• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition

    2015-04-24 05:30:24DUMingfang杜明芳WANGJunzheng王軍政LIJing李靜LINan李楠LIDuoyang李多揚(yáng)
    關(guān)鍵詞:軍政李楠李靜

    DU Ming-fang(杜明芳), WANG Jun-zheng(王軍政), LI Jing(李靜)LI Nan(李楠) LI Duo-yang(李多揚(yáng))

    (1.Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, Beijing 100081, China; 2.Automation School, Beijing Union University, Beijing 100101, China)

    ?

    Adaptive key SURF feature extraction and application in unmanned vehicle dynamic object recognition

    DU Ming-fang(杜明芳)1,2, WANG Jun-zheng(王軍政), LI Jing(李靜)1,LI Nan(李楠)1, LI Duo-yang(李多揚(yáng))1

    (1.Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, Beijing 100081, China; 2.Automation School, Beijing Union University, Beijing 100101, China)

    A new method based on adaptive Hessian matrix threshold of finding key SRUF (speeded up robust features) features is proposed and is applied to an unmanned vehicle for its dynamic object recognition and guided navigation. First, the object recognition algorithm based on SURF feature matching for unmanned vehicle guided navigation is introduced. Then, the standard local invariant feature extraction algorithm SRUF is analyzed, the Hessian Metrix is especially discussed, and a method of adaptive Hessian threshold is proposed which is based on correct matching point pairs threshold feedback under a close loop frame. At last, different dynamic object recognition experiments under different weather light conditions are discussed. The experimental result shows that the key SURF feature abstract algorithm and the dynamic object recognition method can be used for unmanned vehicle systems.

    dynamic object recognition; key SURF feature; feature matching; adaptive Hessian threshold; unmanned vehicle

    Image feature matching is the core technology of real-time vision system for image guidance, robot vision navigation. In this type of application, feature extraction and matching search algorithm are the keys to realize the real-time, robustness of the system when the template image and real-time images are selected properly. Many foreign literatures have pointed out that the more the feature points extracted in complex content images, the more influence to the accuracy of image matching. The application of moving target recognition under complex scenes is even more difficult. Matching and recognition of moving objects pays more attention to the abstraction and tracking of a stable feature set, the number and the density of feature points are not the necessary conditions of accurate identification. On the contrary, if the key feature points extraction accuracy is high and the identification is strong, the fewer the more conducive to the reliability and stability of the tracking system. This is actually similar to the efficient visual data screening mechanism of the important results in recent years in many visual psychology and physiology experiments which are called visual saliency (visual saliency, also called selection attention mechanism). In the past, researchers have proposed feature map, saliency estimation, WTA neural network, inhibition of return (IOR) method[1-3]to describe the significant features, but it is very difficult to be practical. In this paper, a method of extracting key SURF features based on adaptive Hessian threshold is proposed.

    Hessian threshold is explored with unmanned vehicle city road environment sensing background. The feature extraction method is applied to the dynamic object recognition through feature matching for a C30 unmanned vehicle. Beijing City real road scene perception experiment results show that the proposed method can be used for dynamic object recognition and stable object tracking under an allowable error range.

    1 Image feature matching in unmanned vehicle system

    Guided navigation is an important way to realize the unmanned vehicle autonomous navigation in which navigation object recognition is the basis[4]. In this paper, the navigation object (the car in front) recognition is realized through the image feature matching. Fig.1 shows the unmanned vehicle navigation method using SURF feature tracking.

    Object recognition algorithm flow based on SURF feature matching for the vehicle mounted camera is shown in Fig.2.

    Image matching technology involves three aspects: one is the feature detection, feature similarity measure isthe second, the third is the search strategy. In real time application, the matching speed can be improved from 3 aspects[5-7], one is to reduce the total number of matching features involved, namely reduction optimization feature space; two is the operation to reduce the amount of similarity computation; three is to reduce the number of matching search cycle. In this paper, the matching speed is improved through adaptive key SURF feature extraction and sequential similarity detection algorithm (SSDA).

    Fig.1 Guided navigation by the SURF feature tracking of leader vehicle

    Fig.2 Dynamic object recognition based on SURF feature matching flowchart

    Classic SURF feature detection algorithm is used for the static image, it does not take into account the special needs for real-time image processing speed. In SURF algorithm, the scale space is divided into octaves. An octave represents a series of filter response maps obtained by convolving the same input image with a filter of increasing size[8].In the real-time application field of camera moving and object also moving such as unmanned vehicle object recognition and tracking, SURF feature detection algorithm needs to be improved for promoting system performance.

    2 Key SURF feature abstraction algorithm based on Hessian Matrix

    2.1 SURF feature abstraction algorithm

    As the acceleration and improvement, of SIFT(scale invariant feature transform), SURF (speeded up robust features) was first proposed by Bay et al. in 2006[8-9]. The SIFT algorithm obtains the Gauss Pyramid through the input image and Gauss function kernel convolution repeatedly and the down sampling[10], so each layer depends on the original image. SURF algorithm operates on the integral image, with a cartridge filter (box filters) to replace approximately two order Gauss filter, judging the extreme point using the determinant of Hessian matrix, the down sampling method is applied to increase the image nuclear size, thus multi images in scale space are processed at the same time, which improves the algorithm performance.

    SURF feature extraction steps are listed as follows.

    ①Construction of Hessian matrix and the multi-scale space.

    ②Detecting the extreme points by the Hessian determinant.

    ③Further precise positioning of feature points by using Hessian matrix threshold.

    ④To determine the main direction of the feature points by Haar wavelet response.

    In practical applications, if the image is not required to have rotation invariance in range 360°, the calculation of the Haar wavelet responses in range [-α,+α] can be chosen. When a vehicle object on urban road are tracked by unmanned vehicle, the road is almost flat and the rotation range of the object is not large, soα=30° is enough. It can greatly improve the speed of SURF algorithm.

    ⑤Construction of SURF feature descriptor.

    2.2 Analysis of Hessian matrix

    Hessian matrix is the key of the SURF algorithm. To a pixelx=(x,y)in imageI, its Hessian matrixH(scale isσ)is defined as

    (1)

    The determinant of Hessian matrixis

    det(H)=LxxLyy-LxyLxy

    (2)

    Convolution values of box filter and image are marked asDxx,Dyy, andDxyrespectively. UsingDxx,Dyy, andDxyto replaceLxx(x,σ),Lxy(x,σ), andLyy(x,σ), the determinant of Hessian matrix can be described as follows

    det(H)=DxxDyy-(ωDxy)2

    (3)

    In order to compensate and balance the approximation error, set the weight coefficientω.

    (4)

    where |x|Fis Frobenius norm. So the determinant of Hessian matrix can be obtained.

    det(H)=DxxDyy-(0.9Dxy)2

    In actual use,ωis a suitable constant.

    The determinant of Hessian matrix is the product of its eigenvalues. Decision rule of local extreme points of the different scales are as follows:

    ①det (H)<0→ opposite sign eigenvalue ofH→(x,y) which is not the local extreme point;

    ②det (H)>0→ same sign eigenvalue ofH→(x,y) which is the local extreme point.

    Comparing each extreme point with other 26 points of the three-dimensional neighborhood, when the extreme point is greater than (or less than) all 26 points, only the extreme point is the candidate feature.

    The fitting function of precise positioning to obtain the feature point is as follows

    (5)

    Doing the derivation and let equations equal to zero. The extreme point can be obtained.

    (6)

    The equation has a value at the corresponding extreme value point.

    (7)

    If |D()|≤0.03, regarded as the feature point with lower contrast and can be eliminated. In order to improve the real-time performance and stability of matching tracking, unstable feature points need to be further eliminated and deleted, only key feature points are saved. This can be realized by Hessian matric threshold.

    The maximum eigenvalueαand minimum eigenvalueβofHrepresent the gradients ofXandYdirections respectively.

    Trace ofHis

    tr(H)=Dxx+Dyy=α+β

    (8)

    Determinant ofHis

    det(H)=αβ

    (9)

    Ifα=rβ,so

    (10)

    (11)

    The greater therthe greaterεH, the more looser the eliminating conditions. Obviously, preserved feature point is less, the more conducive to algorithm to improve real-time performance, but too little can lead to system instability even algorithm failure. So the characteristics and complexity of the application will determine the Hessian threshold adaptively , which has the very strong practical significance.

    2.3 Obtain method of adaptive Hessian threshold

    The real road scene images will show different characteristics in different weather, different illumination, different time, so it is obviously very complicated to rely solely on the experiment test method to determine the Hessian matric threshold, and unable to achieve versatility. Summary of the SURF feature for object recognition and tracking study show that the practices of previous studies are essentially based on the open loop mode. In inspiration of adaptive control system thought, this study proposes the concept of SURF closed-loop and the adaptive Hessian threshold determination method according to feedback correct matching point pairs. The principle is shown as Fig.3.

    Fig.3 SURF closed-loop based adaptive Hessian threshold determination method

    In Fig.3,TNiis the total number threshold of correct matching point pairs in different weathers with different light conditions (according to the corresponding empirical measurement). If the correct matching point pairs count is lower thanTNi, the system judges the object can not be identified. This reflects the algorithm design purpose according to the application.

    3 Algorithm experiment and analysis

    In this section, some city road sensing images from C30 unmanned vehicle are used to prove the effectiveness of our method. The sensing results can be used for dynamic object recognition and tracking under complex natural backgrounds. A C30 vehicle produced by Beijing Automotive Group is modified as the unmanned vehicle, which is our research and experimental platform. CPU of the algorithms performance hardware platform is configured as Intel i5, clocked at 2 GHz.

    3.1 Adaptive key SURF extraction

    The SURF feature extraction results on sample image under different Hessian thresholds are shown in Fig.4.

    Fig.4 Feature extraction results under different Hessian thresholds(Hessian thresholds and feature point numbers of the first to the last image are: (100, 51), (300,33), (600,24), (1 000,18), (1 500,9), (2 000,7), (2 500,2), (3 000,2), (3 500,2), (4 000,1), (4 500,1), (5 000,1))

    The feature extraction results under different Hessian thresholds reflect a truth, that is, thekey SURF features are closely related to the Hessian threshold. The higher the Hessian threshold is, the sparser the feature is. The reserved sparse features are the most discriminative visual features. A new conception named Hessian threshold node can be defined according to the experimental results. The Hessian threshold node is a Hessian threshold that makes the number of SURF feature points approach a constant small value, such as 2 500 or 4 000 in the above experimental vehicle image.

    The adaptive Hessian threshold in different weathers with different light conditions are shown in Tab.1.

    Tab.1 Adaptive Hessian threshold in different weathers with different light conditions

    3.2 Key SURF feature matching under regular conditions

    To test the effectiveness of the key SURF features extracted by the above method, we select different Hessian thresholds for object recognition. Key SURF feature matching is used to search the sample vehicle object in ROI of the road scene image (PNG format with 512×288 pixels, 222 K). The experimental results are shown in Fig.5.

    The most discriminative feature points are the feature points finally reserved. These feature points can best ensure the recognition of objects in scenes. It is clear in Fig.4 that, when 4 500 is used for the Hessian thresholds, respectively, the locations of extracted SURF feature points in an image are the same as the ones when 5 000 is used. So the relative feature points are the most discriminative features.

    To explain the characteristics and the meanings of the data in Tab.1 clearly, curves showing the relation of data are drawn in Fig.6.

    Fig.5 Feature matching results under different Hessian thresholds(Hessian thresholds from the first to the last image are: 1 500, 2 000, 2 500, 3 000, 3 500, 4 000, 4 500, 5 000)

    Fig.6 Relation between Hessian threshold and recognition time

    It can be seen from the experimental results that the Hessian threshold is helpful to find the sparsest and most stable SURF features. Under this circumstance, the problem of matching error does not exist, because the number of feature points is few enough and the features are the most stable. It is a very valuable conclusion that the most salient low-level features can be determined by adjusting Hessian threshold nodes, because finding saliency features itself is a difficult but important work.

    3.3 Key SURF feature matching under irregular conditions

    The general feature robustness testing criteria are that whether the feature has scale invariance, rotational invariance, illumination invariance, and affine invariance. In this study, different conditions such as sunny day with low and high illuminance, rainy day with low and high illuminance, and night with very low illuminance. Sevral vehicle interference also has been tested. The experiment results prove that the key SURF feature matching method is feasible. As a surprised result, with many cars interference at night, this method can still robustly identify specific object, and has a better recognition effect than the result during the day. This is because in the night scene images, because of lighting reason, the features of moving object becomes more obvious, so easier to be accurately matched.The key features of matching results are shown in Fig.7.

    Fig.7 Sparse saliency features matching when object size changed

    Although sparse key SURF features can help to recognize objects at most conditions, but when the features are too sparse or the dynamic object’s posture is changed, the method will lose its function. When the object attitude changes, for example in Fig.8 vehicle object began to turn right, the template image is no longer applicable, unable to find the matching area accurately, so the template need to be updated.

    Fig.8 Matching failure examples

    After the template is updated, the car object can be correctly identified, as shown in Fig.9.

    Fig.9 Object correctly identified using new template

    4 Conclusions

    In recent years, indoor SLAM (simultaneous localization and mapping) based on SIFT feature for mobile robot navigation has been applied successfully, but the application in an outdoor environment has not been really realized[11-13]. The outdoor mobile robot navigation using SURF feature has not yet seen any successful case report. This paper explores a method using SURF feature for the unmanned vehicle outdoor guided navigation. In this method, a kind of sparse SURF feature extraction method based on adaptive Hessian threshold is proposed, and a feature matching based moving object recognition method is used to realize the vision navigation. When there is no guidance or perceptual condition is very poor, the reactive navigation mode is more applicable, and when the unmanned vehicle runs along a fixed road, the guided navigation is more facilitated and easier to be realized obviously. Therefore the method described in this paper has a strong practical value, and has a great potential in improving the unmanned vehicle autonomous navigation.

    [1] Folker W, Harald W, Arjan K. Composing the feature map retrieval process for robust and ready-to-use monocular tracking[J]. Computers & Graphics, 2011, 35(4):778-788.

    [2] Abdullah B, Sami A, Tolga C.A clustering-based method to estimate saliency in 3D animated meshes[J]. Computers & Graphics, 2014, 43:11-20.

    [3] Reuter-Lorenz P, Jha A, Rosenquist J N. What is inhibited in inhibition of return[J]. Journal of Experimental Psychology, 1996, 22 (2): 367-378.

    [4] Sathiyanarayanan, Mithileysh. Self controlled robot for military purpose[J]. International Journal for Technological Research in Engineering, 2014, 1 (10): 1075-1077.

    [5] Wang Shoukun, Li Delong, Guo Junjie, et al. Robot stereo vision calibration method with genetic algorithm and particle swarm optimization[J]. Journal of Beijing Institute of Technology, 2013, 22(2): 213-221.

    [6] Bai Tingzhu, Hou Xibao. An improved image matching algorithm based on SIFT[J]. Journal of Beijing Institute of Technology, 2013,33(6):622-627. (in Chinese)

    [7] Miao Lingjuan, Zhang Xuemin, Ma Xiaowei. An improved map matching algorithm for embedded vehicle navigation[J]. Journal of Beijing Institute of Technology, 2012,32(3):268-273. (in Chinese)

    [8] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.

    [9] Bay H, Ess A, Tuytelaars T, et al. Speeded-up robust features (SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359.

    [10] Juan L, Gwun O. A comparison of SIFT, PCA-SIFT and SURF[J]. International Journal of Image Processing, 2009, 3: 187-245.

    [11] Farzan N, Mohammad A B, Saeid P. Robust recognition against illumination variations based on SIFT[J]. Intelligent Robotics and Applications, 7508, 2012: 503-511.

    [12] Se S, Lowe D G, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[C]∥Proceedings of International Conference on Robotics and Automation, Seoul, Korea, 2001: 2051-2058.

    [13] Se S, Lowe D G, Little J. Global localization using distinctive visual features[C]∥Proceedings of International Conference on Intelligent Robots and Systems, IROS 2002, Lausanne, Switzerland, 2002: 226-231.

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0112

    TP 391.41 Document code: A Article ID: 1004- 0579(2015)01- 0083- 08

    Received 2013- 09- 20

    Supported by the National Natural Science Foundation of China(61103157); Beijing Municipal Education Commission Project (SQKM201311417010)

    E-mail: wangjz@bit.edu.cn

    猜你喜歡
    軍政李楠李靜
    愛(ài)在深秋
    新航空(2023年11期)2024-01-16 19:13:15
    春之舞
    新航空(2023年3期)2023-09-06 05:14:26
    “難忘”藏在哪里
    在研究的路上鐫刻生命的印記
    What Makes You Tired
    Taking Robotics, AI, IoT to the World
    ON A MULTI-DELAY LOTKA-VOLTERRA PREDATOR-PREY MODEL WITH FEEDBACK CONTROLS AND PREY DIFFUSION?
    開(kāi)創(chuàng)輝煌
    李靜 藏石欣賞
    寶藏(2017年6期)2017-07-20 10:01:01
    WU軍政觀察社:在正經(jīng)中爆發(fā)宇宙
    国产黄色小视频在线观看| 日本一本二区三区精品| 婷婷精品国产亚洲av| 日日啪夜夜撸| 露出奶头的视频| 亚洲欧美清纯卡通| 国产高清三级在线| 午夜福利在线观看免费完整高清在 | 成年版毛片免费区| 村上凉子中文字幕在线| 最近视频中文字幕2019在线8| 最近在线观看免费完整版| 又爽又黄a免费视频| 黄色配什么色好看| 午夜福利欧美成人| 啪啪无遮挡十八禁网站| 免费看日本二区| 色5月婷婷丁香| 日韩一本色道免费dvd| 亚洲自偷自拍三级| 久久久国产成人免费| 又黄又爽又刺激的免费视频.| 亚洲精品一卡2卡三卡4卡5卡| 精华霜和精华液先用哪个| 国内毛片毛片毛片毛片毛片| 国产精品伦人一区二区| 婷婷亚洲欧美| 成人三级黄色视频| 亚洲欧美日韩卡通动漫| 国产久久久一区二区三区| 人妻制服诱惑在线中文字幕| 午夜a级毛片| 岛国在线免费视频观看| 久久精品国产亚洲av天美| 久久久久国产精品人妻aⅴ院| 亚洲乱码一区二区免费版| 欧美日韩中文字幕国产精品一区二区三区| 美女 人体艺术 gogo| 国产欧美日韩精品一区二区| 久久欧美精品欧美久久欧美| 免费大片18禁| 性欧美人与动物交配| 中国美白少妇内射xxxbb| 日韩欧美国产一区二区入口| 国产精品女同一区二区软件 | 黄片wwwwww| 天美传媒精品一区二区| 成年女人毛片免费观看观看9| 日日摸夜夜添夜夜添av毛片 | 亚洲久久久久久中文字幕| 亚洲国产精品合色在线| 久久99热这里只有精品18| 国产精品久久久久久av不卡| 精品久久久久久久久久久久久| 婷婷精品国产亚洲av| 国产蜜桃级精品一区二区三区| 日本 欧美在线| 亚洲avbb在线观看| 国产视频一区二区在线看| 99热网站在线观看| 国模一区二区三区四区视频| 精品人妻一区二区三区麻豆 | 日韩欧美国产一区二区入口| 69人妻影院| 免费看日本二区| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 搡老妇女老女人老熟妇| 日本在线视频免费播放| 国产免费一级a男人的天堂| 国产高清视频在线观看网站| 午夜爱爱视频在线播放| 久久久久免费精品人妻一区二区| 少妇被粗大猛烈的视频| 美女cb高潮喷水在线观看| 九色国产91popny在线| 亚洲电影在线观看av| 五月玫瑰六月丁香| 热99re8久久精品国产| 少妇的逼水好多| 此物有八面人人有两片| 制服丝袜大香蕉在线| 中出人妻视频一区二区| 日本黄色视频三级网站网址| 色综合站精品国产| 极品教师在线视频| 久久香蕉精品热| 国产精品人妻久久久影院| 午夜精品在线福利| 国产精品电影一区二区三区| 国产精品无大码| 欧美成人性av电影在线观看| 亚洲男人的天堂狠狠| 亚洲av二区三区四区| 日日撸夜夜添| 无人区码免费观看不卡| 欧美精品啪啪一区二区三区| 国产精品免费一区二区三区在线| 无人区码免费观看不卡| 伦理电影大哥的女人| 黄色女人牲交| 国产成人aa在线观看| 18+在线观看网站| 人人妻人人澡欧美一区二区| 啪啪无遮挡十八禁网站| 欧美潮喷喷水| 亚洲精品日韩av片在线观看| a在线观看视频网站| 亚洲欧美日韩高清在线视频| 日韩精品青青久久久久久| 亚洲狠狠婷婷综合久久图片| 免费黄网站久久成人精品| 九九在线视频观看精品| 琪琪午夜伦伦电影理论片6080| 在线免费观看不下载黄p国产 | 一边摸一边抽搐一进一小说| 午夜免费男女啪啪视频观看 | 亚洲av第一区精品v没综合| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 美女黄网站色视频| 一级黄片播放器| 欧美绝顶高潮抽搐喷水| 国内揄拍国产精品人妻在线| 日本一二三区视频观看| 日日摸夜夜添夜夜添小说| 午夜影院日韩av| 岛国在线免费视频观看| 国产精品电影一区二区三区| 国产不卡一卡二| 国产精品久久视频播放| 看黄色毛片网站| 美女免费视频网站| 99在线视频只有这里精品首页| 中文字幕高清在线视频| 亚洲av.av天堂| 99在线视频只有这里精品首页| 亚洲精华国产精华液的使用体验 | 日韩欧美国产一区二区入口| 免费搜索国产男女视频| 麻豆一二三区av精品| 精品久久久久久,| 国产精品久久久久久av不卡| 免费在线观看日本一区| 婷婷色综合大香蕉| 男人的好看免费观看在线视频| 成人综合一区亚洲| 18禁黄网站禁片免费观看直播| www.www免费av| 国产精品野战在线观看| 国内揄拍国产精品人妻在线| 国产中年淑女户外野战色| 两性午夜刺激爽爽歪歪视频在线观看| 97超视频在线观看视频| 性欧美人与动物交配| 黄色日韩在线| 舔av片在线| 午夜福利成人在线免费观看| 精品人妻偷拍中文字幕| 毛片一级片免费看久久久久 | 午夜a级毛片| 毛片女人毛片| 伊人久久精品亚洲午夜| 九色成人免费人妻av| 国产亚洲欧美98| 日韩,欧美,国产一区二区三区 | 欧美高清成人免费视频www| 真实男女啪啪啪动态图| 国产精品亚洲一级av第二区| 国产一区二区激情短视频| 成人鲁丝片一二三区免费| 婷婷精品国产亚洲av| 变态另类丝袜制服| 久久久久久久久久久丰满 | a在线观看视频网站| 成人欧美大片| 亚洲美女视频黄频| 久久久国产成人免费| 亚洲在线自拍视频| 一a级毛片在线观看| 九色国产91popny在线| 久久久久久国产a免费观看| 亚洲精品色激情综合| 热99在线观看视频| 成人无遮挡网站| 在线免费十八禁| 精品免费久久久久久久清纯| 亚洲va在线va天堂va国产| 精品久久久久久久末码| 91午夜精品亚洲一区二区三区 | 国产精品综合久久久久久久免费| 91在线观看av| 亚洲成av人片在线播放无| 成人永久免费在线观看视频| 亚洲午夜理论影院| h日本视频在线播放| 在线观看免费视频日本深夜| av中文乱码字幕在线| 99久久中文字幕三级久久日本| 日本免费a在线| 一级毛片久久久久久久久女| 91久久精品国产一区二区三区| 免费观看人在逋| 成人无遮挡网站| 国内精品久久久久久久电影| 非洲黑人性xxxx精品又粗又长| 最新在线观看一区二区三区| 久久人妻av系列| 欧美日本视频| 精品久久久久久久人妻蜜臀av| 国产av麻豆久久久久久久| 国产精品不卡视频一区二区| 999久久久精品免费观看国产| 国产精品福利在线免费观看| 色在线成人网| 免费电影在线观看免费观看| 乱人视频在线观看| 在线免费十八禁| 亚洲人与动物交配视频| 免费在线观看成人毛片| 精品久久久久久成人av| 亚洲国产日韩欧美精品在线观看| 免费av不卡在线播放| 久久精品人妻少妇| 色吧在线观看| 亚洲国产精品成人综合色| 嫁个100分男人电影在线观看| 嫁个100分男人电影在线观看| 一级黄片播放器| 人妻丰满熟妇av一区二区三区| 国语自产精品视频在线第100页| 中文亚洲av片在线观看爽| 国产精品无大码| 少妇的逼好多水| 欧美xxxx黑人xx丫x性爽| 麻豆成人午夜福利视频| 欧美成人a在线观看| 少妇裸体淫交视频免费看高清| 久久国内精品自在自线图片| 久久久国产成人精品二区| 女的被弄到高潮叫床怎么办 | 香蕉av资源在线| 日本爱情动作片www.在线观看 | 午夜福利欧美成人| 长腿黑丝高跟| 99riav亚洲国产免费| 欧美成人免费av一区二区三区| 亚洲人成网站高清观看| 特级一级黄色大片| 久久热精品热| 亚洲av免费在线观看| 久久精品综合一区二区三区| a级毛片a级免费在线| 免费看美女性在线毛片视频| 亚洲成a人片在线一区二区| 中文字幕久久专区| 精品国内亚洲2022精品成人| 麻豆成人av在线观看| 国产 一区精品| 舔av片在线| 国产精品嫩草影院av在线观看 | 1024手机看黄色片| 别揉我奶头 嗯啊视频| 欧美人与善性xxx| 国产乱人伦免费视频| 嫩草影视91久久| 亚洲熟妇中文字幕五十中出| 最后的刺客免费高清国语| 国产中年淑女户外野战色| 真人一进一出gif抽搐免费| 午夜激情欧美在线| 美女被艹到高潮喷水动态| 麻豆成人av在线观看| 午夜福利18| 色哟哟·www| 色精品久久人妻99蜜桃| 亚洲av不卡在线观看| 内射极品少妇av片p| 伊人久久精品亚洲午夜| 国产免费一级a男人的天堂| 波多野结衣高清无吗| 女生性感内裤真人,穿戴方法视频| 精品人妻熟女av久视频| 午夜视频国产福利| 大型黄色视频在线免费观看| 国产精品自产拍在线观看55亚洲| 国产v大片淫在线免费观看| av天堂中文字幕网| 国产主播在线观看一区二区| 午夜福利在线观看吧| 成年女人毛片免费观看观看9| .国产精品久久| 亚洲精品色激情综合| 在线观看午夜福利视频| 极品教师在线视频| 欧美日本视频| 日本一本二区三区精品| 三级男女做爰猛烈吃奶摸视频| 天堂动漫精品| 日韩亚洲欧美综合| 中文字幕av在线有码专区| 此物有八面人人有两片| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 天天一区二区日本电影三级| 亚洲乱码一区二区免费版| 国产高清有码在线观看视频| 欧美3d第一页| 欧美激情久久久久久爽电影| 欧美又色又爽又黄视频| 99九九线精品视频在线观看视频| 婷婷丁香在线五月| 国产午夜福利久久久久久| 色哟哟·www| 99热这里只有是精品在线观看| 成人高潮视频无遮挡免费网站| 深夜精品福利| 91麻豆av在线| 亚洲成人久久性| 男女边吃奶边做爰视频| 最后的刺客免费高清国语| 天堂网av新在线| 亚洲精品在线观看二区| 久久久久国内视频| 色综合婷婷激情| 国产 一区精品| 日韩欧美免费精品| 亚洲精品乱码久久久v下载方式| 成年女人看的毛片在线观看| 狂野欧美激情性xxxx在线观看| 色尼玛亚洲综合影院| 精品一区二区三区视频在线观看免费| 长腿黑丝高跟| 可以在线观看的亚洲视频| 国内精品一区二区在线观看| 久久婷婷人人爽人人干人人爱| 亚洲四区av| 国产伦精品一区二区三区四那| 成人国产一区最新在线观看| 精品免费久久久久久久清纯| 天堂网av新在线| 国产午夜精品久久久久久一区二区三区 | 免费不卡的大黄色大毛片视频在线观看 | 又黄又爽又免费观看的视频| 88av欧美| bbb黄色大片| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 毛片一级片免费看久久久久 | 日韩人妻高清精品专区| 亚洲最大成人av| 欧美3d第一页| 熟妇人妻久久中文字幕3abv| 99热网站在线观看| 国内精品宾馆在线| 看免费成人av毛片| 久久婷婷人人爽人人干人人爱| 俺也久久电影网| 国产在线男女| 久久亚洲精品不卡| 久99久视频精品免费| 少妇高潮的动态图| 麻豆国产97在线/欧美| 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| 乱人视频在线观看| 真实男女啪啪啪动态图| 免费观看在线日韩| 国产精品自产拍在线观看55亚洲| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 亚洲av成人av| 精品日产1卡2卡| 97碰自拍视频| 99久久精品国产国产毛片| 老司机深夜福利视频在线观看| 十八禁网站免费在线| 亚洲不卡免费看| 精品久久久久久,| 毛片女人毛片| 久久久久免费精品人妻一区二区| 亚洲专区中文字幕在线| 亚洲av日韩精品久久久久久密| 欧美日韩亚洲国产一区二区在线观看| 免费在线观看影片大全网站| 69av精品久久久久久| 窝窝影院91人妻| 又粗又爽又猛毛片免费看| 日本爱情动作片www.在线观看 | 黄色丝袜av网址大全| 国内少妇人妻偷人精品xxx网站| 亚洲黑人精品在线| 久久久久久久久中文| 久久婷婷人人爽人人干人人爱| 日本黄色片子视频| 成年版毛片免费区| 日韩强制内射视频| 久久精品国产鲁丝片午夜精品 | 久久午夜亚洲精品久久| 欧美激情国产日韩精品一区| 国产精品国产三级国产av玫瑰| 国产v大片淫在线免费观看| 国产高清视频在线播放一区| 嫩草影院入口| 亚洲成av人片在线播放无| 精品午夜福利在线看| 欧美成人免费av一区二区三区| 久久久午夜欧美精品| 免费观看的影片在线观看| 精品久久久久久久人妻蜜臀av| 精品国产三级普通话版| 99久国产av精品| 亚洲经典国产精华液单| 91久久精品国产一区二区三区| 久久久久精品国产欧美久久久| 深夜a级毛片| 桃红色精品国产亚洲av| 国产激情偷乱视频一区二区| 少妇被粗大猛烈的视频| 午夜精品在线福利| 欧美日韩瑟瑟在线播放| 欧美日韩乱码在线| 国产综合懂色| 一a级毛片在线观看| 国产成人aa在线观看| 婷婷亚洲欧美| 免费av毛片视频| 麻豆av噜噜一区二区三区| 精品一区二区三区人妻视频| 中亚洲国语对白在线视频| 久久久久久久久中文| 床上黄色一级片| av在线老鸭窝| 国产男靠女视频免费网站| 日本一二三区视频观看| 天天一区二区日本电影三级| 美女黄网站色视频| 亚洲欧美清纯卡通| 人人妻人人看人人澡| 色综合站精品国产| 淫妇啪啪啪对白视频| 美女免费视频网站| 一进一出抽搐动态| 欧美最新免费一区二区三区| a级毛片a级免费在线| 亚洲avbb在线观看| 成人毛片a级毛片在线播放| 亚洲国产精品成人综合色| 国产亚洲精品综合一区在线观看| 亚洲av成人av| 老女人水多毛片| 九九久久精品国产亚洲av麻豆| 欧美3d第一页| 国产精品一区二区性色av| 丝袜美腿在线中文| 欧美日韩瑟瑟在线播放| 一区二区三区四区激情视频 | 欧美一区二区国产精品久久精品| 午夜爱爱视频在线播放| 12—13女人毛片做爰片一| a在线观看视频网站| 亚洲经典国产精华液单| 69人妻影院| 99久久精品一区二区三区| 在线免费观看的www视频| 国产视频内射| 精品人妻1区二区| 色综合婷婷激情| 欧美国产日韩亚洲一区| 午夜福利高清视频| 成人av在线播放网站| 女同久久另类99精品国产91| 夜夜爽天天搞| 国产伦在线观看视频一区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品久久久久久久电影| 国内毛片毛片毛片毛片毛片| 国产高清三级在线| 一区福利在线观看| 一级av片app| 日日啪夜夜撸| 国内精品久久久久久久电影| av在线观看视频网站免费| bbb黄色大片| 身体一侧抽搐| 午夜老司机福利剧场| 99久久九九国产精品国产免费| 中亚洲国语对白在线视频| 白带黄色成豆腐渣| 两个人视频免费观看高清| 亚洲无线观看免费| 亚洲精品国产成人久久av| netflix在线观看网站| 色哟哟·www| 可以在线观看毛片的网站| 国产成年人精品一区二区| 国产精品一区二区免费欧美| 久久久久久伊人网av| 亚洲av电影不卡..在线观看| 午夜影院日韩av| 免费看av在线观看网站| 色在线成人网| 在线免费观看不下载黄p国产 | 中亚洲国语对白在线视频| 婷婷亚洲欧美| 成人午夜高清在线视频| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 午夜精品一区二区三区免费看| 久久婷婷人人爽人人干人人爱| 老司机福利观看| 国产精品久久久久久精品电影| 性欧美人与动物交配| 亚洲欧美日韩无卡精品| 午夜激情欧美在线| 自拍偷自拍亚洲精品老妇| 日本黄色片子视频| 深夜a级毛片| 如何舔出高潮| 最新中文字幕久久久久| 欧美极品一区二区三区四区| 色在线成人网| 狂野欧美白嫩少妇大欣赏| 无遮挡黄片免费观看| 无人区码免费观看不卡| 精品人妻偷拍中文字幕| 好男人在线观看高清免费视频| 亚洲成人久久性| 色视频www国产| 国产午夜精品久久久久久一区二区三区 | 少妇的逼水好多| 最近视频中文字幕2019在线8| 亚洲av中文字字幕乱码综合| 国内毛片毛片毛片毛片毛片| 黄色配什么色好看| 成人午夜高清在线视频| 直男gayav资源| 美女高潮喷水抽搐中文字幕| 黄色丝袜av网址大全| 亚州av有码| 国产精品野战在线观看| 午夜免费成人在线视频| 日本撒尿小便嘘嘘汇集6| 久久人人精品亚洲av| 欧美日韩亚洲国产一区二区在线观看| 九九久久精品国产亚洲av麻豆| 免费在线观看日本一区| АⅤ资源中文在线天堂| 天堂av国产一区二区熟女人妻| 色哟哟·www| 久久久久久久久中文| 国产精品自产拍在线观看55亚洲| 又黄又爽又免费观看的视频| 久久久久九九精品影院| 永久网站在线| 国产淫片久久久久久久久| 人妻夜夜爽99麻豆av| 亚洲成人久久爱视频| 免费观看在线日韩| 热99re8久久精品国产| 波野结衣二区三区在线| 美女cb高潮喷水在线观看| 成人毛片a级毛片在线播放| 性色avwww在线观看| 色综合色国产| 亚洲精华国产精华精| 国产精品亚洲一级av第二区| 亚洲av熟女| 国产免费男女视频| 男女之事视频高清在线观看| 亚洲经典国产精华液单| 春色校园在线视频观看| 日本免费一区二区三区高清不卡| 亚洲人成伊人成综合网2020| 深夜a级毛片| 真实男女啪啪啪动态图| 深夜精品福利| 看片在线看免费视频| 女生性感内裤真人,穿戴方法视频| 18+在线观看网站| 日韩av在线大香蕉| 不卡一级毛片| x7x7x7水蜜桃| 久久精品夜夜夜夜夜久久蜜豆| 观看免费一级毛片| 国产精品一区二区三区四区久久| 黄色欧美视频在线观看| a级毛片a级免费在线| 熟妇人妻久久中文字幕3abv| 国产精品久久视频播放| 成人毛片a级毛片在线播放| 亚洲最大成人手机在线| 欧美+亚洲+日韩+国产| 亚洲专区中文字幕在线| 麻豆av噜噜一区二区三区| 色噜噜av男人的天堂激情| 黄色丝袜av网址大全| 女生性感内裤真人,穿戴方法视频| 少妇熟女aⅴ在线视频| 免费观看的影片在线观看| 国产高潮美女av| 欧美色欧美亚洲另类二区| 精品久久久久久,| 精品日产1卡2卡| 丰满人妻一区二区三区视频av| 国产色婷婷99| av在线天堂中文字幕| 白带黄色成豆腐渣| 久久国内精品自在自线图片| 日韩精品青青久久久久久| 女人被狂操c到高潮| 草草在线视频免费看| 精品国内亚洲2022精品成人| 少妇裸体淫交视频免费看高清| 免费av不卡在线播放|