• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    APPROXIMATE SOLUTION OF P-RADICAL FUNCTIONAL EQUATION IN 2-BANACH SPACES?

    2019-05-31 03:38:54MuaadhALMAHALEBI

    Muaadh ALMAHALEBI

    Department of Mathematics,Faculty of Sciences,University of Ibn Tofail,Kenitra,Morocco E-mail:muaadh1979@hotmail.fr Abdellatif CHAHBI

    Department of Mathematics,Faculty of Sciences,University of Ibn Zohr,Agadir,Morocco E-mail:ab 1980@live.fr

    Abstract The aim of this paper is to introduce and solve the p-radical functional equation

    Key words stability;hyperstability;2-Banach spaces;p-radical functional equations

    1 Introduction

    Throughout this paper,we will denote the set of natural numbers by N,the set of real numbers by R and R+=[0,∞)the set of nonnegative real numbers.By Nm,m∈N,we will denote the set of all natural numbers greater than or equal to m.

    The notion of linear 2-normed spaces was introduced by G?hler[23,24]in the middle of 1960s.We need to recall some basic facts concerning 2-normed spaces and some preliminary results.

    De finition 1.1Let X be a real linear space with dimX>1 and k·,·k:X ×X ?→ [0,∞)be a function satisfying the following properties:

    (1)kx,yk=0 if and only if x and y are linearly dependent,(2)kx,yk=ky,xk,

    (3)kλx,yk=|λ|kx,yk,

    (4)kx,y+zk≤kx,yk+kx,zk

    for all x,y,z ∈ X and λ ∈ R.Then the function k·,·k is called a 2-norm on X and the pair(X,k·,·k)is called a linear 2-normed space.Sometimes condition(4)called the triangle inequality.

    Example 1.2For x=(x1,x2),y=(y1,y2)∈X=R2,the Euclidean 2-norm kx,ykR2is de fined by

    Lemma 1.3Let(X,k·,·k)be a 2-normed space.If x ∈ X and kx,yk=0 for all y ∈ X,then x=0.

    De finition 1.4A sequence{xk}in a 2-normed space X is called a convergent sequence if there is an x∈X such that

    for all y∈X.If{xk}converges to x,write xk?→x with k?→∞ and call x the limit of{xk}.In this case,we also write

    De finition 1.5A sequence{xk}in a 2-normed space X is said to be a Cauchy sequence with respect to the 2-norm if

    for all y∈X.If every Cauchy sequence in X converges to some x∈X,then X is said to be complete with respect to the 2-norm.Any complete 2-normed space is said to be a 2-Banach space.

    Now,we state the following results as lemma(see[28]for the details).

    Lemma 1.6Let X be a 2-normed space.Then,

    (2)if kx,zk=0 for all z∈X,then x=0,

    (3)for a convergent sequence xnin X,

    for all z∈X.

    The concept of stability for a functional equation arises when de fining,in some way,the class of approximate solutions of the given functional equation,one can ask whether each mapping from this class can be somehow approximated by an exact solution of the considered equation.Namely,when one replaces a functional equation by an inequality which acts as a perturbation of the considered equation.The first stability problem of functional equation was raised by Ulam[32]in 1940.This included the following question concerning the stability of group homomorphisms.

    Let(G1,?1)be a group and let(G2,?2)be a metric group with a metric d(·,·).Given ε >0,does there exist a δ>0 such that if a mapping h:G1→ G2satis fies the inequality

    for all x,y∈G1,then there exists a homomorphism H:G1→G2with

    for all x∈G1?

    If the answer is affirmative,we say that the equation of homomorphism is stable.Since then,this question attracted the attention of many researchers.In 1941,Hyers[25]gave a first partial answer to Ulam’s question and introduced the stability result as follows:

    Theorem 1.7(see[25]) Let E1and E2be two Banach spaces and f:E1→E2be a function such that

    for some δ>0 and for all x,y ∈ E1.Then the limit

    exists for each x∈E1,and A:E1→E2is the unique additive function such that

    for all x∈E1.Moreover,if f(tx)is continuous in t for each fixed x∈E1,then the function A is linear.

    Later,Aoki[9]and Bourgin[10]considered the problem of stability with unbounded Cauchy di ff erences.Rassias[29]attempted to weaken the condition for the bound of the norm of Cauchy di ff erence

    and proved a generalization of Theorem 1.7 using a direct method(cf.Theorem 1.8).

    Theorem 1.8(see[29]) Let E1and E2be two Banach spaces.If f:E1→E2satis fies the inequality

    for some θ≥0 for some p∈R with 0≤p<1,and for all x,y∈E1,then there exists a unique additive function A:E1→E2such that

    for each x∈E1.If,in addition,f(tx)is continuous in t for each fixed x∈E1,then the function A is linear.

    After then,Rassias[30,31]motivated Theorem 1.8 as follows.

    Theorem 1.9(see[30,31]) Let E1be a normed space,E2be a Banach space,and f:E1→E2be a function.If f satis fies the inequality

    for some θ≥ 0,for some p∈ R withand for all x,y∈ E1?{0E1},then there exists a unique additive function A:E1→E2such that

    for each x∈E1?{0E1}.

    Note that Theorem 1.9 reduces to Theorem 1.7 when p=0.For p=1,the analogous result is not valid.Also,Brzdk[11]showed that estimation(1.2)is optimal for p ≥ 0 in the general case.

    Theorem 1.10(see[13]) Let X be a nonempty set,(Y,d)be a complete metric space,andbe a non-decreasing operator satisfying the hypothesis

    for every sequence{δn}n∈Nin YXwith

    Suppose that T:YX→YXis an operator satisfying the inequality

    and

    for all x∈X,then the limit

    exists for each x ∈X.Moreover,the function ψ ∈ YXde fined by

    is a fixed point of T with

    for all x∈X.

    Theorem 1.11(see[14]) Let X be a nonempty set,(Y,d)be a complete metric space,f1,···,fr:X → X and L1,···,Lr:X → R+be given mappings.Suppose that T:YX→ YXandare two operators satisfying the conditions

    for all ξ,μ ∈ YX,x ∈ X and

    If there exist functions ε:X → R+and ? :X → Y such that

    and

    for all x∈X,then the limit(1.7)exists for each x∈X.Moreover,the function(1.8)is a fixed point of T with(1.9)for all x∈X.

    Then by using this theorem,Brzdk[14]improved,extended and complemented several earlier classical stability results concerning the additive Cauchy equation(in particular Theorem 1.9).Over the last few years,many mathematicians have investigated various generalizations,extensions and applications of the Hyers-Ulam stability of a number of functional equations(see,for instance,[1–5,16,17]and references therein);in particular,the stability problem of the radical functional equations in various spaces was proved in[6–8,21,22,26,27].

    Now,we state an analogue of Theorem 1.11 in 2-Banachspaces.Another version of Theorem 1.11 in 2-Banach space can be found in[20].

    Theorem 1.12Let X be a nonempty set,?Y,k·,·k?be a 2-Banach space,g:X → Y be a surjective mapping and let f1,···,fr:X → X and L1,···,Lr:X → R+be given mappings.Suppose thatandare two operators satisfying the conditions

    for all ξ,μ ∈ YX,x,z ∈ X and

    If there exist functions ε:X ×X → R+and ? :X → Y such that

    and

    for all x,z∈X,then the limit

    exists for each x∈X.Moreover,the function ψ:X→Y de fined by

    is a fixed point of T with

    for all x,z∈X.

    ProofFirst,we use the mathematical induction to show that,for every n∈N0,

    Clearly,by(1.16),the case n=0 is trivial.Now,for n∈N1,suppose that(1.21).Then,using(1.14)and inductive assumption,for every x,z∈X,we obtain

    completing the proof of(1.21).Therefore,for n,k∈N0,k>0,

    then

    Putting n=0 in(1.23),we obtain that(1.20)holds for all x,z∈X.In view of(1.14),we conclude

    for all n∈N0and all x,z∈X.Letting n→∞ in in the last inequality,we get T(ψ)=ψ.For the uniqueness of ψ,suppose that ψ1,ψ2∈ YXare two fixed points of T such that

    For every m∈N0,we show that

    For the case m=0,we have

    Next,we assume that(1.24)is valid for some m∈N1.Then,by using(1.14),for every x,z∈X,we get the following inequality

    Therefore,we prove that(1.24)holds for any m∈N0.Now,letting m→∞,on account of(1.17),we get ψ1= ψ2.

    In 2016,Aiemsomboon and Sintunavarat[7]used Theorem 1.11 to investigate a new type of stability for the radical quadratic functional equation of the form

    where f is a self-mapping on the set of real numbers and they generalized some earlier classical results concerning the Hyers-Ulam stability for that functional equations.

    In this paper,we achieve the general solutions of the following p-radical functional equation:

    and discuss the generalized Hyers-Ulam-Rassias stability problem in 2-Banach spaces by using Theorem 1.12.

    2 Solution of Equation(1.25)

    In this section,we give the general solution of functional equation(1.25).The next theorem can be derived from([19],Corollary 2.3 and Proposition 2.4(a)).However,for the convenience of readers we present it with a direct proof.

    Theorem 2.1Let Y be a linear space.A function f:R→Y satis fies the functional equation(1.25)if and only if

    with some additive function F:R→Y.

    ProofIndeed,It is not hard to check without any problem that if f:R→Y satis fies(2.1),then it is a solution to(1.25).On the other hand,if f:R→Y is a solution of(1.25),then we consider the following two cases.

    3 Approximation of the p-Radical Functional Equation(1.25)

    In the following two theorems,we use Theorem 1.12 to investigate the generalized Hyers-Ulam stability of the p-radical functional equation(1.25)in 2-Banach spaces.

    Hereafter,we assume that?Y,k·,·k?is a 2-Banach space.

    Theorem 3.1Let h1,h2:R2→R+be two functions such that

    is an in finite set,where

    for all n∈N,where i=1,2.Assume that f:R→Y satis fies the inequality

    for all x,y,z∈R.Then there exists a unique p-radical function F:R→Y such that

    for all x,z∈R,where

    ProofReplacing y with mx,where x∈R and m∈N,in inequality(3.3),we get

    for all x,z∈R.For each m∈N,we de fine the operator Tm:YR→YRby

    Further put

    and observe that

    Then inequality(3.5)takes the form

    Furthermore,for every x,z ∈ R,ξ,μ ∈ YR,we obtain

    This brings us to de fine the operatorby

    For each m∈N,the above operator has the form described in(1.15)withf2(x)=mx and L1(x)=L2(x)=1 for all x∈R.By induction,we will show that for each x,z∈R,n∈N0,and m∈U we have

    where

    From(3.7)and(3.8),we obtain that inequality(3.11)holds for n=0.Next,we will assume that(3.11)holds for n=k,where k∈N.Then we have

    for all x,z∈R,m∈U.This shows that(3.11)holds for n=k+1.Now we can conclude that inequality(3.11)holds for all n∈N0.Hence,we obtain

    for all x,z∈R,m ∈U.Therefore,according to Theorem 1.12 with ?=f and X=R and using the surjectivity of g,we get that the limit

    exists for each x∈R and m∈U,and

    To prove that Fmsatis fies the functional equation(1.25),just prove the following inequality

    for every x,y,z∈R,n∈N0,and m∈U.Since the case n=0 is just(3.3),take k∈N and assume that(3.13)holds for n=k and every x,y,z∈R,m∈U.Then,for each x,y,z∈R and m∈U,we get

    Thus,by induction,we show that(3.13)holds for every x,y,z∈R,n∈N0,and m∈U.Letting n→∞in(3.13),we obtain the equality

    This implies that Fm:R→Y,de fined in this way,is a solution of the equation

    Next,we will prove that each p-radical function F:R→Y satisfying the inequality

    with some L>0,is equal to Fmfor each m∈U.To this end,we fix m0∈U and F:R→Y satisfying(3.16).From(3.12),for each x,z∈R,we get

    The case j=0 is exactly(3.17).We fix k∈N and assume that(3.18)holds for j=k.Then,in view of(3.17),for each x,z∈R,we get

    This shows that(3.18)holds for j=k+1.Now we can conclude that inequality(3.18)holds for all j∈N0.Now,letting j→∞in(3.18),we get

    Thus,we have also proved that Fm=Fm0for each m∈U,which(in view of(3.12))yields

    This implies(3.4)with F=Fm0and(3.19)con firms the uniqueness of F.

    By a similar way we can prove the following theorem.

    Theorem 3.2Let h:R2→R+be a function such that

    is an in finite set,where

    for all n∈N.Assume that f:R→Y satis fies the inequality

    for all x,y,z∈R.Then there exists a unique p-radical function F:R→Y such that

    for all x,z∈R,where

    ProofReplacing in(3.23)y by mx,where x∈R and m∈N,we get

    for all x,z∈R.For each m∈N,we de fine

    As in Theorem 3.1,we observe that(3.25)takes form

    Λmhas the form described in(1.15)and(1.14)is valid for every ξ,μ ∈ YR,x,z ∈ R.It is not hard to show that

    for all x,z∈R and n∈N0.Therefore

    for all x,z∈R and m∈U.Also the remaining reasonings are analogous as in the proof of Theorem 3.1. ?

    The following theorem concerns the η-hyperstability of(1.25)in 2-Banach spaces.Namely,We consider functions f:R→Y ful filling(1.25)approximately,i.e.,satisfying the inequality

    with η:R3→R+is a given mapping.Then we find a unique p-radical function F:R→Y which is close to f.Then,under some additional assumptions on η,we prove that the conditional functional equation(1.25)is η-hyperstable in the class of functions f:R → Y,i.e.,each f:R → Y satisfying inequality(3.31),with such η,must ful fil equation(1.25).

    Theorem 3.3Let h1,h2and U be as in Theorem 3.1.Assume that

    Then every f:R→Y satisfying(3.3)is a solution of(1.25).

    ProofSuppose that f:R→Y satis fies(3.3).Then,by Theorem 3.1,there exists a mapping F:R→Y satis fies(1.25)and

    for all x,z∈R,where

    Since,in view of(3.32),λ0=0.This means that f(x)=F(x)for all x∈R,whence

    which implies that f satis fies the functional equation(1.25)on R.

    4 Some Particular Cases

    According to above theorems,we derive some particular cases from our main results.

    Corollary 4.1Let h1,h2:R2→ (0,∞)be as in Theorem 3.1 such that

    Assume that f:R→Y satis fies(1.25).Then there exist a unique p-radical function F:R→Y and a unique constant κ∈R+with

    ProofBy the de finition of λi(n)in Theorem 3.1,we observe that

    and

    Combining inequalities(4.3)and(4.5),we get

    Write

    From(4.1),there is a subsequence{γnk}of a sequence{γn}such thatthat is,

    From(4.5)and(4.6),we find that

    This implies that

    and hence

    which means that λ0de fined in Theorem 3.1 is equal to κ.

    By a similar method,we can prove the following corollary where κ=1.

    Corollary 4.2Let h:R→(0,∞)be as in Theorem 3.2 such that

    Assume that f:R→Y satis fies(1.25).Then there exist a unique p-radical function F:R→Y such that

    Corollary 4.3Let θ≥ 0,r≥ 0,s,t∈R such that s+t<0.Suppose that f:R → Y such that f(0)=0 satisfy the inequality

    where p is odd,or f is even function satis fies(4.10)where p is even integer.Then f satis fies(1.25)on R.

    ProofThe proof follows from Theorem 3.1 by de finingand h1(0,z)=h2(0,z)=0 with θ1,θ2∈ R+,r1,r2∈ R+and s,t∈ R such that θ1θ2= θ,r1+r2=r and s+t<0.

    For each n∈N,we have

    Also,we have λ2(n)=ntfor all n ∈ N.Clearly,we can find n0∈ N such that

    According to Theorem 3.1,there exists a unique p-radical function F:R→Y such that

    for all x,z∈R,where

    On the other hand,Since s+t<0,one of s,t must be negative.Assume that t<0.Then

    Thus by Theorem 3.3,we get the desired results.

    The next corollary prove the hyperstability results for the inhomogeneous p-radical functional equation.

    Corollary 4.4Let θ,s,t,r ∈ R such that θ≥ 0 and s+t<0.Assume that G:R2→ Y and f:R→Y such that f(0)=0 and satisfy the inequality

    where p is odd,or f is even function satis fies(4.14)where p is even integer.If the functional equation has a solution f0:R→Y,then f is a solution to(4.15).

    ProofFrom(4.14)we get that the function K:R→Y de fined by K:=f?f0satis fies(4.10).Consequently,Corollary 4.3 implies that K is a solution to p-radical functional equation(1.25).Therefore,

    which means f is a solution to(4.15).

    精品99又大又爽又粗少妇毛片| av免费观看日本| 久久99一区二区三区| 精品熟女少妇av免费看| 久久久国产精品麻豆| 亚洲欧美一区二区三区黑人 | 这个男人来自地球电影免费观看 | 成人综合一区亚洲| 青春草国产在线视频| 久久久久久久大尺度免费视频| 性色avwww在线观看| 一本久久精品| 日本爱情动作片www.在线观看| 日韩中文字幕视频在线看片| 有码 亚洲区| 18禁在线无遮挡免费观看视频| 日韩欧美精品免费久久| 91久久精品国产一区二区三区| 高清午夜精品一区二区三区| 日韩一区二区视频免费看| 国产精品久久久久久精品电影小说| 久久人人爽人人爽人人片va| 在线观看免费日韩欧美大片 | 成年美女黄网站色视频大全免费 | 黄色日韩在线| 亚洲无线观看免费| 99re6热这里在线精品视频| 免费黄色在线免费观看| 日本vs欧美在线观看视频 | 婷婷色综合www| 国产精品三级大全| 国产黄频视频在线观看| 亚洲欧美精品自产自拍| 欧美高清成人免费视频www| 亚洲欧美日韩另类电影网站| 99久久综合免费| 国产亚洲91精品色在线| 最近中文字幕2019免费版| 人妻 亚洲 视频| 99热这里只有是精品50| av视频免费观看在线观看| 春色校园在线视频观看| 精品国产乱码久久久久久小说| 岛国毛片在线播放| 麻豆乱淫一区二区| 精品少妇久久久久久888优播| 18禁在线无遮挡免费观看视频| 午夜91福利影院| 日本爱情动作片www.在线观看| 中文字幕av电影在线播放| 高清欧美精品videossex| 51国产日韩欧美| 亚洲国产色片| 黄色视频在线播放观看不卡| 18禁在线无遮挡免费观看视频| 人人澡人人妻人| 搡老乐熟女国产| 久久久久人妻精品一区果冻| 91精品伊人久久大香线蕉| 汤姆久久久久久久影院中文字幕| 十八禁高潮呻吟视频 | 色5月婷婷丁香| 亚洲精品中文字幕在线视频 | 国产精品.久久久| 亚洲精品视频女| 少妇高潮的动态图| 不卡视频在线观看欧美| 国产中年淑女户外野战色| videossex国产| 日韩免费高清中文字幕av| 日韩一区二区三区影片| 久久精品国产亚洲av天美| 人人妻人人看人人澡| 国产日韩欧美在线精品| 午夜影院在线不卡| 亚洲,欧美,日韩| 看免费成人av毛片| 中文字幕亚洲精品专区| 欧美性感艳星| 亚洲一区二区三区欧美精品| 观看av在线不卡| 自拍欧美九色日韩亚洲蝌蚪91 | 人妻一区二区av| 国产高清不卡午夜福利| 久久热精品热| 97超视频在线观看视频| 亚洲色图综合在线观看| 老司机影院成人| 久久久久久人妻| 亚洲精品国产成人久久av| 哪个播放器可以免费观看大片| 男女边摸边吃奶| 久久热精品热| 亚洲激情五月婷婷啪啪| 久久99蜜桃精品久久| www.av在线官网国产| 韩国av在线不卡| 狂野欧美激情性xxxx在线观看| 99热网站在线观看| 久久精品国产自在天天线| 国产欧美另类精品又又久久亚洲欧美| 国产熟女午夜一区二区三区 | 在线观看免费日韩欧美大片 | 亚洲av.av天堂| 夫妻午夜视频| 一二三四中文在线观看免费高清| 免费观看的影片在线观看| 黄色视频在线播放观看不卡| 纯流量卡能插随身wifi吗| 精品久久久噜噜| 国产精品人妻久久久久久| 你懂的网址亚洲精品在线观看| 26uuu在线亚洲综合色| videossex国产| 欧美精品高潮呻吟av久久| 美女大奶头黄色视频| 久久ye,这里只有精品| 丰满饥渴人妻一区二区三| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 能在线免费看毛片的网站| 免费黄频网站在线观看国产| freevideosex欧美| 最近中文字幕高清免费大全6| 久久精品国产亚洲av天美| av.在线天堂| 久久久国产一区二区| 在线免费观看不下载黄p国产| 亚洲无线观看免费| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美中文字幕日韩二区| 久久久久国产网址| 久久久国产一区二区| 国产乱来视频区| 亚洲欧美日韩东京热| 日本午夜av视频| 久久午夜福利片| 亚洲第一av免费看| 免费观看a级毛片全部| 嫩草影院入口| 久久久欧美国产精品| 婷婷色综合大香蕉| 五月天丁香电影| 在线播放无遮挡| av在线观看视频网站免费| 国产黄片视频在线免费观看| 精品视频人人做人人爽| 日韩伦理黄色片| 一区二区三区乱码不卡18| 亚洲三级黄色毛片| 美女主播在线视频| 亚洲国产精品成人久久小说| 女人久久www免费人成看片| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品成人久久小说| 性高湖久久久久久久久免费观看| 97在线视频观看| 国产一级毛片在线| 边亲边吃奶的免费视频| 美女福利国产在线| 赤兔流量卡办理| 最黄视频免费看| 插阴视频在线观看视频| 久久av网站| www.色视频.com| 成年人午夜在线观看视频| 人妻一区二区av| 亚洲国产av新网站| 男人和女人高潮做爰伦理| 国产精品国产av在线观看| 精品国产乱码久久久久久小说| 99久久精品国产国产毛片| 亚洲精华国产精华液的使用体验| 最近最新中文字幕免费大全7| 97精品久久久久久久久久精品| 伊人久久精品亚洲午夜| 免费久久久久久久精品成人欧美视频 | 精品酒店卫生间| 国产一区二区在线观看av| 简卡轻食公司| 欧美日本中文国产一区发布| 国产精品免费大片| 蜜桃久久精品国产亚洲av| 男女免费视频国产| 嫩草影院入口| 国产毛片在线视频| 一边亲一边摸免费视频| 亚洲不卡免费看| 国内少妇人妻偷人精品xxx网站| 欧美日韩视频高清一区二区三区二| av在线app专区| 亚洲av国产av综合av卡| 久久国内精品自在自线图片| 亚洲国产日韩一区二区| 丰满乱子伦码专区| 91成人精品电影| a级毛片在线看网站| 性色avwww在线观看| 少妇的逼水好多| 久久精品久久久久久噜噜老黄| 日韩亚洲欧美综合| 成人免费观看视频高清| 18禁在线播放成人免费| 夜夜爽夜夜爽视频| 免费播放大片免费观看视频在线观看| 在线免费观看不下载黄p国产| 国产黄片美女视频| 少妇裸体淫交视频免费看高清| 日本91视频免费播放| 日日啪夜夜撸| 国产片特级美女逼逼视频| 精品少妇黑人巨大在线播放| 丰满乱子伦码专区| 国产日韩欧美在线精品| 亚洲国产av新网站| 丝袜在线中文字幕| 边亲边吃奶的免费视频| 国产成人免费无遮挡视频| 久久久a久久爽久久v久久| 蜜臀久久99精品久久宅男| 亚洲国产最新在线播放| 看免费成人av毛片| 国国产精品蜜臀av免费| 欧美成人精品欧美一级黄| 在线看a的网站| 国精品久久久久久国模美| 成人综合一区亚洲| 日日撸夜夜添| 熟妇人妻不卡中文字幕| 亚洲精品,欧美精品| 一本久久精品| 免费大片黄手机在线观看| 色哟哟·www| av线在线观看网站| 哪个播放器可以免费观看大片| 久久久久网色| 一级毛片黄色毛片免费观看视频| 国精品久久久久久国模美| 午夜免费观看性视频| 人人妻人人澡人人看| 人妻少妇偷人精品九色| 在线天堂最新版资源| 成人18禁高潮啪啪吃奶动态图 | 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 男人狂女人下面高潮的视频| 国产黄色免费在线视频| 在线 av 中文字幕| 久久女婷五月综合色啪小说| 观看美女的网站| 大又大粗又爽又黄少妇毛片口| 最新中文字幕久久久久| 插阴视频在线观看视频| 日韩精品免费视频一区二区三区 | 中国国产av一级| 国产精品熟女久久久久浪| 美女中出高潮动态图| 国内少妇人妻偷人精品xxx网站| 成人漫画全彩无遮挡| 亚洲精品中文字幕在线视频 | 国产男人的电影天堂91| 欧美3d第一页| 成年人免费黄色播放视频 | 色婷婷久久久亚洲欧美| 又黄又爽又刺激的免费视频.| 制服丝袜香蕉在线| 中文精品一卡2卡3卡4更新| 一区二区三区乱码不卡18| 一个人免费看片子| 午夜福利在线观看免费完整高清在| 中文精品一卡2卡3卡4更新| a 毛片基地| 男女无遮挡免费网站观看| a级毛片在线看网站| 久久影院123| 久久久久久久大尺度免费视频| 岛国毛片在线播放| 精品久久久久久电影网| 我要看黄色一级片免费的| 男女无遮挡免费网站观看| 天天躁夜夜躁狠狠久久av| 成人影院久久| 久久精品国产鲁丝片午夜精品| 亚洲美女黄色视频免费看| 曰老女人黄片| 欧美xxⅹ黑人| 国产亚洲精品久久久com| 免费大片黄手机在线观看| 日韩强制内射视频| 国产欧美日韩精品一区二区| 一级片'在线观看视频| 久久精品国产亚洲av天美| 国产精品无大码| 丝袜脚勾引网站| 你懂的网址亚洲精品在线观看| 黄色毛片三级朝国网站 | 成人无遮挡网站| 99国产精品免费福利视频| 色哟哟·www| 99热这里只有是精品50| 一级毛片 在线播放| 91精品国产九色| 亚洲精品乱码久久久久久按摩| 免费观看的影片在线观看| 国产黄片美女视频| av卡一久久| 在线精品无人区一区二区三| 亚洲国产精品一区三区| 久久av网站| 亚洲精品国产成人久久av| 精品一区二区三卡| 久久人人爽人人爽人人片va| 青春草视频在线免费观看| 亚洲国产精品专区欧美| 亚洲不卡免费看| 观看av在线不卡| 性色av一级| 精品人妻偷拍中文字幕| 亚洲人与动物交配视频| 久久热精品热| 欧美xxxx性猛交bbbb| 国产成人精品久久久久久| 六月丁香七月| 色94色欧美一区二区| 免费观看性生交大片5| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 精品一区二区三卡| 亚洲内射少妇av| 成人美女网站在线观看视频| 欧美精品国产亚洲| 精品久久久噜噜| 丰满人妻一区二区三区视频av| 亚洲不卡免费看| 少妇丰满av| 免费看日本二区| 一区二区三区精品91| 免费黄色在线免费观看| 午夜日本视频在线| av女优亚洲男人天堂| 一级毛片黄色毛片免费观看视频| 国产精品久久久久成人av| 夫妻性生交免费视频一级片| 一级毛片我不卡| av福利片在线观看| 插阴视频在线观看视频| 免费观看在线日韩| 亚洲四区av| 国产av精品麻豆| 99九九在线精品视频 | 老司机影院成人| 天堂中文最新版在线下载| 国产在视频线精品| 日本-黄色视频高清免费观看| 午夜老司机福利剧场| 黑丝袜美女国产一区| 在线观看免费高清a一片| 日本黄色日本黄色录像| 久久久久视频综合| 中文在线观看免费www的网站| 久久精品久久久久久噜噜老黄| 中文字幕制服av| 亚洲精品日韩av片在线观看| 狠狠精品人妻久久久久久综合| 看非洲黑人一级黄片| 国产精品伦人一区二区| 久久久久精品久久久久真实原创| 在线亚洲精品国产二区图片欧美 | 卡戴珊不雅视频在线播放| 国产探花极品一区二区| 91久久精品国产一区二区成人| 久久鲁丝午夜福利片| 亚洲,一卡二卡三卡| 免费看光身美女| av国产精品久久久久影院| 免费大片黄手机在线观看| 久久6这里有精品| 人妻制服诱惑在线中文字幕| 亚洲高清免费不卡视频| 亚洲久久久国产精品| 大片电影免费在线观看免费| 亚洲成人一二三区av| 插逼视频在线观看| 国产精品女同一区二区软件| 人人妻人人爽人人添夜夜欢视频 | 赤兔流量卡办理| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| 中国国产av一级| 麻豆成人av视频| 国产黄片视频在线免费观看| 亚洲经典国产精华液单| 高清欧美精品videossex| 亚洲欧美精品自产自拍| 国产精品一区www在线观看| 男女边摸边吃奶| 三级国产精品片| 在线观看免费日韩欧美大片 | 国产欧美亚洲国产| 好男人视频免费观看在线| 久久久久久久久久人人人人人人| 欧美日韩国产mv在线观看视频| 国产av码专区亚洲av| 插阴视频在线观看视频| 成人毛片a级毛片在线播放| 国产精品嫩草影院av在线观看| 日韩欧美 国产精品| 狂野欧美白嫩少妇大欣赏| 亚洲真实伦在线观看| 免费看日本二区| 久久久久精品久久久久真实原创| 又爽又黄a免费视频| 一级毛片 在线播放| 午夜影院在线不卡| 男女边吃奶边做爰视频| 伦精品一区二区三区| 校园人妻丝袜中文字幕| 成人免费观看视频高清| 国产精品久久久久成人av| 日韩欧美 国产精品| 少妇 在线观看| 街头女战士在线观看网站| 丝袜在线中文字幕| 在线观看免费日韩欧美大片 | 国产精品.久久久| 久久午夜福利片| 天堂中文最新版在线下载| 下体分泌物呈黄色| 街头女战士在线观看网站| 三上悠亚av全集在线观看 | a级一级毛片免费在线观看| 久久午夜综合久久蜜桃| 日韩,欧美,国产一区二区三区| 少妇猛男粗大的猛烈进出视频| 99视频精品全部免费 在线| 国产精品久久久久成人av| 欧美精品人与动牲交sv欧美| 婷婷色av中文字幕| 精品国产一区二区久久| 久久久久久久亚洲中文字幕| 国国产精品蜜臀av免费| 欧美老熟妇乱子伦牲交| 一区二区三区四区激情视频| 插逼视频在线观看| 欧美xxxx性猛交bbbb| 久久久午夜欧美精品| 久久久久国产精品人妻一区二区| 深夜a级毛片| 九九爱精品视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 国产色婷婷99| 久久久久人妻精品一区果冻| 99久国产av精品国产电影| 成人亚洲欧美一区二区av| 女性被躁到高潮视频| 男女边摸边吃奶| 国产一级毛片在线| 最近最新中文字幕免费大全7| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区在线不卡| 九草在线视频观看| 最近手机中文字幕大全| 日韩av不卡免费在线播放| 亚洲精品456在线播放app| 亚洲美女视频黄频| 久久国产精品男人的天堂亚洲 | 777米奇影视久久| 久久久精品免费免费高清| 欧美性感艳星| 亚洲经典国产精华液单| 亚洲国产色片| av免费观看日本| 91成人精品电影| 黑人猛操日本美女一级片| 伊人久久精品亚洲午夜| 夜夜骑夜夜射夜夜干| 亚洲精品视频女| 中文字幕亚洲精品专区| 亚洲av.av天堂| 80岁老熟妇乱子伦牲交| 黄色毛片三级朝国网站 | 韩国高清视频一区二区三区| 亚洲怡红院男人天堂| 在线观看一区二区三区激情| 狂野欧美激情性xxxx在线观看| 大香蕉久久网| 男人爽女人下面视频在线观看| 免费人妻精品一区二区三区视频| 久久精品国产鲁丝片午夜精品| 日本猛色少妇xxxxx猛交久久| 99国产精品免费福利视频| 精品久久久精品久久久| 男女啪啪激烈高潮av片| 精品99又大又爽又粗少妇毛片| 五月玫瑰六月丁香| 国产精品99久久久久久久久| 能在线免费看毛片的网站| 日韩一本色道免费dvd| 嘟嘟电影网在线观看| 99热网站在线观看| 97超碰精品成人国产| 美女福利国产在线| 22中文网久久字幕| 女的被弄到高潮叫床怎么办| 日韩三级伦理在线观看| 久久久久久久久久成人| 国产精品久久久久成人av| 国产亚洲5aaaaa淫片| 国产深夜福利视频在线观看| 多毛熟女@视频| 国产在线视频一区二区| 老司机亚洲免费影院| 国产精品偷伦视频观看了| 黑人巨大精品欧美一区二区蜜桃 | 亚洲伊人久久精品综合| 日韩欧美一区视频在线观看 | 永久网站在线| 亚洲成人一二三区av| 丰满人妻一区二区三区视频av| 18+在线观看网站| 一区二区三区免费毛片| 亚洲精品日韩在线中文字幕| 日日啪夜夜爽| 亚洲av电影在线观看一区二区三区| 久久久久久久久久久免费av| 日韩 亚洲 欧美在线| 少妇丰满av| 成年女人在线观看亚洲视频| 91久久精品国产一区二区成人| 国产女主播在线喷水免费视频网站| 亚洲成人一二三区av| 黑人高潮一二区| 精品少妇黑人巨大在线播放| 日韩亚洲欧美综合| 国产一区二区在线观看日韩| 免费人成在线观看视频色| 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 久久久久久久国产电影| 免费av中文字幕在线| 亚洲成色77777| 久久精品夜色国产| 草草在线视频免费看| 日韩一区二区视频免费看| 亚洲,一卡二卡三卡| 中文天堂在线官网| 丝瓜视频免费看黄片| 国产亚洲最大av| 久久久久久久久久人人人人人人| 国产精品国产三级国产专区5o| www.色视频.com| 欧美老熟妇乱子伦牲交| 免费观看的影片在线观看| 国产一区二区三区av在线| 老女人水多毛片| 视频中文字幕在线观看| 三级国产精品欧美在线观看| 亚洲精品国产av蜜桃| 有码 亚洲区| 亚洲av二区三区四区| 久久精品夜色国产| 女人精品久久久久毛片| 久久久久久久久久成人| 成年人午夜在线观看视频| 又大又黄又爽视频免费| 午夜免费男女啪啪视频观看| 插阴视频在线观看视频| 亚洲天堂av无毛| 成人综合一区亚洲| 毛片一级片免费看久久久久| 国产极品天堂在线| 老女人水多毛片| 嫩草影院新地址| 久久久久久久久久久久大奶| 丝瓜视频免费看黄片| 亚洲国产精品一区三区| 人体艺术视频欧美日本| 国产日韩欧美视频二区| 亚州av有码| 成年人免费黄色播放视频 | 日本-黄色视频高清免费观看| 如何舔出高潮| 一级a做视频免费观看| .国产精品久久| 热re99久久精品国产66热6| 亚洲av福利一区| 久久久久久久久久久免费av| 国产视频内射| 亚洲精品色激情综合| 精品酒店卫生间| 久久精品国产亚洲网站| 亚洲精品乱久久久久久| 少妇高潮的动态图| 51国产日韩欧美| 18禁裸乳无遮挡动漫免费视频| 人妻制服诱惑在线中文字幕| 51国产日韩欧美| 免费不卡的大黄色大毛片视频在线观看| 日韩,欧美,国产一区二区三区| 狂野欧美激情性bbbbbb| 18禁裸乳无遮挡动漫免费视频| 九草在线视频观看| 免费在线观看成人毛片| 777米奇影视久久| 亚洲成色77777| 免费看av在线观看网站| 夫妻午夜视频| 亚洲成人av在线免费| 啦啦啦啦在线视频资源| 亚洲欧洲日产国产| 国产精品久久久久久久电影| 三上悠亚av全集在线观看 | 久久国产精品大桥未久av | 亚州av有码| 国产黄片美女视频|