• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Construction method of Chinese sentential semantic structure

    2015-04-24 05:30:24LUOSenlin羅森林HANLei韓磊PANLimin潘麗敏WEIChao魏超
    關(guān)鍵詞:韓磊周知電文

    LUO Sen-lin(羅森林), HAN Lei(韓磊), PAN Li-min(潘麗敏),, WEI Chao(魏超)

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 10081, China)

    ?

    Construction method of Chinese sentential semantic structure

    LUO Sen-lin(羅森林)1, HAN Lei(韓磊)1, PAN Li-min(潘麗敏)1,, WEI Chao(魏超)1

    (School of Information and Electronics, Beijing Institute of Technology, Beijing 10081, China)

    A new method is proposed for constructing the Chinese sentential semantic structure in this paper. The method adopts the features including predicates, relations between predicates and basic arguments, relations between words, and case types to train the models of CRF++ and dependency parser. On the basis of the data set in Beijing Forest Studio-Chinese Tagged Corpus (BFS-CTC), the proposed method obtains precision value of 73.63% in open test. This result shows that the formalized computer processing can construct the sentential semantic structure absolutely. The features of predicates, topic and comment extracted with the method can be applied in Chinese information processing directly for promoting the development of Chinese semantic analysis. The method makes the analysis of sentential semantic analysis based on large scale of data possible. It is a tool for expanding the corpus and has certain theoretical research and practical application value.

    sentential semantic structure; Chinese sentential semantic model; conditional random field; dependency parse

    There are three levels for the computer to “understand” a sentence: the lexical level, the grammar level and the semantic level. When the computer is able to “understand” the sentence on one of the levels, it would analysis the language works based on the linguistic features. Since last 80s, the main emphasis of natural language processing (NLP) research has shifted to the semantic annotation and there has been a revived interest in semantic parsing by applying statistical and machine learning methods.

    Many researchers have been working on this and some forms on semantic level have been proposed by now. One of the forms is the FrameNet project[1]which began in 1997 at University of California Berkeley, based on frame semantics. You Liping[2-3]used it to build Chinese vocabulary knowledge base using dependency grammar for sentences process. Another form is the PropBank project[4-5]. It tags the semantic role on the syntax tree node of Penn TreeBank[6]to realize the shallower level of semantic representation using case grammar for sentences process[7]. Focused on analyzing Chinese sentential semantic, another form called Chinese sentential semantic model (CSM) whose instantiate object for a sentence is sentential semantic structure (SSS) is proposed[8]. CSM is the structure expression of components and relations of components based on Chinese semantics[9]. In 2012, a CSM corpus named Beijing Forest Studio-Chinese Tagged Corpus (BFS-CTC)[10-11], which has been constructed since October, 2009, is made public. With the emerging of CSM and BFS-CTC, there are a lot of aspects to be studied. In this paper, a method for auto-constructing SSS is proposed.

    1 Chinese sentential semantic model

    1.1 Basic form

    CSM is generated from a logical structure as shown in Fig.1. It consists of topic which is composed of argument, and comment that is composed of predicate and argument.

    Fig.1 Logical structure of CSM

    In general, CSM is divided into four levels, i.e. sentential type level, description level, object level and detail level. The sentential type level describes the sentential semantic type, which indicates the complexity and the amount of layers. As the first division of CSM, the description level indicates the objects described (i.e. topic) of a sentence and the description of the objects (i.e. comment). The object level is a further division of topic and comment. Each object corresponds to a predicate or an argument, in the form of word, phrase or sub-sentence. The predicate and the basic argument related directly to the topic and comment constitute the basic framework of CSM. A common argument is used to describe and restrict the predicate and the basic argument, such as restricting time, place, scope, etc. And, a common argument can also be used for modifying another common argument.

    The detail level describes the object with more details than the object level, however does not belong to the basic form of CSM. Thus CSM uses the dotted line to indicate that the detail property has no direct relationship with components. Detail level, which is extensible, is applied to describe objects’ properties, scope, nature, etc. Not all of the components are required to be described by the detail property, so not all objects have the detail properties. In addition, there are several specific properties need to be described at present, including the predicate aspect and the space scope information which can be obtained from the meaning of the word.

    1.2 Sentential semantic types

    Based on Chinese semantics, the SSS covers four types, namely simple sentential semantic, complex sentential semantic, compound sentential semantic and multiple sentential semantic. Simple sentential semantic only expresses one proposition, whereas complex and compound sentential semantic express more, in that they both contain no less than one simple sentential semantic, acting as the sub-structure. Multiple sentential semantic contains no less than one complex or compound sentential semantic structure as the sub-structure, which again includes simple sentential semantic. Thus, simple sentential semantic is defined as the basic unit and its form is the basic form. The other three forms are extensions of the basic form.

    In a sentence of complex sentential semantic, a sub-sentence of the basic unit acts as a basic or common argument. As a simple example, in the sentence of

    拒絕(refuse)零食(snacks)完全(absolutely)沒有(no)必要(necessary).

    “Refusing to snacks is absolutely unnecessary.”

    A sentential semantic analysis will represent the sub-sentence “拒絕零食 (refusing to snacks)” as the agentive case (basic argument) of the sentence, and this sub-sentence belongs to the sentences of simple sentential semantic in Chinese.

    The sub-sentence of basic unit is acting as a clause in a sentence of compound sentential semantic. For example, in the sentence of

    中國隊(Chinese team)輸?shù)?lost)了(LE)比賽(competition), *pro*球(football)迷們(fans)很(awfully)傷(hurt)心(heart).

    “Chinese team lost the competition, which hurt football fans’ feelings awfully.”

    The two clauses “中國隊輸?shù)袅吮荣?(Chinese team lost the competition)” and “球迷們很傷心 (which hurt awfully their fans’ feelings)” are forming a compound sentence, and the two clauses are both the sentences with simple sentential semantic. The sub-sentence of a multiple sentence is a sentence with complex or compound sentential semantic, thus, the nested multilayer sentential structure might exist. For example, in the sentence of

    法塔赫(Fatah)把(BA)阿巴斯(Abbas)打造(make)成為(become)現(xiàn)在(now)最(most)具(with)影響力(influence)的(DE)政治(politics)人物(figure).

    “Fatah makes Abbas become the most influential political figure nowadays.”

    It contains a complex sub-sentence “成為現(xiàn)在最具影響力的政治人物 (become the most influential political figure nowadays)” as the result case (basic argument), in which it again contains a sub-sentence of simple sentential semantic that is “現(xiàn)在最具影響力 (the most influential political figure nowadays)” as the description case (common argument).

    1.3 Comparison with FrameNet and Propbank

    Nowadays, semantic analysis researches focus on word sense disambiguation (WSD)[15]and semantic role labeling (SRL)[16]. Generally, CSM expresses formally the sentences’ components, coupled with their syntagmatic relations (Tab.1).

    The examples of FrameNet and PropBank are shown in Fig.2 and Fig.3 separately.

    Compared with FramNet and PropBank, CSM has more semantic features: the sentential semantic type, the topic and comment, the relations among all components of the sentential semantic and the detail properties et al. The most unique character is that the CSM is a method to analyze the semantic of whole sentence.

    Tab.1 Distinctions and connections among FrameNet, Propbank and CSM

    Fig.2 Form of FrameNet

    Fig.3 Form of PropBank

    2 Constructing method

    The proposed method constructs sentential semantic structure by using dependency parser and CRF++. There are three main procedures, namely CRF++ training and testing, dependency training and testing and SSS constructing. The principle of the method is shown in Fig.4.

    Fig.4 Principle of the method

    2.1 CRF++ training and testing

    CRF++[12]is applied to obtain the predicates, case types, relations among predicates and basic arguments (R2), and meaningless words. Four models, also called model set, are adopted to tackle different tasks. In the procedure, the data are translated to one word per line format. The sentence of “余程萬師長立即將孫長官電文公布周知。(Division commander Yu Chengwan made public the consolation telegraph from commander Sun immediately.)” is illustrated for an

    example in Tab.2. In Tab.2, the first column is the word order (WO) in a sentence labeled from 1. The 5thcolumn represents the meaningless word (M). The 6thcolumn namedR2is the case type defined by BFS-CTC.R2contains 5 types of predicates and 4 types of basic arguments. The 5 types of predicates and 4 types of basic arguments are shown in Fig.5 and Fig.6 respectively. There are four training processes corresponding to the model set, namely predicate training, meaningless word training,R2training and case type training. The first 4 columns serve as the input to achieve predicate training. The label P in the 4thcolumn means the word in the line is a predicate. The first 5 columns which 0 means meaningless are as the input to achieve meaningless word training. The first 6 columns are as the input to achieveR2training. The label BTS, BC and C in the table means ①, ② in Fig.6 and ① in Fig.5. All of the columns in Tab.2 are as the input to achieve case type training. There are 7 basic cases and 12 common cases in BFS-CTC. Each training process above has unique template and parameters.

    There are 4 steps in testing stage. The sentence in Tab.2 is chosen to illustrate. Firstly, in order to get predicates, the first 3 columns of Tab.2 are used. Secondly, the meaningless words are tested with the output of the first step as input. Thirdly, theR2is tested with the output of the second step as input. At last, the case types

    Tab.2 One word per line format of a sentence

    Fig.5 Five types of predicates

    Fig.6 Fourtypes of basic arguments

    are tested with the output of the third step as input. The output is the Tab.2.

    2.2 Dependency training and testing

    The dependency parser[13-14]is applied to obtain the relations between words (R1). According to the CSM, the relations between words in a sentence are defined as the follows: ① each word only has one father word and several words may have the same father word; ② only a main predicate which expresses the core semantic of the sentence is the root word; ③ no meaningless words are allowed in CSM. There is a little difference from dependency parsing. Therefore, the meaningless words should be removed firstly. While in training stage, the data are translated to CoNLL-2009 one word per line format. The output is relations between words in a sentence without meaningless words. Some of the preposition and auxiliary (e.g., “的(of)”) are defined as the meaningless words according to CSM.

    2.3 SSS constructing

    The inputs of SSS constructing are the previous results. The SSS of “余程萬師長立即將孫長官電文公布周知。(Division commander Yu Chengwan made public the consolation telegraph from commander Sun immediately.)” in Tab.2 is shown as Fig.7. Firstly, the results ofR2are employed to construct the main frame of the CSM. Secondly, the results ofR1are employed to connect the words. At last, the case types are attached to the SSS. In addition, the sentential semantic type is decided by the number of predicates.

    Fig.7 Sentential semantic structure of a sentence

    3 Experiment

    Two experiments are designed to choose the CRF++ training parameters and verify the method, namely parameters selection and method assessment.

    3.1 Data set

    The data set is the 10 000 sentences in BFS-CTC. The number of words in a sentence is 17.9 on the average. The maximum number of words in a sentence is 53 and the minimum number is 3.

    3.2 Evaluate

    There are three values to evaluate the result of experiments, namely precision (P), recall (R) andF1(F). The SSS and the components of the SSS are defined as semantic tree and nodes respectively. The computing process begins from the root node of CSM. It recursively compares the child nodes between the annotated and tested CSM.Cis defined as the number of correct tested nodes which mean the annotated and tested nodes are the same;Tis defined as the number of all tested nodes;Lis defined as the number of all annotated nodes. The formulas for calculating the value ofP,RandFare asP=C/T,R=C/LandF=2PR/(P+R).

    3.3 Results

    3.3.1 Parameters selection

    For training parameters of 4 CRF++ models, the grid method is applied to select the bestCandF. The value ofCranges from 0.2 to 6 with the step length of 0.2. The value ofFranges from 1 to 5 with the step length of 1. The parameters which have the highest precision in testing are used to train the models. Take the model for predicates testing as an example to show the parameter choosing result. Nine features are used for the model training, including POS, word etc. Based on these features, the part of results of precision are shown in Fig.8. The best result is 98.7% for predicates testing whenCequals 0.6 or 0.8 andFequals 2 or 3. Considering theCvalue is the smaller the better,Cvalue of 0.6 andFvalue of 3 are chosen to train the model. The process of selecting parameters of the other 3 models is the same.

    Fig.8 Part of the parameters selection results of predicate training

    3.3.2 Method assessment

    In the close test of semantic tree, the values of precision, recall andF1of 10 experimental groups are shown in Fig.9. The average values of precision, recall andF1are 95.83%, 96.47% and 0.961 5 respectively. In the open testing, the results are shown in Fig.10. The average values of precision, recall andF1are 73.63%, 71.81% and 0.727 1 respectively.

    Fig.9 Close testresult of sentential semantic structure

    Fig.10 Open test result of sentential semantic structure

    The results of each procedure in close and open test are shown in Fig.11 and Fig.12. The abbreviations in the figures are the same as in Tab.2. Since the number ofR1between tested and annotated is the same, the precision value is recorded only.

    Fig.11 Each procedure in close test

    Fig.12 Each procedure in open test

    The result in close test is better than that in open test. According to the figures, the values of predicate and meaningless word change a little between close and open test. Meanwhile, the values ofR1,R2and type decrease evidently in open test. This may be caused by the following reasons. Firstly, the meaningless words are excluded inR1testing, which is different from dependency parsing. Secondly,R2and case types testing are all multiple classification problems. The machine learning algorithms directly used in the method may not be fit enough. In a word, semantic analysis is a difficult task and this is the first method to analyze SSS. There are some issues to be improved in future research.

    4 Conclusions

    Chinese sematic analysis is one of the significant aspects in natural language processing. Devoting to automatic analyzing the Chinese sentential semantic model in BFS-CTC, a method based on CRF++ and transition-based parser is proposed. On the basis of CRF++, the method acquires the predicates, relations between predicates and basic cases, and type of cases. Meanwhile, the method applies the dependency parser to acquire the relations between words in a sentence. By using the information above, the proposed method constructs the SSS of a sentence. Two experiments are designed to choose the training parameters and verify the valid of the method based on BFS-CTC. The results show that the method can auto-construct SSS of a sentence absolutely and provide more semantic features as sentential semantic types, topic and comment et al. which can be used in Chinese analysis applications. Meanwhile, the method makes the SSS analysis of a sentence for large scale data possible. The method is a tool both for applications and expanding the corpus.

    Studying how the method could be applied to applications will be the next step. The CSM provides many semantic features, such as the sentential semantic type, the topic and comment, and the predicates and arguments. Based on these semantic features provided by the proposed method, the performance of the applications would be promoted.

    [1] Baker C F,Fillmore C J, LoweJ B.The berkeley frameNet project [C]∥ACL’98 Proceedings of the 36th Annual Meeting of the Association for Computational Linguistics and 17th International Conference on Computational Linguistics, Stroudsburg, PA, USA,1998.

    [2] You Liping. A research on the construction of Chinese FrameNet [D]. Shanghai: Shanghai Normal University, 2006.(in Chinese)

    [3] You Liping,Liu Kaiying.Building Chinese FrameNet database[C]∥Natural Language Processing and Knowledge Engineering, NJ, USA, 2005.

    [4] Palmer M,Gildea D, Kingsbury P. The proposition bank: an annotated corpus of semantic roles[J]. Computational Linguistics,2005, 31(1):71-106.

    [5] Palmer M,Xue N, Babko-Malaya O, et al.A parallel Proposition Bank Ⅱ for Chinese and English[C]∥In Proceedings of the Workshop on Frontiers in Corpus Annotations II: Pie in the Sky , Stroudsburg, PA, USA,2005.

    [6] Xue N, Xia F, Chiou F, et al. The penn Chinese treebank: phrase structure annotation of a large corpus[J]. Natural Language Engineering, 2003, 11: 207-38.

    [7] Yuan Yulin. The fineness hierarchy of semantic roles and its application in NLP[J]. Journal of Chinese Information Processing, 2007, 21(4):10-20. (in Chinese)

    [8] Luo Senlin, Han Lei, Pan Limin, et al. Chinese sentential semantic mode and verification [J]. Transactions of Beijing Institute of Technology, 2013, 33(2): 166-171. (in Chinese)

    [9] Jia Yande. Chinese semantics[M].Beijng: Peking University Press, 2005: 249-265. (in Chinese)

    [10] Luo Senlin, Liu Yingying, Feng Yang, et al. Method of building BFS-CTC: a Chinese tagged corpus of sentential semantic structure[J]. Transactions of Beijing Institute of Technology, 2012, 32(3): 311-315. (in Chinese)

    [11] Liu Yingying, Luo Senlin, Feng Yang, et al. BFS-CTC: A Chinese corpus of sentential semantic structure [J]. Journal of Chinese Information Processing, 2013, 27(1): 72-80. (in Chinese)

    [12] Lafferty J, McCallum A, Pereira F. Conditional random fields: probabilistic models for segmenting and labeling sequence data [C]∥Proceedings of the 18th International Conference on Machine Learning 2001 (ICML 2001), San Francisco, CA, USA, 2001.

    [13] Bohnet B,Nivre J. A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing [C]∥EMNLP-CoNLL, Stroudsburg, PA, USA, 2012.

    [14] Bohnet B,Kuhn J.The best of bothworlds-a graph-based completion model for transition-based parsers [C]∥Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics (EACL), Stroudsburg, PA, USA, 2012.

    [15] Chen P, Bowes C, Ding W, et al. Word sense disambiguation with automatically acquired knowledge[J]. IEEE Intelligent Systems, 2012, 27(4): 46-55.

    [16] Gildea D, Jurafsky D.Automatic Labeling of semantic roles [J]. Computaional Linguistics, 2002, 28(3): 245-288.

    (Edited by Cai Jianying)

    10.15918/j.jbit1004-0579.201524.0116

    TP 391.1 Document code: A Article ID: 1004- 0579(2015)01- 0110- 08

    Received 2013- 07- 23

    Supported by the Science and Technology Innovation Plan of Beijing Institute of Technology (2013)

    E-mail: panlimin_bit@126.com

    猜你喜歡
    韓磊周知電文
    一種與內(nèi)部缺陷儀設(shè)備通訊的接口模塊
    ADS-B延遲轉(zhuǎn)發(fā)電文檢測及干擾臺定位方法
    暗夜交響曲(二)
    花火B(yǎng)(2018年11期)2018-02-26 13:32:36
    魚在熱水中游
    亦葷亦素
    健康女性(2017年3期)2017-04-27 22:18:20
    衛(wèi)星導(dǎo)航系統(tǒng)導(dǎo)航電文編排結(jié)構(gòu)研究
    An ocean circulation model based on Eulerian forward-backward difference scheme and three-dimensional, primitive equations and its application in regional simulations*
    家長該從韓磊摔嬰案中反思什么?
    海峽姐妹(2014年2期)2014-02-27 15:09:03
    本刊啟事
    一種內(nèi)容固定與可變相結(jié)合的導(dǎo)航電文結(jié)構(gòu)
    久久人人精品亚洲av| av在线天堂中文字幕| 国产亚洲精品久久久com| 精品99又大又爽又粗少妇毛片| 看片在线看免费视频| 日本黄色视频三级网站网址| 久久久久久久久大av| 青青草视频在线视频观看| 国产精品一区www在线观看| av黄色大香蕉| 三级男女做爰猛烈吃奶摸视频| 国产 一区精品| 久久久久久久午夜电影| 久久久色成人| 黄色欧美视频在线观看| 99视频精品全部免费 在线| 男女下面进入的视频免费午夜| 一级毛片电影观看 | 人妻系列 视频| 国产欧美日韩精品一区二区| 国产三级中文精品| 国国产精品蜜臀av免费| 简卡轻食公司| 久久久欧美国产精品| 一区二区三区高清视频在线| 97在线视频观看| 亚洲精品国产av成人精品| 久久久久久久久久久丰满| 欧美激情久久久久久爽电影| 草草在线视频免费看| 亚洲精品粉嫩美女一区| 色哟哟·www| 国产午夜精品论理片| 国产在视频线在精品| 欧美xxxx性猛交bbbb| 99久久人妻综合| 国产伦精品一区二区三区四那| 久久精品国产亚洲av涩爱 | 91久久精品国产一区二区三区| 国产高清有码在线观看视频| 日本一二三区视频观看| 欧美色欧美亚洲另类二区| 欧美高清性xxxxhd video| 99热精品在线国产| 天天一区二区日本电影三级| 天堂中文最新版在线下载 | 久久婷婷人人爽人人干人人爱| 国产黄a三级三级三级人| 日韩成人av中文字幕在线观看| 一本久久中文字幕| 日本撒尿小便嘘嘘汇集6| 国内久久婷婷六月综合欲色啪| 欧美潮喷喷水| 白带黄色成豆腐渣| 久久久久久九九精品二区国产| 色噜噜av男人的天堂激情| 亚洲精品国产成人久久av| 天天躁日日操中文字幕| 成人av在线播放网站| 国产日本99.免费观看| 中出人妻视频一区二区| 老师上课跳d突然被开到最大视频| 女人十人毛片免费观看3o分钟| av视频在线观看入口| av卡一久久| 一本一本综合久久| 日本撒尿小便嘘嘘汇集6| 亚洲不卡免费看| 亚洲欧美日韩高清在线视频| 99久久精品一区二区三区| 人人妻人人看人人澡| 亚洲国产精品合色在线| 久久精品91蜜桃| 蜜臀久久99精品久久宅男| 久久精品国产自在天天线| 男女下面进入的视频免费午夜| 一边亲一边摸免费视频| 亚洲成a人片在线一区二区| 色5月婷婷丁香| 国产午夜精品久久久久久一区二区三区| 国产精品精品国产色婷婷| 麻豆av噜噜一区二区三区| 精品少妇黑人巨大在线播放 | 狠狠狠狠99中文字幕| 精品国产三级普通话版| 午夜免费激情av| 男女那种视频在线观看| 国产三级中文精品| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 内射极品少妇av片p| av国产免费在线观看| 少妇猛男粗大的猛烈进出视频 | 精品日产1卡2卡| 日韩视频在线欧美| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品一区二区性色av| 91av网一区二区| 天堂√8在线中文| 最近视频中文字幕2019在线8| 日韩欧美三级三区| 床上黄色一级片| 精品久久国产蜜桃| 久久久久久大精品| 亚洲七黄色美女视频| 岛国在线免费视频观看| 91久久精品国产一区二区成人| 亚洲av免费高清在线观看| 欧美另类亚洲清纯唯美| 少妇的逼水好多| 99久久久亚洲精品蜜臀av| 永久网站在线| 国产亚洲av片在线观看秒播厂 | www.av在线官网国产| 国产免费男女视频| 亚洲电影在线观看av| 精品一区二区三区人妻视频| 国产乱人视频| 精品国产三级普通话版| 床上黄色一级片| 国产av不卡久久| 亚洲aⅴ乱码一区二区在线播放| 少妇人妻精品综合一区二区 | 日韩人妻高清精品专区| 亚洲av.av天堂| 一边摸一边抽搐一进一小说| 美女被艹到高潮喷水动态| 亚洲精品自拍成人| 欧美zozozo另类| 午夜久久久久精精品| 1000部很黄的大片| 69av精品久久久久久| 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 一夜夜www| 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| 精品久久国产蜜桃| 色尼玛亚洲综合影院| 日本-黄色视频高清免费观看| 97在线视频观看| 极品教师在线视频| 人体艺术视频欧美日本| a级毛片a级免费在线| 男人狂女人下面高潮的视频| 精品一区二区三区人妻视频| 两个人视频免费观看高清| 国产av一区在线观看免费| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 可以在线观看的亚洲视频| 国产午夜精品论理片| 男女做爰动态图高潮gif福利片| 美女cb高潮喷水在线观看| 99热精品在线国产| av国产免费在线观看| 天天躁日日操中文字幕| 国产激情偷乱视频一区二区| 精华霜和精华液先用哪个| videossex国产| 国产伦精品一区二区三区四那| 黄片无遮挡物在线观看| 毛片女人毛片| 精品少妇黑人巨大在线播放 | 卡戴珊不雅视频在线播放| 国内久久婷婷六月综合欲色啪| 一级黄色大片毛片| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 日本-黄色视频高清免费观看| 国产精品爽爽va在线观看网站| 中出人妻视频一区二区| 全区人妻精品视频| 变态另类丝袜制服| 欧美高清性xxxxhd video| 亚洲欧美精品自产自拍| 综合色丁香网| 国产精品电影一区二区三区| 精品国产三级普通话版| 精品无人区乱码1区二区| h日本视频在线播放| 特大巨黑吊av在线直播| 在线观看66精品国产| 久久久久久国产a免费观看| 99久国产av精品| 成人特级黄色片久久久久久久| 变态另类丝袜制服| 天堂影院成人在线观看| 国产真实伦视频高清在线观看| 亚洲高清免费不卡视频| 亚洲精华国产精华液的使用体验 | 一本精品99久久精品77| 美女大奶头视频| 男人的好看免费观看在线视频| 97超碰精品成人国产| 男人舔女人下体高潮全视频| 日韩一区二区三区影片| .国产精品久久| 国产一区二区在线av高清观看| 久久久国产成人精品二区| 亚洲成人av在线免费| 哪里可以看免费的av片| 久久久久久久久久久丰满| 亚洲精品亚洲一区二区| 99久久精品国产国产毛片| 欧美日本视频| 一边亲一边摸免费视频| 尤物成人国产欧美一区二区三区| 亚洲自拍偷在线| 国产亚洲av嫩草精品影院| 欧美人与善性xxx| 久久久久久久久久黄片| 桃色一区二区三区在线观看| 欧美一区二区精品小视频在线| 女人十人毛片免费观看3o分钟| 啦啦啦韩国在线观看视频| 久久99蜜桃精品久久| 亚洲四区av| 日韩,欧美,国产一区二区三区 | 人妻少妇偷人精品九色| 你懂的网址亚洲精品在线观看 | 免费看日本二区| 变态另类成人亚洲欧美熟女| 美女黄网站色视频| 99久久无色码亚洲精品果冻| 亚洲成人精品中文字幕电影| 亚洲欧洲日产国产| 一边摸一边抽搐一进一小说| 直男gayav资源| 日韩大尺度精品在线看网址| 插逼视频在线观看| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 成人av在线播放网站| 中文在线观看免费www的网站| 国产精品久久久久久久电影| 久久精品国产亚洲av香蕉五月| 成人特级av手机在线观看| 国产精品久久久久久av不卡| 中文字幕制服av| 亚洲,欧美,日韩| 欧美日本亚洲视频在线播放| 舔av片在线| 国产91av在线免费观看| 日韩国内少妇激情av| 亚洲av电影不卡..在线观看| 亚洲欧美成人精品一区二区| 亚洲国产高清在线一区二区三| 哪里可以看免费的av片| 精品久久久久久久末码| 国产在视频线在精品| 成年版毛片免费区| 国产精品av视频在线免费观看| 长腿黑丝高跟| 国产亚洲精品久久久com| 成人美女网站在线观看视频| 精品不卡国产一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 欧美一区二区国产精品久久精品| 最近的中文字幕免费完整| 午夜久久久久精精品| 你懂的网址亚洲精品在线观看 | 国产午夜精品久久久久久一区二区三区| 精品久久国产蜜桃| 一级黄片播放器| 亚洲中文字幕日韩| 在线观看午夜福利视频| 婷婷亚洲欧美| 免费大片18禁| 中国美白少妇内射xxxbb| 黑人高潮一二区| 亚洲av电影不卡..在线观看| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看 | 亚洲av免费在线观看| 国产精品蜜桃在线观看 | 亚洲欧美日韩高清专用| 欧美三级亚洲精品| 日韩av在线大香蕉| 欧美日韩国产亚洲二区| 国产一区二区三区在线臀色熟女| 久久久久久久久久久丰满| 边亲边吃奶的免费视频| 中国国产av一级| 一卡2卡三卡四卡精品乱码亚洲| 色哟哟哟哟哟哟| 国产黄a三级三级三级人| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 人人妻人人澡欧美一区二区| 青青草视频在线视频观看| 国产精品久久电影中文字幕| 国内少妇人妻偷人精品xxx网站| 舔av片在线| 久久久久网色| 蜜桃亚洲精品一区二区三区| 日韩成人伦理影院| 91麻豆精品激情在线观看国产| 午夜激情福利司机影院| 少妇高潮的动态图| 亚洲av成人av| 蜜桃亚洲精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 夜夜爽天天搞| 日韩成人伦理影院| 久久久久久伊人网av| 欧美xxxx性猛交bbbb| 久久久久久久久久久免费av| 97在线视频观看| 亚洲久久久久久中文字幕| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 99久久精品一区二区三区| 日本色播在线视频| 99热这里只有是精品在线观看| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 五月玫瑰六月丁香| 一级黄片播放器| 久久久久国产网址| 99久久中文字幕三级久久日本| 国产精品美女特级片免费视频播放器| 国产亚洲精品av在线| 久久这里只有精品中国| 熟女人妻精品中文字幕| 日本熟妇午夜| 久久中文看片网| 麻豆国产av国片精品| 精品少妇黑人巨大在线播放 | 悠悠久久av| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说 | 亚洲内射少妇av| 人妻少妇偷人精品九色| 99久久精品一区二区三区| 国内少妇人妻偷人精品xxx网站| 日本免费a在线| 99热这里只有是精品在线观看| 三级男女做爰猛烈吃奶摸视频| 亚洲熟妇中文字幕五十中出| 国产老妇伦熟女老妇高清| 日韩在线高清观看一区二区三区| 哪个播放器可以免费观看大片| 免费搜索国产男女视频| 免费人成在线观看视频色| 草草在线视频免费看| 日韩一区二区三区影片| 欧美区成人在线视频| 六月丁香七月| 亚洲人成网站在线播放欧美日韩| 能在线免费看毛片的网站| 亚洲av二区三区四区| 久久久久久国产a免费观看| 精品无人区乱码1区二区| 一级毛片我不卡| 国产中年淑女户外野战色| 久久这里有精品视频免费| 日日啪夜夜撸| 久久久久九九精品影院| 天堂影院成人在线观看| 久久精品久久久久久久性| 伊人久久精品亚洲午夜| av国产免费在线观看| 亚洲欧美清纯卡通| 搞女人的毛片| 欧美日韩在线观看h| 日日啪夜夜撸| 我要看日韩黄色一级片| 欧美3d第一页| 国产精品久久久久久久电影| 久久久久久大精品| 青春草国产在线视频 | 亚洲av中文av极速乱| 欧美日韩乱码在线| 蜜桃久久精品国产亚洲av| 夫妻性生交免费视频一级片| 久久久精品94久久精品| 亚洲一区高清亚洲精品| 国产伦理片在线播放av一区 | 久久久国产成人免费| 看黄色毛片网站| 2022亚洲国产成人精品| 六月丁香七月| 久久这里有精品视频免费| 亚洲成人中文字幕在线播放| 成人av在线播放网站| 国产午夜福利久久久久久| 97热精品久久久久久| 日韩大尺度精品在线看网址| 精品久久久久久久久av| 久久亚洲国产成人精品v| 超碰av人人做人人爽久久| 成人永久免费在线观看视频| 亚洲av熟女| 成年版毛片免费区| 亚洲欧美清纯卡通| ponron亚洲| 午夜激情福利司机影院| 美女大奶头视频| 99热这里只有精品一区| 日韩欧美一区二区三区在线观看| 十八禁国产超污无遮挡网站| 哪里可以看免费的av片| 国产亚洲精品av在线| 午夜亚洲福利在线播放| 一个人看的www免费观看视频| 美女内射精品一级片tv| 国产成人精品久久久久久| 好男人在线观看高清免费视频| 国产精品综合久久久久久久免费| 99热这里只有是精品在线观看| 亚洲欧美日韩无卡精品| 国产精品永久免费网站| 国产精品一区二区三区四区久久| 成人综合一区亚洲| 亚洲精品国产成人久久av| 91狼人影院| 搡老妇女老女人老熟妇| 三级男女做爰猛烈吃奶摸视频| 男人的好看免费观看在线视频| av在线蜜桃| 国产黄色视频一区二区在线观看 | 一个人免费在线观看电影| 欧美激情久久久久久爽电影| 亚洲va在线va天堂va国产| 天堂中文最新版在线下载 | 亚洲电影在线观看av| 在线免费十八禁| 国产精品久久久久久亚洲av鲁大| 晚上一个人看的免费电影| 日韩制服骚丝袜av| 日韩大尺度精品在线看网址| 成人漫画全彩无遮挡| 天天一区二区日本电影三级| 午夜老司机福利剧场| 成年女人看的毛片在线观看| 51国产日韩欧美| 村上凉子中文字幕在线| 国产精品久久电影中文字幕| 国产精品人妻久久久影院| 看片在线看免费视频| 欧美一区二区亚洲| 欧美最新免费一区二区三区| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 日韩欧美 国产精品| 亚洲va在线va天堂va国产| 国产精品.久久久| 搡老妇女老女人老熟妇| 久久亚洲国产成人精品v| 色综合站精品国产| 亚洲性久久影院| 少妇猛男粗大的猛烈进出视频 | 狂野欧美白嫩少妇大欣赏| 黄片无遮挡物在线观看| 99久久成人亚洲精品观看| 国产成人精品婷婷| 欧美+日韩+精品| 毛片一级片免费看久久久久| 国产免费一级a男人的天堂| 久久久久性生活片| 亚洲精品成人久久久久久| 免费看av在线观看网站| 日产精品乱码卡一卡2卡三| 美女 人体艺术 gogo| 两个人的视频大全免费| 久久午夜福利片| 国产精品.久久久| 91在线精品国自产拍蜜月| 久久久久久久久久成人| or卡值多少钱| 国产激情偷乱视频一区二区| 久久精品影院6| 一本精品99久久精品77| 九九久久精品国产亚洲av麻豆| 一卡2卡三卡四卡精品乱码亚洲| av免费观看日本| 亚洲一区高清亚洲精品| 国产精品久久久久久亚洲av鲁大| 国产麻豆成人av免费视频| 国产高潮美女av| av女优亚洲男人天堂| 寂寞人妻少妇视频99o| 亚洲精品国产av成人精品| 国产亚洲精品久久久久久毛片| videossex国产| av天堂中文字幕网| 亚洲婷婷狠狠爱综合网| 亚洲av二区三区四区| 男女视频在线观看网站免费| 亚洲欧美日韩东京热| а√天堂www在线а√下载| 欧美+日韩+精品| 我要搜黄色片| 99视频精品全部免费 在线| 欧美xxxx性猛交bbbb| 久久精品国产自在天天线| 国产成人a区在线观看| 黄色视频,在线免费观看| 白带黄色成豆腐渣| 能在线免费观看的黄片| 久久精品久久久久久噜噜老黄 | 亚洲成人久久性| 国产精品伦人一区二区| 日本色播在线视频| 亚洲av不卡在线观看| 最新中文字幕久久久久| 1024手机看黄色片| 免费看av在线观看网站| 国产精品久久久久久亚洲av鲁大| 久久午夜亚洲精品久久| 欧美区成人在线视频| 欧美成人a在线观看| 国语自产精品视频在线第100页| 少妇猛男粗大的猛烈进出视频 | 国产女主播在线喷水免费视频网站 | 别揉我奶头 嗯啊视频| 午夜a级毛片| 日本三级黄在线观看| 99久久精品热视频| 日韩欧美国产在线观看| 91久久精品电影网| 久久这里只有精品中国| 午夜精品国产一区二区电影 | 日本黄大片高清| 能在线免费看毛片的网站| 美女脱内裤让男人舔精品视频 | 国产探花在线观看一区二区| 中文精品一卡2卡3卡4更新| 可以在线观看毛片的网站| 亚洲内射少妇av| 小蜜桃在线观看免费完整版高清| 欧美性猛交黑人性爽| 中文字幕av在线有码专区| 久久久精品欧美日韩精品| 91狼人影院| 亚洲av第一区精品v没综合| 少妇高潮的动态图| 久久午夜福利片| 在线天堂最新版资源| 久久久久网色| 日韩av不卡免费在线播放| 又爽又黄无遮挡网站| av又黄又爽大尺度在线免费看 | 天堂中文最新版在线下载 | av在线观看视频网站免费| 亚洲天堂国产精品一区在线| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 久久久国产成人精品二区| 亚洲18禁久久av| 国内精品一区二区在线观看| 国产成人aa在线观看| 菩萨蛮人人尽说江南好唐韦庄 | 成人亚洲欧美一区二区av| 国产日本99.免费观看| 国产精品国产三级国产av玫瑰| 欧美激情国产日韩精品一区| 国产老妇伦熟女老妇高清| 男人舔女人下体高潮全视频| 赤兔流量卡办理| 性色avwww在线观看| 亚洲成人精品中文字幕电影| 黄色欧美视频在线观看| 日韩av在线大香蕉| 欧美又色又爽又黄视频| av在线老鸭窝| 两个人视频免费观看高清| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品久久男人天堂| 激情 狠狠 欧美| 精品熟女少妇av免费看| 成熟少妇高潮喷水视频| 久久精品综合一区二区三区| 在线观看免费视频日本深夜| 性欧美人与动物交配| 国产高清视频在线观看网站| 大香蕉久久网| 99热6这里只有精品| 日日撸夜夜添| 精品少妇黑人巨大在线播放 | 老司机福利观看| av免费在线看不卡| 国产免费男女视频| 可以在线观看的亚洲视频| 18禁黄网站禁片免费观看直播| 高清在线视频一区二区三区 | 日日干狠狠操夜夜爽| 男女啪啪激烈高潮av片| 亚洲天堂国产精品一区在线| 日本爱情动作片www.在线观看| 在线观看av片永久免费下载| 天堂影院成人在线观看| 一夜夜www| 大型黄色视频在线免费观看| 在线播放国产精品三级| 欧美日韩乱码在线| 精品人妻偷拍中文字幕| 老女人水多毛片| 亚洲av熟女| 99国产极品粉嫩在线观看| 男女那种视频在线观看| 亚洲国产精品成人综合色| 亚洲精品日韩在线中文字幕 | 我要搜黄色片| ponron亚洲| 最近最新中文字幕大全电影3| 成人午夜高清在线视频| 亚洲精品日韩在线中文字幕 | 校园人妻丝袜中文字幕| 日韩av不卡免费在线播放| 又黄又爽又刺激的免费视频.| 久久韩国三级中文字幕| 日本与韩国留学比较| 一级毛片aaaaaa免费看小|