• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios

    2015-04-24 05:38:12WANGPeng王鵬CHENGuoying陳國(guó)瑛
    關(guān)鍵詞:王鵬

    WANG Peng(王鵬), CHEN Guo-ying(陳國(guó)瑛)

    (Beijing Institute of Electronic System Engineering, the Second Academy of China Aerospace Science and Industry Corporation, Beijing 100854, China)

    ?

    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios

    WANG Peng(王鵬), CHEN Guo-ying(陳國(guó)瑛)

    (Beijing Institute of Electronic System Engineering, the Second Academy of China Aerospace Science and Industry Corporation, Beijing 100854, China)

    A new tracking algorithm is proposed aiming at the tracking problem in low bit signal-to-noise ratio (i.e., Eb/N0) scenarios, in which the bit clock regenerated by bit synchronization loop decides loop update moment. The double frequency processing and non-coherent accumulation technologies are applied to eliminate the impact of data polarity inversion, and then long time accumulation improves the input signal-to-noise ratio of discriminator. The frequency locked loop and phase locked loop constitute a carrier loop in parallel, which can meet the high dynamic demands. The effectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measurements, and the new tracking algorithm has been used in an aerospace engineering project successfully.

    tracking; double frequency processing; non-coherent; low bit signal-to-noise ratio

    As the direct sequence spread spectrum (DSSS) signal has the advantages of high anti-interference performance and strong confidentiality, etc.[1], the DSSS signal system is widely used for information transmission in aerospace communication. Since spectrum is a scarce resource[2], it is hoped that every effective communication transmits information as much as possible with minimal bandwidth, and the data rate of future TT&C system will be up to 20 Mbit/s[3]. However, the disadvantages of DSSS signal including low data rate and high spectrum occupancy limit its application in certain occasions. Fortunately, binary phase shift keying (BPSK) signal has the characteristics of high data rate and high spectrum utilization rate, which is adaptable to some future development of the aerospace industry.

    In aerospace communications, high-speed movement of aircraft and increased distance of signal transmission will lead to the following problems. Firstly, a high-speed movement of the aircraft results in a larger Doppler frequency with the acceleration of 10g[4]or even more. The dynamic adaptability of conventional tracking algorithm can no longer meet the requirements. Secondly, with the detected distance becomes farther, the received power of signal is weakened, and bit error rate (BER) is increased. In order to reduce the BER, the Consultative Committee for Space Data Systems (CCSDS) recommends adopting channel-coding technology[3]. While the data rate is further increased after being encoded with this technology, it is accompanied with additional problems——longer loop update period for improving the input signal-to-noise ratio (SNR) of discriminator will lead to data polarity inversion during the loop update period. Ref. [5] provided a BPSK signal demodulation technology based on maximum likelihood estimator. Refs.[6-7] studied BPSK signal demodulation by Costas loop. However, these references demand a relatively high bit SNR (denoted by Eb/N0) of BPSK signal, which cannot meet the requirement of high data rate and weak signal tracking. In view of the data modulation, Ref. [8] combined bits to maximize the signal energy during the coherent integration. In order to traverse all the possible bit combinations, tracking time increases exponentially with the amount of data bit. Therefore, this method has poor real-time property, which is not suitable for high dynamic scenarios.

    Taking an S-band satellite communication link for example, with conditions of the minimum carrier-to-noise ratio (CNR) of 60 dBHz, the data rate is approximately 3 Mbit/s after being encoded upon using the Turbo code of 1/3 rate recommended by CCSDS with the required uncoded data transmission rate of 1 Mbit/s, the maximum Doppler frequency of 100 kHz, and the Doppler change rate of 5 kHz/s. Therefore, the Eb/N0 of this communication link is -4.77 dB. If the loop update period is 0.1 ms without any processing, there will be 300 times of data polarity inversions within the loop update period to the greatest extent. The data polarity inversion and high dynamic environment will result in conventional tracking loop working improperly[9].

    For the data polarity inversion phenomenon within the loop update period under low Eb/N0, and the high dynamic environment, this paper firstly analyzes the conventional BPSK signal tracking algorithm, and then proposes a novel tracking algorithm and the effectiveness of this algorithm has been corroborated by theoretical analysis, simulation and measurements.

    1 Conventional BPSK tracking algorithm

    1.1 Signal model

    In the receiver, intermediate frequency (IF) digital BPSK signal obtained by down-conversion and A/D sampling process can be expressed as

    s(ti)=A(ti)d(ti-τ)cos [2π(fI-fd)ti+φ0]+n(ti)

    (1)

    (2)

    1.2 Conventional algorithm

    Conventional BPSK signal tracking loop comprises a carrier tracking loop and bit synchronization loop. For instance, the tracking loop in Ref. [10] consists of a Costas PLL and a bit synchronization loop constituted in parallel. The receiver obtains the BPSK signal and accomplishes the down-conversion and integrate-and-dump (I&D) processing. The identification error is extracted by the arctangent phase discriminator and timing error discriminator. Respectively, the results of loop filters are sent to the carrier numerically controlled oscillator (NCO) and data digital controlled oscillator (DCO), so that the error between the input signal and local signal is trimmed off. Finally synchronization of the signals is achieved. The tracking loop diagram is shown in Fig.1.

    Fig.1 Conventional BPSK signal tracking

    The down-converted results expressed as

    Id(i)=A(iTs)d(iTs-τ)cos (ΔωdiTs+Δφ)+nI(i)

    (3)

    Qd(i)=A(iTs)d(iTs-τ)sin (ΔωdiTs+Δφ)+nQ(i)

    (4)

    are obtained by multiplying the BPSK signals(ti) with local NCO output of sine and cosine signal. Where Doppler estimation bias is Δωd=ωd-d, phase estimation bias is Δφ=φ0-0,nI(i) andnQ(i) are noises.

    The I&D results are

    (5)

    (6)

    whereNis the number of sampling points within an integration time, thus,T=NTsrepresents the integration time, i.e. the loop update period. Generally, no sign transition exists within the integration time, therefore, the data polarity of the samples for summation and that of the summation result can be represented byd[(k-1)NTs-τ], which is abbreviated asdk, uniformly in Eqs.(5)(6).

    1.3 Disadvantages of conventional algorithm

    Input SNR of discriminator can be improved by I&D. The SNR after I&D, denoted asηi, is calculated by

    ηi=ζ-10log10(1/T)

    (7)

    Eq.(7) shows thatηiis jointly determined by the CNR of input signal and the loop integration time. The lower the CNR is, the longer integration time is needed to obtain an identical performance.

    Generally, the conventional tracking algorithm selects the symbol duration as the integration time[9], to avoid data polarity inversion during the integration time. However, the SNR after integration is limited to the Eb/N0, which may hardly meet the requirement of discrimination. Therefore, to improve the input SNR of discriminator, it is necessary to prolong the integration time. Conventional tracking algorithm doesn’t deal with the data modulation. The energy cannot be normally accumulated in presence of data polarity inversion. Therefore, it cannot meet the demand of BPSK signal tracking in low Eb/N0 scenarios.

    The Costas loop, which is widely used in carrier phase tracking, is not sensitive to the sign transition. It can produce the most accurate phase tracking, but is sensitive to the dynamic stress[10]. In the following section, the BPSK signal tracking loop fitting for high dynamic and low Eb/N0 scenarios is analyzed.

    2 Tracking algorithm of low Eb/N0 BPSK signal

    In this section,a tracking algorithm for high dynamic and low Eb/N0 BPSK signal is proposed. At first, three key operations involved in this algorithm are introduced respectively, which are double frequency processing, non-coherent accumulation and bit synchronization. And then the structure of the improved tracking algorithm is presented.

    2.1 Key operations involved in the proposed algorithm

    2.1.1 Double frequency processing

    Double frequency processing equipped with square processing can eliminate the influence of data polarity inversion. The design of FLL including double frequency processing is shown in Fig.2. Square processing as the key part of double frequency processing is shown in the dashed box.

    IF NCO generates two branches orthogonal sinusoidal signals with IF frequency offI. Thus, withA(iTs)=1,φi=ωdiTs+Δφ, the BPSK down-converted signals containing Doppler frequency information are

    Fig.2 Diagram of FLL including double frequency processing

    Ii=d(iTs-τ)cos (φi)+nI(i)

    (8)

    Qi=d(iTs-τ)sin (φi)+nQ(i)

    (9)

    After double frequency processing using trigonometric formulas, the mathematical expressions are

    (10)

    (11)

    Sinced(t) is 1 or -1,d2(iTs-τ)=1. Thus, double frequency processing can eliminate the influence of the data modulation. NCO generates two branches orthogonal sinusoidal signals with a frequency of 2d. Then after down convention processing, the expression of signals are

    Id=IY,icos (2diTs)+QY,isin (2diTs)=cos [2(ωd-d)iTs+Δφ]+nI

    (12)

    Qd=QY,icos (2diTs)-IY,isin (2diTs)=sin[2(ωd-d)iTs+Δφ]+nI

    (13)

    Fig.3 Non-coherent accumulation diagram

    Thekth I&D results can be expressed as

    (14)

    (15)

    whereθk=(k-1/2)NTs2Δωd(k)+2Δφ.

    Taking advantage of square processing, loop integration time of FLL needs not be restricted by the symbol duration, making it possible to improve the SNR and consequently the accuracy of the loop tracking. However, square processing would eliminate the modulation information. Therefore, non-coherent accumulation is also needed for data demodulation which is introduced in the next subsection.

    2.1.2 Non-coherent accumulation

    Non-coherent accumulation is achieved by estimating the sign of cumulative result within a data bit, and using the data sign estimation to correct the sign of cumulative result. Accumulation after sign correction not only removes the influence of the data polarity inversion, but also maintains the original data information. The realization is shown in Fig.3.

    The expressions of I&D results are

    (16)

    (17)

    In this case,TIDequals 1/fR, and the sample numbers within a data bit isN=fs/fR. When completely synchronized, Δωd≈0 and sinc(NTsΔωd/2)≈1. Thus, the above equations after normalization can be rewritten as

    Ip(k)=dkcosψ+n′I(k)

    (18)

    Qp(k)=dkcosψ+n′Q(k)

    (19)

    whereψ=(k-1/2)NΔωd+Δφ.

    If the PLL carrier demodulation results are accumulated directly, ignoring the data polarity inversion, the energy of the accumulation result will be countervailed. Therefore, sign decision is necessary before accumulating the carrier demodulation results across data bits. The influence of the data modulation can be eliminated using the result of sign decision by

    Ip,k=kdkcos (ψk)+kn′I(k)

    (20)

    Qp,k=kdksin (ψk)+kn′Q(k)

    (21)

    Fig.4 Pulse of bit synchronization loop

    2.1.3 Bit synchronization

    The sign estimation used in non-coherent is obtained by bit synchronization, which is introduced in this subsection. Bit synchronization loop makes an accumulation within a symbol duration under the control of produced in-phase periodic pulse and mid-phase periodic pulse separately. In-phase I&D result is the accumulation of I-branch carrier demodulation results within adjacent in-phase periodic pulse. In the same way, mid-phase I&D result is corresponding to the mid-phase periodic pulse. Then phase error discrimination is made by way of in-phase & mid-phase method. When bit synchronization loop is completely locked, the in-phase periodic pulse is located in the starting of a data bit, and the mid-phase periodic pulse is located in the middle of a data bit.

    The estimated delay error between the regenerated in-phase pulse with the actual data is Δτ=τ-, whereis the estimated delay of bit synchronization loop. During the same data period, the data sign is unchanged, so that, takenas the nearest integer of (|Δτ/Ts|)(|Δτ|/Ts≤N/2). As shown in Fig.4, Δτis assumed positive, which means the regenerated phase lags behind the phase of the signal source. When FLL and PLL are locked,in Eq.(8). Ignoring the effects of noise, the results of in-phase I&D and mid-phase I&D are

    (22)

    (23)

    where

    Dp1(k)=d[(k-1)NTs-τ]Dp2(k)=d[(kN-1)Ts-τ]De1(k)=d[(kN-3/2N)Ts-τ]De2(k)=d[(kN-1-N/2)Ts-τ]

    When the data polarity inversion occurs, if bit loop is non-synchronous, mid-phase I&D result is not zero and increases with the estimated delay error. The loop phase error is

    (24)

    When the data is reversed, the right result of the identification is obtained, which is

    (25)

    Fig.5 Tracking block diagram of new algorithm

    Similarly, when the local synchronous clock is advanced, identification error is

    (26)

    2.2 New tracking algorithm

    In the tracking algorithm proposed, a native bit synchronous clock is selected as the reference to set loop update period. Double frequency processing eliminates the influence of data polarity inversion during a FLL loop update period, and non-coherent accumulation remove the influence of data modulation in a PLL loop update period to improve the input SNR of the discriminator. Such processing can solve the problems caused by data polarity inversion in the conventional tracking loop. In view of the dynamic adaptability of the tracking algorithm, FLL and PLL work in parallel, and PLL is assisted by FLL in this paper. Improved tracking block diagram is shown in Fig.5. The loop gradually achieves synchronization under the control of synchronous clock accompany with the regeneration of data.

    3 Performance analysis of the proposed BPSK signal tracking algorithm

    Double frequency processing and non-coherent accumulation are used to deal with data modulation. However, they will result in performance loss comparing with coherent accumulation. The following part will give some qualitative performance analysis.

    3.1 Square loss in FLL

    To eliminate the influence of data modulation, double frequency processing is required, which is equivalent to the square of the signal. Thus operation will result in a certain loss of SNR. The SNR loss denoted asηLis expressed as[11]

    ηL=10log10(4+2/(10η/10))

    (27)

    whereηdenotes the SNR of the input signal filtered by IF band-pass filter with a bandwidth of 2fR. Therefore, it equalsζ-10log10(2fR).

    After non-coherent accumulation, the input SNR of discriminator denoted asηois

    ηo=ζ+10log10T-ηL

    (28)

    whereTis the loop update period. Eq.(28) shows a linear relationship between the signal power after double frequency processing and the SNR of input signal. Ref.[12] indicated the computational formula of frequency error of FLL caused by thermal noise as

    (29)

    whereFequals 2 in the low Eb/N0,Tis the integration time, andBLis the loop bandwidth. Thus, without data polarity inversion, FLL performance curves under 0.1 ms coherent and non-coherent accumulation are illustrated in Fig.6.

    Fig.6 FLL performance curves under 0.1 ms coherent and non-coherent accumulation

    Fig.6 shows that non-coherent accumulation, which is not sensitive to data modulation, has SNR loss caused by square operation in return.

    3.2 Non-coherent loss in PLL

    Because of the estimation error of data sign, non-coherent accumulation in PLL brings about some SNR loss, which is related to BER. Ref. [11] proposed the simplified computational formula of SNR loss caused by non-coherent accumulation, expressed as

    ηL=-20log10(1-2Pe)

    (30)

    wherePeis the BER of BPSK signal, which can be calculated by

    (31)

    whereθkis the average carrier phase error, which can be treated as zero ideally. In addition, the SNR afterMtimes non-coherent accumulation is

    ηo=ηi-ηL+10log10M

    (32)

    PLL error caused by the dynamic stress can be ignored because PLL is assisted by FLL. The specific analysis isdetailed in Ref. [13]. The performance of bit synchronization loop is analyzed by formulas in Ref. [14]. The SNR loss before discrimination can be calculated by Eq.(27) and Eq.(30). The parameters and theoretical precision of the tracking loop are given in Tab.1.

    Tab.1 Theoretical precision values of various loop

    Although double frequency processing and non-coherent accumulation in PLL bring about some loss of SNR, they eliminate the influence of data modulation as well. Therefore, multi-data bits accumulation can be achieved under the condition of low Eb/N0. Hence, the input SNR of the discriminator is above threshold. Ultimately, accurate tracking of the carrier and data phase can be achieved.

    4 Algorithm verification

    4.1 Simulation verification

    In order to verify the effectiveness of the tracking algorithm of the BPSK signal with low Eb/N0 and high dynamics, the tracking parameter is set as follows. Parameters of tracking loop are selected according to Tab.1. The sample frequency is 60 MHz, and the rate of the encoded data to be transmitted is approximately 3 Mbit/s. The Doppler change rate is 5 kHz/s, and the initial Doppler frequency deviation is 500 Hz. Simulation result is shown in Fig.7. It is indicated that the loop works stably. Phase error of PLL and the bit synchronization loop are both eventually stabilized at the vicinity of 0.

    The statistical analysis of the simulation results under different CNRs is shown in Tab.1. When the CNR is as low as 60 dB·Hz, the carrier phase error of the receiver is not greater than 1°, and the data phase error is not greater than 2°, which is corresponding to the theoretical analysis in Tab.1. In Tab.2, energy loss is calculated with respect to the phase error of 1σ.

    Fig.7 Simulation result under CNR of 60 dB·Hz

    Tab.2 Statistical analysis of the simulation results under different CNRs

    CNR/(dB·Hz)Carrierphaseerror/(°)Dataphaseerror/(°)Energyloss/dBCorrespondingCNR/(dB·Hz)640 340 492 661 4620 570 672 459 6600 781 152 857 2

    The performance as shown in Tab.2 decreases slightly than that in Tab.1 because of the synchronous deviation of data synchronization loop. In line with the comparison between the tracking loop proposed and the conventional Costas tracking loop (specifically the arctangent phase discriminator as an example), their performances under different CNRs are presented in Tab.3.

    Tab.3 Tracking performances under different CNR conditions

    Tab.3 shows that, conventional Costas tracking loop withTIDequal to symbol duration cannot lock when CNR is not bigger than 62 dB·Hz. In the higher CNR scenarios, the precision of conventional Costas tracking loop is still inferior to the proposed one with the contribution of non-coherent accumulation.

    4.2 Measurement verification

    In view of the characteristics of the aerospace communication tracking algorithm, an FPGA is chosen to implement the tracking algorithm (XC5VSX95T-2 type of Virtex5 series, from a large-scale Xilinx Inc), with comprehensive synthesis tool ISE 11.1. The hardware resources consumption is shown in Tab.4, with some multipliers and other resources used by time-division multiplexing. The device utilization of the conventional Costas tracking loop is also analyzed as a comparison in Tab.4.

    Tab.4 Device utilization comparison

    It shows that, the hardware resources consumption in implementation of the tracking loop proposed does not increase a lot. Especially, considering the tracking performance improvement, the increase of resources consumption is acceptable.

    BER tester validates the proposed algorithm. The measured error rate results are summarized in Tab.5, which are consistent with the theoretical values of BER.

    Tab.5 Measured error rate results

    5 Conclusion

    This paper proposes a new tracking algorithm. The loop update period of carrier loop depends on the regenerated bit clock. The carrier loop is constituted by FLL and PLL in parallel, which frequency-locked loop using double frequency processing and phase-locked loop using non-coherent accumulation eliminate data polarity inversion. Thus, BPSK signal carrier tracking and data demodulation are achieved under high dynamics, and low Eb/N0 conditions. The effectiveness of the algorithm was verified by the theoretical analysis, simulation and measurements. The proposed algorithm is applicable to the high data rate BPSK modulated communications. And it can promote a combination between high-speed data communications with telemetry and navigation, especially merged downlink ranging and telemetry in aerospace systems.

    [1] Emmanuele A, Zanier F, Boccolini G, et al. Spread-spectrum continuous-phase-modulated signals for satellite navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3234-3249.

    [2] Xie Z, Ma L, Liang X. Unlicensed spectrum sharing game between LEO satellites and terrestrial cognitive radio networks[J]. Chinese Journal of Aeronautics, 2012, 25(4): 605-614.

    [3] Calzolari G P, Chiani M, Chiaraluce F, et al. Channel coding for future space missions: new requirements and trends[J]. Proceedings of the IEEE, 2007, 95(11): 2157-2170.

    [4] Yao Z, Cui X, Lu M, et al. Dual update-rate carrier tracking technique for new generation global navigation satellite system signals in dynamic environments[J]. IET Radar, Sonar & Navigation, 2009, 3(3): 203-213.

    [5] Rabiei A M, Beaulieu N C. Exact error probability of a bandlimited single-interferer maximum-likelihood BPSK receiver in AWGN[J]. IEEE Transactions on Wireless Communications, 2007, 6(1): 30-34.

    [6] Maya J A, Casco N A, Roncagliolo P A, et al. A high data rate BPSK receiver implementation in FPGA for high dynamics applications[C]∥Programmable Logic (SPL), 2011 VII Southern Conference on, Cordoba, Argentina, 2011: 233-238.

    [7] Hu Y, Sawan M. A fully integrated low-power BPSK demodulator for implantable medical devices[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2005, 52(12): 2552-2562.

    [8] Soloviev A, Van Graas F, Gunawardena S. Decoding navigation data messages from weak GPS signals[J]. IEEE transactions on Aerospace and Electronic Systems, 2009, 45(2): 660-666.

    [9] Razavi A, Gebre-Egziabher D, Akos D M. Carrier loop architectures for tracking weak GPS signals[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 697-710.

    [10] Gardner F M. A BPSK/QPSK timing-error detector for sampled receivers[J]. IEEE Transactions on Communications, 1986, 34(5): 423-429.

    [11] Luo Yu, Wang Yongqing, Wu Siliang, et al. Phase estimation for weak GPS signal based on incoherent integration[J]. Transactions of Beijing Institute of Technology, 2013, 33(1): 93-98. (in Chinese)

    [12] Lashley M, Bevly D M, Hung J Y. Performance analysis of vector tracking algorithms for weak GPS signals in high dynamics[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 661-673.

    [13] Juang J C, Chen Y H. Phase/frequency tracking in a GNSS software receiver[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 651-660.

    [14] Borio D, Mongredien C, Lachapelle G. Collaborative code tracking of composite GNSS signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2009, 3(4): 613-626.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0117

    TN 911 Document code: A Article ID: 1004- 0579(2015)01- 0118- 10

    Received 2014- 09- 14

    Supported by the National High Technology Research and Development Program of China (863 Program) (2011AA1569)

    E-mail: wp_fuyao@163.com

    猜你喜歡
    王鵬
    王鵬:初心不改 篤行致遠(yuǎn)
    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane
    甲狀腺乳頭狀癌頸部淋巴結(jié)轉(zhuǎn)移的術(shù)前高頻超聲診斷分析
    Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity?
    中國(guó)畫《山居祥夜》
    有所見,有所鑒——王鵬眼鏡40周年慶典
    跟著王鵬叔叔拍雪豹
    神奇的線條
    童話世界(2018年11期)2018-05-28 02:23:04
    藝術(shù)百家:王鵬 張凱雷
    王鵬中國(guó)畫作品
    久久99精品国语久久久| 91久久精品电影网| 精品国产三级普通话版| 久久99热这里只频精品6学生 | 色尼玛亚洲综合影院| 国产伦精品一区二区三区四那| www.av在线官网国产| 成人毛片60女人毛片免费| 亚洲美女视频黄频| 午夜福利在线观看吧| 中文字幕制服av| 中文字幕av在线有码专区| 精品国产一区二区三区久久久樱花 | 大话2 男鬼变身卡| 久久这里只有精品中国| 日日摸夜夜添夜夜爱| 啦啦啦啦在线视频资源| 日韩在线高清观看一区二区三区| 日韩人妻高清精品专区| 成年女人永久免费观看视频| 能在线免费观看的黄片| 国产精品人妻久久久久久| 男的添女的下面高潮视频| 国产男人的电影天堂91| 成人毛片a级毛片在线播放| 色综合亚洲欧美另类图片| 99久久无色码亚洲精品果冻| 中文字幕人妻熟人妻熟丝袜美| 尾随美女入室| 欧美又色又爽又黄视频| 91久久精品国产一区二区三区| 99久久精品国产国产毛片| 精品久久久久久久久久久久久| 亚洲色图av天堂| 少妇被粗大猛烈的视频| 亚洲国产最新在线播放| 欧美成人精品欧美一级黄| 国产伦在线观看视频一区| 亚洲精品久久久久久婷婷小说 | 久久久a久久爽久久v久久| 欧美区成人在线视频| 亚洲欧洲国产日韩| 99久久精品国产国产毛片| av黄色大香蕉| 午夜福利在线观看免费完整高清在| 久久久久久伊人网av| 久久午夜福利片| 亚洲不卡免费看| 精品酒店卫生间| 97人妻精品一区二区三区麻豆| 偷拍熟女少妇极品色| 麻豆精品久久久久久蜜桃| 亚洲精华国产精华液的使用体验| 婷婷色麻豆天堂久久 | 伦理电影大哥的女人| 日本午夜av视频| 嫩草影院新地址| 蜜桃亚洲精品一区二区三区| 国语自产精品视频在线第100页| 精品国产三级普通话版| 99久国产av精品国产电影| 午夜精品国产一区二区电影 | 亚洲国产欧美在线一区| 国产精品精品国产色婷婷| 日日摸夜夜添夜夜爱| 国产黄片视频在线免费观看| 精品不卡国产一区二区三区| 日韩人妻高清精品专区| 国产精品福利在线免费观看| 最新中文字幕久久久久| av播播在线观看一区| 久久99热这里只有精品18| 色综合站精品国产| 如何舔出高潮| 中文字幕久久专区| av在线亚洲专区| 精品一区二区三区人妻视频| 亚洲欧美成人综合另类久久久 | 国产精品久久电影中文字幕| 久久久欧美国产精品| 日韩精品青青久久久久久| 中文字幕熟女人妻在线| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 婷婷六月久久综合丁香| 好男人视频免费观看在线| av黄色大香蕉| 亚洲精品乱码久久久久久按摩| 久久久久久大精品| 久久久久久久国产电影| 亚洲电影在线观看av| 精品午夜福利在线看| 老司机影院成人| 久久这里有精品视频免费| 久久久午夜欧美精品| 青青草视频在线视频观看| 免费看日本二区| 日韩,欧美,国产一区二区三区 | 日韩视频在线欧美| 欧美三级亚洲精品| 日韩精品有码人妻一区| 国产高清有码在线观看视频| 久久99热这里只频精品6学生 | 99热这里只有是精品在线观看| 啦啦啦观看免费观看视频高清| 黄色一级大片看看| 高清午夜精品一区二区三区| 蜜臀久久99精品久久宅男| 婷婷色综合大香蕉| 国产成年人精品一区二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 最近的中文字幕免费完整| 国内精品美女久久久久久| 搡女人真爽免费视频火全软件| 一级毛片电影观看 | 成人二区视频| 日韩视频在线欧美| 色5月婷婷丁香| av在线蜜桃| 国产国拍精品亚洲av在线观看| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 欧美变态另类bdsm刘玥| 久久鲁丝午夜福利片| 91久久精品电影网| 国产精品国产高清国产av| eeuss影院久久| 超碰av人人做人人爽久久| 日韩亚洲欧美综合| 如何舔出高潮| 麻豆一二三区av精品| 日本-黄色视频高清免费观看| 久久精品国产自在天天线| 日本免费a在线| 成年版毛片免费区| 国产精品不卡视频一区二区| 国产av码专区亚洲av| 最新中文字幕久久久久| 变态另类丝袜制服| av卡一久久| 亚洲欧美日韩卡通动漫| 亚洲国产色片| 久热久热在线精品观看| 麻豆一二三区av精品| 一个人看的www免费观看视频| 在线观看av片永久免费下载| 免费av毛片视频| 免费播放大片免费观看视频在线观看 | 亚洲欧美成人综合另类久久久 | 18+在线观看网站| 日本免费在线观看一区| 黄片wwwwww| 一区二区三区四区激情视频| 成人鲁丝片一二三区免费| 九九久久精品国产亚洲av麻豆| 亚洲熟妇中文字幕五十中出| 午夜免费激情av| 嘟嘟电影网在线观看| 男女那种视频在线观看| 欧美日本视频| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| 亚洲av免费在线观看| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 韩国高清视频一区二区三区| 国产高清三级在线| 小蜜桃在线观看免费完整版高清| 女人久久www免费人成看片 | 日日干狠狠操夜夜爽| 乱系列少妇在线播放| 亚洲国产精品久久男人天堂| 在线播放无遮挡| 一区二区三区高清视频在线| 国产私拍福利视频在线观看| 色播亚洲综合网| 亚洲人成网站高清观看| www日本黄色视频网| 亚洲综合精品二区| kizo精华| 五月玫瑰六月丁香| 高清毛片免费看| 成人毛片a级毛片在线播放| 一个人免费在线观看电影| 尤物成人国产欧美一区二区三区| 久久久久久九九精品二区国产| 国产高清有码在线观看视频| 人人妻人人看人人澡| 日本wwww免费看| 人妻少妇偷人精品九色| 国产精品国产高清国产av| 国产成人精品婷婷| 午夜福利成人在线免费观看| 亚洲精品亚洲一区二区| 国内精品宾馆在线| 波野结衣二区三区在线| 免费看美女性在线毛片视频| 成人欧美大片| 亚洲av.av天堂| 一级黄片播放器| 亚洲经典国产精华液单| 免费看美女性在线毛片视频| 免费人成在线观看视频色| 黄片wwwwww| 精品一区二区三区视频在线| 在线观看66精品国产| 久久精品综合一区二区三区| 男女那种视频在线观看| 黄片无遮挡物在线观看| 国产真实乱freesex| 99久久九九国产精品国产免费| 亚洲国产欧美在线一区| 国产av一区在线观看免费| 日韩精品青青久久久久久| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 色综合亚洲欧美另类图片| 三级国产精品片| 精品国产露脸久久av麻豆 | 欧美xxxx黑人xx丫x性爽| 麻豆一二三区av精品| 99久久精品热视频| 99久国产av精品| ponron亚洲| 天天躁日日操中文字幕| 熟妇人妻久久中文字幕3abv| 色综合站精品国产| 亚洲在线观看片| 哪个播放器可以免费观看大片| 午夜精品在线福利| 欧美最新免费一区二区三区| 在线观看美女被高潮喷水网站| 十八禁国产超污无遮挡网站| 国产一区二区三区av在线| 最后的刺客免费高清国语| 91狼人影院| 国产高清视频在线观看网站| 国产精品永久免费网站| eeuss影院久久| 国产成人aa在线观看| 国产老妇女一区| 一级二级三级毛片免费看| 观看免费一级毛片| 3wmmmm亚洲av在线观看| 日本黄色片子视频| 亚洲精品日韩在线中文字幕| 国产片特级美女逼逼视频| 国产黄片美女视频| 一夜夜www| 国产伦精品一区二区三区四那| 99久久精品热视频| 国产91av在线免费观看| 亚洲国产精品sss在线观看| 国产真实乱freesex| 波野结衣二区三区在线| 一二三四中文在线观看免费高清| 国产精品人妻久久久久久| 日韩三级伦理在线观看| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品,欧美精品| 男插女下体视频免费在线播放| 特级一级黄色大片| 成年女人永久免费观看视频| 午夜久久久久精精品| 免费观看a级毛片全部| 成人性生交大片免费视频hd| 精品一区二区三区人妻视频| 午夜福利视频1000在线观看| 女人久久www免费人成看片 | 亚洲欧美精品自产自拍| 插阴视频在线观看视频| 欧美日本视频| 热99在线观看视频| av又黄又爽大尺度在线免费看 | 美女脱内裤让男人舔精品视频| 日韩欧美精品v在线| 久久国内精品自在自线图片| 欧美人与善性xxx| 国产精品国产三级专区第一集| 亚洲精品国产成人久久av| 在线免费观看不下载黄p国产| 尤物成人国产欧美一区二区三区| 黄色一级大片看看| 久久精品久久久久久噜噜老黄 | 色5月婷婷丁香| 日本五十路高清| 99久久中文字幕三级久久日本| 能在线免费看毛片的网站| 亚洲不卡免费看| 亚洲电影在线观看av| 国产成人精品婷婷| 国产片特级美女逼逼视频| 中文字幕av在线有码专区| 国产一区二区三区av在线| 最后的刺客免费高清国语| a级一级毛片免费在线观看| 国产成人精品久久久久久| 欧美日本视频| 亚洲欧美精品自产自拍| 七月丁香在线播放| 能在线免费看毛片的网站| 亚洲三级黄色毛片| 国产乱人视频| 国产一区二区亚洲精品在线观看| av国产久精品久网站免费入址| 国产综合懂色| 久久精品91蜜桃| 久久久精品94久久精品| 最近手机中文字幕大全| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区免费观看| 亚洲av成人精品一二三区| 女人十人毛片免费观看3o分钟| 亚洲美女搞黄在线观看| 三级男女做爰猛烈吃奶摸视频| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 亚洲成色77777| 日日干狠狠操夜夜爽| 国产午夜精品论理片| 亚洲精品国产成人久久av| 精品国内亚洲2022精品成人| АⅤ资源中文在线天堂| 国产色爽女视频免费观看| 菩萨蛮人人尽说江南好唐韦庄 | 日日啪夜夜撸| 秋霞在线观看毛片| 男女啪啪激烈高潮av片| 六月丁香七月| 丝袜喷水一区| 国产免费视频播放在线视频 | 国产亚洲av片在线观看秒播厂 | 插逼视频在线观看| 日韩强制内射视频| 内地一区二区视频在线| 成人毛片a级毛片在线播放| 一级二级三级毛片免费看| 国产美女午夜福利| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 啦啦啦韩国在线观看视频| 2022亚洲国产成人精品| 亚洲va在线va天堂va国产| 精品少妇黑人巨大在线播放 | 亚洲三级黄色毛片| 2021天堂中文幕一二区在线观| 99久久无色码亚洲精品果冻| 久久久久久久久中文| 97超视频在线观看视频| 特大巨黑吊av在线直播| 午夜福利网站1000一区二区三区| 亚洲高清免费不卡视频| kizo精华| 国产私拍福利视频在线观看| 国产美女午夜福利| 白带黄色成豆腐渣| 亚洲最大成人av| 亚洲成人久久爱视频| h日本视频在线播放| 亚洲av电影在线观看一区二区三区 | 汤姆久久久久久久影院中文字幕 | 国产精品一区二区三区四区久久| 国产老妇伦熟女老妇高清| 亚洲图色成人| 永久网站在线| 视频中文字幕在线观看| av在线老鸭窝| 自拍偷自拍亚洲精品老妇| 亚洲欧美日韩卡通动漫| 中文字幕久久专区| 男女啪啪激烈高潮av片| 国产精品久久久久久av不卡| 国产伦精品一区二区三区四那| 国产av在哪里看| 插阴视频在线观看视频| 亚洲国产日韩欧美精品在线观看| 国产精品久久久久久精品电影| 午夜爱爱视频在线播放| 国产毛片a区久久久久| 噜噜噜噜噜久久久久久91| 亚洲欧美成人精品一区二区| 久久综合国产亚洲精品| 免费看光身美女| 成人午夜高清在线视频| 国产白丝娇喘喷水9色精品| 亚洲五月天丁香| 在线观看66精品国产| 国语对白做爰xxxⅹ性视频网站| 熟女电影av网| 中文乱码字字幕精品一区二区三区 | 神马国产精品三级电影在线观看| 欧美3d第一页| 久久亚洲精品不卡| av在线老鸭窝| 国产一区二区亚洲精品在线观看| 日日摸夜夜添夜夜添av毛片| 国产黄色小视频在线观看| 日韩国内少妇激情av| 久久6这里有精品| 国产黄片美女视频| 美女cb高潮喷水在线观看| 精品一区二区三区人妻视频| 非洲黑人性xxxx精品又粗又长| 蜜臀久久99精品久久宅男| 国产69精品久久久久777片| 国产真实伦视频高清在线观看| 男人狂女人下面高潮的视频| 看非洲黑人一级黄片| av线在线观看网站| 亚洲国产欧洲综合997久久,| 免费一级毛片在线播放高清视频| 嫩草影院精品99| 亚洲无线观看免费| 少妇猛男粗大的猛烈进出视频 | 亚洲国产成人一精品久久久| 亚洲怡红院男人天堂| 尤物成人国产欧美一区二区三区| 欧美精品国产亚洲| 看黄色毛片网站| 我要搜黄色片| 欧美最新免费一区二区三区| 久久久色成人| 亚洲av中文av极速乱| 成人鲁丝片一二三区免费| 精品久久久久久久久亚洲| 亚洲精品一区蜜桃| 欧美精品国产亚洲| 久久亚洲国产成人精品v| 精品免费久久久久久久清纯| 国产老妇女一区| av国产久精品久网站免费入址| 亚洲电影在线观看av| 简卡轻食公司| 少妇人妻一区二区三区视频| 亚洲精品乱码久久久v下载方式| 亚洲综合色惰| 日韩一区二区视频免费看| 舔av片在线| 国内精品一区二区在线观看| 免费观看性生交大片5| 久久久精品94久久精品| 国产 一区 欧美 日韩| 欧美日本亚洲视频在线播放| 日韩 亚洲 欧美在线| 国内精品美女久久久久久| 18禁在线无遮挡免费观看视频| 精品少妇黑人巨大在线播放 | 在线播放国产精品三级| 国产午夜精品久久久久久一区二区三区| 禁无遮挡网站| 伊人久久精品亚洲午夜| 亚洲av福利一区| 久久精品国产鲁丝片午夜精品| 美女大奶头视频| 乱系列少妇在线播放| 精品国产露脸久久av麻豆 | 亚洲精品乱久久久久久| 成人亚洲精品av一区二区| 亚洲精品,欧美精品| 精品人妻熟女av久视频| 寂寞人妻少妇视频99o| 最近手机中文字幕大全| 日韩精品青青久久久久久| 国产v大片淫在线免费观看| 草草在线视频免费看| 黄色欧美视频在线观看| 欧美一区二区亚洲| 成人高潮视频无遮挡免费网站| 日韩成人av中文字幕在线观看| 国产亚洲精品av在线| 国产欧美另类精品又又久久亚洲欧美| 高清毛片免费看| 3wmmmm亚洲av在线观看| 国产69精品久久久久777片| 午夜日本视频在线| 精品人妻熟女av久视频| 成人毛片60女人毛片免费| 最近手机中文字幕大全| 国产高清不卡午夜福利| av卡一久久| 欧美不卡视频在线免费观看| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 噜噜噜噜噜久久久久久91| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 中文字幕久久专区| av又黄又爽大尺度在线免费看 | 亚洲成人中文字幕在线播放| 国产精品麻豆人妻色哟哟久久 | 又爽又黄无遮挡网站| 美女国产视频在线观看| 人人妻人人看人人澡| 亚洲国产精品成人综合色| 国产女主播在线喷水免费视频网站| 国产69精品久久久久777片| 亚洲国产精品专区欧美| 久久毛片免费看一区二区三区| 国精品久久久久久国模美| 欧美xxⅹ黑人| 亚洲精品456在线播放app| 桃花免费在线播放| 97超碰精品成人国产| 久久韩国三级中文字幕| 国产av精品麻豆| 国产亚洲精品久久久com| 99精国产麻豆久久婷婷| 春色校园在线视频观看| 国产免费一级a男人的天堂| 国产精品一区www在线观看| 亚洲精品日韩在线中文字幕| 麻豆乱淫一区二区| 国产精品偷伦视频观看了| 亚洲av在线观看美女高潮| 黑人猛操日本美女一级片| 五月开心婷婷网| 欧美日韩av久久| 久久精品国产自在天天线| 亚洲三级黄色毛片| 亚洲精品av麻豆狂野| 亚洲精品aⅴ在线观看| 婷婷成人精品国产| av又黄又爽大尺度在线免费看| 人人妻人人爽人人添夜夜欢视频| 一区二区三区乱码不卡18| 亚洲精品久久久久久婷婷小说| 精品亚洲乱码少妇综合久久| 成人影院久久| 精品国产一区二区三区久久久樱花| 99热6这里只有精品| 日韩不卡一区二区三区视频在线| 考比视频在线观看| 热re99久久国产66热| 男女啪啪激烈高潮av片| 久久精品国产鲁丝片午夜精品| 91久久精品国产一区二区三区| 国产免费现黄频在线看| 亚洲精品第二区| 精品国产一区二区久久| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 国产永久视频网站| 韩国精品一区二区三区 | 成人免费观看视频高清| 日韩 亚洲 欧美在线| 草草在线视频免费看| 午夜免费男女啪啪视频观看| 久久精品国产综合久久久 | 精品人妻一区二区三区麻豆| 成人漫画全彩无遮挡| 一级毛片黄色毛片免费观看视频| 国产69精品久久久久777片| 日韩中文字幕视频在线看片| 欧美日本中文国产一区发布| 国产老妇伦熟女老妇高清| 久久精品国产自在天天线| 日韩欧美一区视频在线观看| 王馨瑶露胸无遮挡在线观看| 在线观看免费日韩欧美大片| 天天影视国产精品| 久久97久久精品| 成人毛片a级毛片在线播放| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 亚洲成人av在线免费| 人妻系列 视频| 少妇的丰满在线观看| 在线天堂中文资源库| 熟女人妻精品中文字幕| 日本vs欧美在线观看视频| 亚洲国产精品999| 欧美人与性动交α欧美软件 | 又黄又爽又刺激的免费视频.| 青青草视频在线视频观看| 国产成人精品无人区| 久久人人97超碰香蕉20202| 男女国产视频网站| 欧美日韩一区二区视频在线观看视频在线| 国产69精品久久久久777片| 又粗又硬又长又爽又黄的视频| 五月开心婷婷网| 久久人人爽人人片av| 一本色道久久久久久精品综合| 日本黄色日本黄色录像| 九色亚洲精品在线播放| 一级毛片 在线播放| 亚洲精品美女久久久久99蜜臀 | 国产国语露脸激情在线看| kizo精华| 老司机亚洲免费影院| 国产国语露脸激情在线看| 熟女av电影| 中文乱码字字幕精品一区二区三区| 成人国产麻豆网| 欧美激情 高清一区二区三区| 免费日韩欧美在线观看| 一区二区av电影网| a级片在线免费高清观看视频| 免费日韩欧美在线观看| 少妇人妻 视频| 人人妻人人爽人人添夜夜欢视频| av女优亚洲男人天堂| 草草在线视频免费看| 欧美+日韩+精品| 男人爽女人下面视频在线观看| 极品人妻少妇av视频| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久精品电影小说| 少妇人妻久久综合中文| 亚洲精品美女久久久久99蜜臀 | 日本午夜av视频| 午夜免费观看性视频| 夜夜骑夜夜射夜夜干| 99热国产这里只有精品6|