久精品国产亚洲av天美| 国产女主播在线喷水免费视频网站 | 欧美性猛交黑人性爽| 韩国av在线不卡| 亚洲av二区三区四区| 一级毛片电影观看 | 最近视频中文字幕2019在线8| 麻豆乱淫一区二区| 国产精品.久久久| 九色成人免费人妻av| 蜜桃亚洲精品一区二区三区| 国产熟女欧美一区二区| 成年女人永久免费观看视频| 国产亚洲欧美98| 99视频精品全部免费 在线| 国产国拍精品亚洲av在线观看| 国产精品一二三区在线看| 亚洲四区av| 久久鲁丝午夜福利片| 久久99精品国语久久久| 亚洲无线在线观看| 亚洲人与动物交配视频| 日韩大尺度精品在线看网址| 少妇高潮的动态图| 寂寞人妻少妇视频99o| 久久久久久伊人网av| 69人妻影院| 欧美3d第一页| 成人午夜精彩视频在线观看| 高清午夜精品一区二区三区 | 久久精品夜色国产| 人妻夜夜爽99麻豆av| 男插女下体视频免费在线播放| 国产黄片美女视频| 综合色av麻豆| 又爽又黄a免费视频| 国产精品无大码| 国产片特级美女逼逼视频| 两性午夜刺激爽爽歪歪视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 99热6这里只有精品| 网址你懂的国产日韩在线| av在线天堂中文字幕| 国产av一区在线观看免费| 成人毛片a级毛片在线播放| 国产精品女同一区二区软件| 国内精品久久久久精免费| 日本色播在线视频| 久久国内精品自在自线图片| 尾随美女入室| 国产精品国产三级国产av玫瑰| 国产视频内射| 国产熟女欧美一区二区| 18禁在线播放成人免费| 中文在线观看免费www的网站| 久久久午夜欧美精品| 好男人视频免费观看在线| 国产亚洲精品av在线| 免费电影在线观看免费观看| 午夜激情欧美在线| 美女脱内裤让男人舔精品视频 | 午夜福利在线观看吧| 午夜视频国产福利| 亚洲欧洲国产日韩| 欧美xxxx性猛交bbbb| av天堂中文字幕网| 最近视频中文字幕2019在线8| 日本一本二区三区精品| 国内揄拍国产精品人妻在线| 男人狂女人下面高潮的视频| 午夜福利高清视频| 插阴视频在线观看视频| 欧美高清成人免费视频www| 丰满的人妻完整版| 特大巨黑吊av在线直播| 国产女主播在线喷水免费视频网站 | 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 欧美一区二区国产精品久久精品| 欧美高清性xxxxhd video| 成人毛片a级毛片在线播放| 国产成人a∨麻豆精品| 91精品一卡2卡3卡4卡| 国产亚洲91精品色在线| 亚洲久久久久久中文字幕| 久久欧美精品欧美久久欧美| 性色avwww在线观看| 黄色配什么色好看| 欧美一区二区国产精品久久精品| 在线播放国产精品三级| 国产精品无大码| 亚洲欧美中文字幕日韩二区| 成人亚洲欧美一区二区av| 免费看美女性在线毛片视频| 国产av麻豆久久久久久久| 九九久久精品国产亚洲av麻豆| 人妻系列 视频| 麻豆久久精品国产亚洲av| 国产免费一级a男人的天堂| 99久久中文字幕三级久久日本| 午夜激情福利司机影院| 99久久久亚洲精品蜜臀av| 1024手机看黄色片| 日本-黄色视频高清免费观看| 嫩草影院新地址| 国产成人freesex在线| 欧美一区二区亚洲| 麻豆一二三区av精品| 99热只有精品国产| 久久久久久久久久久丰满| 亚洲成人中文字幕在线播放| 国产单亲对白刺激| 国产一区二区三区av在线 | 国产伦精品一区二区三区四那| 亚洲一级一片aⅴ在线观看| 国产91av在线免费观看| 欧美bdsm另类| 三级男女做爰猛烈吃奶摸视频| 欧美性感艳星| 国产探花在线观看一区二区| 97超视频在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品夜夜夜夜夜久久蜜豆| 蜜桃亚洲精品一区二区三区| 午夜福利在线在线| 成人av在线播放网站| 九九在线视频观看精品| 亚洲五月天丁香| 两性午夜刺激爽爽歪歪视频在线观看| 偷拍熟女少妇极品色| 亚洲精华国产精华液的使用体验 | 中文字幕免费在线视频6| 亚洲欧美精品专区久久| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 男人和女人高潮做爰伦理| 中文亚洲av片在线观看爽| 日韩高清综合在线| 在线a可以看的网站| 色播亚洲综合网| 国产成人freesex在线| 日本爱情动作片www.在线观看| 成年版毛片免费区| 91久久精品国产一区二区成人| 色综合色国产| 卡戴珊不雅视频在线播放| 天天一区二区日本电影三级| 日本免费a在线| 国产精品野战在线观看| 国产男人的电影天堂91| 99热这里只有是精品50| 深夜精品福利| 亚洲三级黄色毛片| 精品久久国产蜜桃| 美女被艹到高潮喷水动态| 精品午夜福利在线看| 精品久久久久久久久久免费视频| 久久久久久伊人网av| av黄色大香蕉| 国产私拍福利视频在线观看| 尤物成人国产欧美一区二区三区| 午夜a级毛片| 国产精品久久电影中文字幕| 久久亚洲精品不卡| 日本在线视频免费播放| 精品一区二区免费观看| 久久久久久久久久久丰满| 亚洲av.av天堂| 亚洲av成人精品一区久久| 精品久久久久久久久av| 中文资源天堂在线| 免费搜索国产男女视频| 国产成人精品久久久久久| 久久精品夜色国产| 人人妻人人澡欧美一区二区| 一级av片app| 久久精品久久久久久噜噜老黄 | 在线免费十八禁| 免费观看在线日韩| 亚洲av免费高清在线观看| 身体一侧抽搐| 国产精品久久久久久精品电影小说 | 看非洲黑人一级黄片| 欧洲精品卡2卡3卡4卡5卡区| www.色视频.com| 日韩欧美国产在线观看| 爱豆传媒免费全集在线观看| 男女那种视频在线观看| 亚洲av成人av| 天堂av国产一区二区熟女人妻| 欧美一区二区国产精品久久精品| 在线国产一区二区在线| 青青草视频在线视频观看|