• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Preparation of polyimide/LDH nanocomposites and characterization of their properties

    2015-04-24 05:30:24GUOBingzhi郭冰之ZHAOYun趙蕓LIHansheng黎漢生QIUWeizhen丘偉貞JIAOQingze矯慶澤

    GUO Bing-zhi(郭冰之), ZHAO Yun(趙蕓), LI Han-sheng(黎漢生), QIU Wei-zhen(丘偉貞), JIAO Qing-ze(矯慶澤),

    (1.School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China; 2.Beijing Institute of Technology, Zhuhai, Zhuhai 519088, China)

    ?

    Preparation of polyimide/LDH nanocomposites and characterization of their properties

    GUO Bing-zhi(郭冰之)1,2, ZHAO Yun(趙蕓)1, LI Han-sheng(黎漢生)1, QIU Wei-zhen(丘偉貞)2, JIAO Qing-ze(矯慶澤)1,2,

    (1.School of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, China; 2.Beijing Institute of Technology, Zhuhai, Zhuhai 519088, China)

    Pre-exfoliated organic layered double hydroxides(LDHs) modified with N-Lauroyl-glutamate (LDH-LG) was prepared in the O/W type microemulsion. Then exfoliated polyimide(PI)/LDH nanocomposites were prepared by in situ polymerization. The high resolution transmission electron microscope showed that the nanoscale organic LDH particles were homogeneously dispersed in the polymer matrix. The X-ray diffraction analysis showed that the addition of LDH-LG improved the crystallinity of PI. Mechanical testing showed that the mechanical properties of the PI/LDH nanocomposite films were significantly enhanced by nano-LDH sheets and 0.5% (wt)of LDH-LG led to improvement of the tensile strength by 32.5%.

    nanocomposites; polyimide; layered double hydroxides

    Because of the controllable physical and chemical properties of layered double hydroxides (LDHs), polymer/LDH nanocomposites have been widely studied. The versatility of polymer/LDH nanocomposites are expected to be applied in the fields of catalysis, flame retardant and biomedicine[1-3]. However, compared to montmorillonite, the strong electrostatic interaction between highly charged hydroxide layers and the intercalated anions hinders the exfoliation of LDH layers. There are two main methods to prepare polymer/LDH nanocomposites: one is direct intercalation of polymer chains such as polystyrene, poly(ethylene oxide) and polyamide into LDH interlayer[4-5]; the other is to insert polymer monomer such as methyl methacrylate and styrene between the LDH interlayer, then achieve exfoliated polymer/LDH nanocomposites by in situ polymerization[6-7].

    Polyimide(PI) is widely used in aerospace, electronics, microelectronics and chemical industries[8-10]due to its excellent chemical stability, thermal stability and mechanical properties. Uniformly dispersed layered inorganic nanomaterials in the PI matrix could further improve the mechanical properties and heat resistance of PI, thus broaden the application areas of PI[11-12].

    However, up to now, most studies have been focused on exfoliated PI/montmorillonite nanocomposites[11-14], with only a few reports of exfoliated PI/LDH nanocomposites in recent years. Hsueh and Chen[3]reported the preparation of LDHs/PI nanocomposites. Lü et al.[15]prepared organic ZnAl-LDH/PI electromagnetic shielding composites. Chen et al.[16]prepared PI precursor/LDH ultrathin films through a layer-by-layer self-assembly method.

    In this study, we propose a new approach to prepare the exfoliated PI/ LDH nanocomposites. Firstly, LDHs modified with N-Lauroyl-glutamate (LDH-LG) was prepared using a microemulsion method. Then, the pre-exfoliated LDH-LG layers were mixed with N, N-Dimethylformamide (DMF), pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Finally, a completely exfoliated PI/LDH nanocomposite was obtained by in situ polymerization. The microstructure, thermal and mechanical properties of PI/LDH nanocomposites were examined in details.

    1 Experimental

    1.1 Materials

    N-Lauroyl-glutamate sodium(LG-Na),was from AoKe New Material Technology Co., Ltd. (Shanghai, China). Mg(NO3)2·6H2O, Al(NO3)3·9H2O, sodium carbonate, sodium hydroxide and acetone were all purchased from Tianjin Damao Chemical Reagent (Tianjin, China). N-octane was from Tianjin Fuchen Chemical Reagents Factory (Tianjin, China). Calcium hydride was from Tianjin Beidouxing Fine Chemical Co.,Ltd. PMDA, ODA, DMF, xylene and anhydrous methanol were obtained from Alfa Aesar. PMDA and ODA were recrystallized from xylene and anhydrous methanol respectively prior to use. DMF was purified by reduced pressure distillation over calcium hydride and stored over a molecular sieve prior to use.

    1.2 Preparation of LDH-LG

    The LDH-LG was achieved in a microemulsion that was prepared as follows[17]: A mixture of 50.0 g octane and 4.5 g LG-Na was added into 58.5 mL of de-ionized water, and simultaneously maintained pH value at 10.0 by drop-wise addition of 2 mol·L-1NaOH solution. An aqueous solution containing magnesium nitrate (Mg(NO3)2) and aluminum nitrate (Al(NO3)3) with Mg2+/Al3+molar ratio of 2∶1 was added drop-by-drop into the microemulsion. To maintain the pH value of 10.0 of the system, an aqueous solution of 2 mol·L-1of NaOH was added simultaneously. The obtained slurry was stirred and kept at 85 ℃ for 24 h. The precipitates were filtered and washed with de-ionized water repeatedly to eliminate the unreacted LG-Na, and further washed three times with acetone. Most of the wet product was added to acetone to form the LDH-LG acetone suspension. A part of the wet product was dried under vacuum overnight and ground into white powders. The magnesium/aluminum layered double hydroxides (MgAl-LDHs) with molar ratio of Mg2+/Al3+=2 were synthesized by the nucleation crystallization separation method[18].

    1.3 Preparation of PI/LDH nanocomposites

    The suspension of LDH-LG in anhydrous DMF was sonicated for 3 h in an ultrasonic bath (KQ-300E,300 W, 40 kHz) at room temperature after removing acetone by rotary evaporation. Then ODA (0.500 0 g, 0.002 5 mol) was added with magnetic stirring and nitrogen protection until ODA was completely dissolved. Then PMDA (0.555 5 g, 0.002 55 mol) was added. The whole polymerization was carried out at 15 ℃ for 4 h. The mixture was cast onto a clean glass sheet using smear casting and dried at 60 ℃ for 4 h in a vacuum drying chamber to produce polyamic acid (PAA)/LDH composite membrane. Subsequently, the membrane was cured at 80, 100, 150, and 200 ℃ respectively for 1 h and at 250, 300 ℃ for 0.5 h in argon to obtain solvent-free PI/LDH nanocomposite. According to this procedure, the LDH-LG was added into the system with the respective concentration of 0.05 to 2.5%(wt) of PI. The resulting samples were named as PI, PI/LDH-1, PI/LDH-2, PI/LDH-3, PI/LDH-4 and PI/LDH-5.

    1.4 Characterization

    Fourier transform infrared (FTIR) spectra were performed on a Bruker VERTEX-70 spectrometer with a disc of KBr. The X-ray diffraction patterns were recorded on a Shimadzu XRD-6000 X-ray powder diffractometer (Cu Karadiation,λ=0.154 06 nm), the scan ranges of specimens were collected from 2θ=0.5°-70°. The morphology of LDH-LG in PI matrix was obtained using JEOL JEM-2100 transmission electron microscopy (TEM) with an accelerating voltage of 200 kV. The thermogravimetric analysis (TGA) was performed on a Shimadzu TGA-50H thermoanalyzer, the samples were examined under nitrogen atmosphere at a heating rate of 10°C/min. The tensile properties of the nanocomposites were measured on a DEW-30, AGS-J Mechanical Testing System. Sample length and width were 70 mm and 10 mm, and five specimens per measurement were averaged to obtain final value, the strain rate was 5 mm·min-1.

    2 Results and discussion

    2.1 Structure of the LDH-LG

    The structure of LDH-LG synthesized using the microemulsion method was identified by XRD patterns shown in Fig. 1 and Fig. 2. It can be seen that (003) characteristic diffraction peak of LDH materials is not observed in the range of 2°-70° and 0.5°-2°, which is usually at 2θ=11.7°. XRD data suggest that the LDHs nanoplatelets composed of a limited number of layers (1-5) would exhibit a weak and significantly broadened (003) reflection[19]. The resulting LDH-LG with no (003) reflection but the other resolved in-plane reflections shows that the LDH-LG possibly has a monolayer thickness. A similar phenomenon was also reported by Gang Hu et al[19]. In addition to the (003) peak, there is a broad reflection at 2θof around 20°, which is absent in carbonate-intercalated LDHs. This peak is attributed to the scattering of the X-rays by the carbon chain of LG[20].

    Fig.3 reveals the TGA curves of MgAl-LDHs and LDH-LG at a heating rate of 10 ℃/min. Two distinguishable weight losses of the MgAl-LDHs are observed in the range of 100-230 ℃ and 300-580 ℃. In the first one, a weight loss of 14.5% is attributed to the evaporation of the physically adsorbed and intercalated water[21]. The second step of weight loss of about 27.5% can be ascribed to the dehydroxylation of the hydroxide layers and elimination of intercalated carbonate anion[21]. The TGA data of LDH-LG exhibits similar tendency, and the temperature of weight loss is almost at the same range as that of MgAl-LDHs. In the first step, the weight loss of 14.5% from room temperature to 230 ℃ can be attributed to the loss of water. The main weigh loss stage occurred at the temperature of 300-580 ℃ is due

    Fig.1 Wide-angle XRD pattern of LDH-LG

    Fig.2 Narrow-angle XRD pattern of LDH-LG

    Fig.3 TG profiles of MgAl-LDHs and LDH-LG

    to the thermal decomposition of LG chain on the LDH layer and dehydroxylation of the LDH sheets. The remaining weight percent of the inorganic compositions of the MgAl-LDHs and LDH-LG are 54.3% and 37.8%, respectively. The total weight loss for the same region of LDH-LG is 16.5% which is higher than that for MgAl-LDHs. These results are in agreement with the XRD measurements.

    2.2 Structure of PI/LDH nanocomposites

    Fig.4 gives the XRD patterns of PI/LDH films with different LDH-LG contents. The pure PI film shows only a single broad peak at 2θ=17.6°, which is corresponding to the literature data[22-23]. Unlike pure PI, XRD patterns of PI/LDH nanocomposites with different content of LDH-LG exhibit the characteristic reflections of PI at 2θof 13.8° and 16.7°. The peak at 2θof 13.8 ° corresponds to diffraction from (101) plane of PI[8].

    a-PI/LDH-1;b-PI/LDH-2; c-PI/LDH-3;d-PI/LDH-4; e-PI/LDH-5; f-PIFig.4 XRD patterns of PI and PI/LDH nanocomposites

    No diffraction peaks for LDH-LG are observed. The intensity of peaks for PI/LDH nanocomposites varies with increasing LDH-LG contents. Because PI macromolecule is linear rigid macromolecule containing certain flexible groups, in the casting molding process, PI macromolecular chain arraying along the LDH lamellar orientation is easy to spread and orientation arrangement occurs in the external force. The percentage of crystallinity(C) is calculated using the following relation[2]:

    C=A1/A×100%

    whereAis the total area of the peaks, andA1is the total area under the diffraction pattern. The values of percentage of crystallinity of PI/LDH-1, PI/LDH-2, PI/LDH-3, PI/LDH-4, and PI/LDH-5 nanocomposite films are 39.75%, 39.86%, 40.46%, 39.95%, 38.56%, respectively. It is observed that the crystallinity of PI/LDH composites increases at first and then decreases with increasing the contents of LDH-LG nanosheets.

    TEM instrument can be directly employed to visualize the exact intercalation or exfoliation degree of filler in the polymer matrix. Fig.5 shows the HR-TEM micrograph of PI/LDH-4 nanocomposite film. The dark lines present LDH-LG platelets. The HR-TEM observation indicates the formation of completely nanoplatelet-like LDHs. Therefore the exfoliated PI/LDH nanocomposites have been successfully prepared.

    Fig.5 HR-TEM micrograph of PI/LDH-4 nanocomposite

    2.3 Thermal properties of the PI/LDH nanocomposites

    In order to better understand the effect of LDH-LG on the thermal stability of polymer matrix, TGA was used to investigate the thermal degradation of pure PI and PI/LDH nanocomposites. Typical thermogravimetric profiles of weight loss for pure PI and PI/LDH nanocomposites at a heating rate of 10 ℃/min are illustrated in Fig. 6. When 5% weight loss is selected as a point of comparison, the decomposition temperatures for pure PI, and PI/ LDH nanocomposites with 0.05, 0.25, 0.5, 1.5, and 2.5%(wt) of LDH-LG loading are determined to be 558 ℃, 558 ℃, 559 ℃, 563 ℃, 555 ℃ and 550 ℃, respectively. These results show a first increased and then decreased trend. In general, when nanoparticles are added to the polymer matrix, the thermal stability of polymer is improved. When the amount of LDH-LG is less than 0.5%(wt), the dispersion of the LDH-LG nanolayers in the PI matrix enhance the thermal resistance of the PI/LDH nanocomposites because the inorganic Mg/Al nanolayers have much higher thermal resistance than the organic PI molecules[3]. However, when the amount of LDH-LG is more than 0.5%(wt), it reduces the thermal stability of the composite material.

    a-PI/LDH-1; b-PI/LDH-2; c-PI/LDH-3; d-PI/LDH-4; e-PI/LDH-5; f-PI

    2.4 Tensile properties of PI/LDH nanocomposite film

    The tensile properties of nanocomposite films are listed in Tab.1. The tensile strength increases with increasing amount of LDH-LG up to a certain content. The maximum degree of tensile strength is observed at a LDH-LG loading of 0.5%(wt), corresponding to 32.5% increase in tensile strength compared to pure PI. This is as expected since the LDH-LG nanolayers inherently is rigid and, the nanoscale dispersion should also increase the tensile strength of polymeric systems[16]. The LG anion, grafted on the surface of the LDH nanolayers, is the connection between the LDH nanolayers and the PI matrix, increasing the compatibility between these two inorganic and organic phases. Thus, the well dispersed LDH-LG nanolayers effectively enhance the tensile strength of the PI/LDH nanocomposites. When the LDH-LG content exceeds 0.5%(wt), the tensile strength at break decreases but remains higher than that of pure PI. In this case, a few amount of LDH-LG nanolayers were aggregated to form a defect in the nanocomposites and reduce tensile strength[3].

    Tab.1 Tensile properties of PI and PI/LDH nanocomposites

    3 Conclusion

    Pre-exfoliated LDH nanoplatelets modified with N-Lauroyl-glutamate was prepared by a microemulsion method. Then LDH-LG was mixed with DMF, PMDA and ODA to obtain a completely exfoliated PI/LDH nanocomposite by in situ polymerization. HR-TEM observation confirmed that the LDH-LG particles were homogeneously dispersed in the PI matrix. The addition of LDH-LG into PI improved the crystallinity and tensile strength of PI/LDH nanocomposite film.

    [1] Wang Q, Feng Y J, Feng J T, et al. Enhancedthermal-and photo-stability of acid yellow 17 by incorporation into layered double hydroxides[J]. J Solid State Chem, 2011, 184:1551-1555.

    [2] Ram L, Bhupendra S R, Gaur M S. Structural and polarization properties of polyimide/TiO2nanocomposites[J]. Ionics, 2012,18:565-572.

    [3] Hsueh H B, Chen C Y. Preparation andproperties of LDHs/polyimide nanocomposites[J]. Polymer, 2003,44:1151-1161.

    [4] Ma J,Yu Z Z,Zhang Q X,et al. Anovel method for preparation of disorderly exfoliated epoxy/clay nanocomposite[J]. Chem Mater, 2004,16:757-759.

    [5] Gemeay A H, Mansour I A, El-Sharkawy R G, et al. Preparation andcharacterization of polyaniline/manganese dioxide composites via oxidative polymerization: effect of acids[J]. Eur Polym J, 2005,41(11):2575-2583.

    [6] Chiang M F, Wu T M. Synthesis andcharacterization of biodegradable poly(L-lactide)/layered double hydroxide nanocomposites[J]. Compos Sci Technol, 2010, 70:110-115.

    [7] Chan Y N, Juang T Y, Liao Y L, et al. Preparation ofclay/epoxy nanocomposites by layered-double-hydroxide initiated self-polymerization[J]. Polymer, 2008,49:4796-4801.

    [8] Jin Liang, Zhang Qinghua. Synthesis andcharacterization of polyimides prepared in ionic liquids[J]. Polym Mater Sci & Eng, 2010,26(3):23-26.(in Chinese)

    [9] Pu Y P, Lu G S, Zhao P, et al. Effects of forming pressure on the porosity of polyimide porous materials[J]. Journal of Beijing Institute of Technology, 2008, 17(3): 351-354.

    [10] Pu Y P, Lu G S, Li X J, et al. Tribological property of polyimide porous materials[J]. Journal of Beijing Institute of Technology, 2006,15(4):483-487.

    [11] Yano K, Usuki A, Okada A, et al. Synthesis andproperties of polyimide-clay hybrid[J]. J Poly Sci, Part A:Polym Chem, 1993,31:2493-2498.

    [12] Li Guiying, Zhang Qizhen, Yang Wenhong. Synthesis andcharacterization of polyimide/montmorillonite nanoeomposites[J]. J Shandong Univ, 2003, 38(5):105-108.(in Chinese)

    [13] Gu A J, Kuo S W, Chang F C. Syntheses andproperties of PI/clay hybrids[J]. J Appl Polym Sci, 2001,79(10): 1902-1910.

    [14] Hsiao S H, Liou G S, Chang L M. Synthesis andproperties of organosoluble polyimide/clay hybrids[J]. J Appl Polym Sci, 2001,80(11):2067-2072.

    [15] Lü F Z, Wu Y Y, Zhang Y H,et al. Structure and magnetic properties of soft organic ZnAl-LDH/polyimide electromagnetic shielding composites[J]. J Mater Sci, 2012, 47:2033-2039.

    [16] Chen D, Huang S, Zhang C,et al. Layer-by-layer self-assembly of polyimide precursor/layered double hydroxide ultrathin films[J]. Thin Solid Films, 2010, 518:7081-7085.

    [17] Xi Huan, He Jing, Evans D G,et al. Delamination of layered double hydroxides in microemulsion[J]. Chinese J Inorg Cherm, 2004, 20(10):1217-1222.(in Chinese)

    [18] Duan Xue, Jiao Qingze, Li Lei.New synthetic methods of uniformly dispersed ultrafine anionic layered material: CN 1288 078[P].2001-03-21.(in Chinese)

    [19] Hu G, Wang N, O’Hare D,et al. Synthesis of magnesium aluminium layered double hydroxides in reverse microemulsions[J]. J Mater Chem, 2007, 17:2257-2266.

    [20] Gunawan P, Xu R. Synthesis ofunusual coral-like layered double hydroxide microspheres in a nonaqueous polar solvent/surfactant system[J]. J Mater Chem, 2008,18:2112-2120.

    [21] Zhao Y, Li F, Zhang R, et al. Preparation of layered double-hydroxide nanomaterials with a uniform crystallite size using a new method involving separate nucleation and aging steps[J]. Chem Mater, 2002, 14:4286-4291.

    [22] Shi H G, Li Y, Guo T Y. Insitu preparation of transparent polyimide nanocomposite with a small load of graphene oxide[J]. J Appl Polym Sci, 2013:3163-3169.

    [23] Lei Yong, Liu Yufeng, Jiang Luxia, et al. Research on the synthesis and properties of polyimide/montmorillonite nanocomposite film[J]. Insulating Materials, 2001,1:5-8.(in Chinese)

    (Edited by Wang Yuxia)

    10.15918/j.jbit1004-0579.201524.0119

    O 631.1 Document code: A Article ID: 1004- 0579(2015)01- 0133- 06

    Received 2014- 02- 15

    Supported by the National Natural Science Foundation of China(21071017; 21376029)

    E-mail: jiaoqz@bit.edu.cn

    国产成人免费观看mmmm| 禁无遮挡网站| 欧美高清性xxxxhd video| 亚洲精华国产精华液的使用体验| 久久久午夜欧美精品| 国产高清国产精品国产三级 | 在线播放无遮挡| 国产免费福利视频在线观看| 欧美精品国产亚洲| 亚洲va在线va天堂va国产| 免费黄色在线免费观看| 国产激情偷乱视频一区二区| 亚洲激情五月婷婷啪啪| 久久久久久大精品| 久久精品久久久久久久性| 啦啦啦观看免费观看视频高清| 岛国毛片在线播放| 婷婷六月久久综合丁香| 国模一区二区三区四区视频| 十八禁国产超污无遮挡网站| 最近中文字幕2019免费版| 日韩中字成人| 18禁在线无遮挡免费观看视频| 欧美成人免费av一区二区三区| 亚洲无线观看免费| 亚洲成人中文字幕在线播放| 狠狠狠狠99中文字幕| 亚洲一区高清亚洲精品| 久久精品国产亚洲av涩爱| 国产精品国产三级专区第一集| 男女边吃奶边做爰视频| 久久人人爽人人片av| 免费一级毛片在线播放高清视频| 亚洲精品aⅴ在线观看| 亚洲一级一片aⅴ在线观看| 一边摸一边抽搐一进一小说| 午夜精品一区二区三区免费看| 国产精品久久久久久久电影| 亚洲熟妇中文字幕五十中出| 在现免费观看毛片| 免费一级毛片在线播放高清视频| 午夜日本视频在线| 午夜亚洲福利在线播放| 欧美成人免费av一区二区三区| 久久鲁丝午夜福利片| 深夜a级毛片| 午夜亚洲福利在线播放| av线在线观看网站| 大话2 男鬼变身卡| 有码 亚洲区| 欧美色视频一区免费| 国产免费又黄又爽又色| 欧美一区二区精品小视频在线| 国产av不卡久久| 亚洲欧美日韩高清专用| 亚洲成av人片在线播放无| 神马国产精品三级电影在线观看| 久久99热这里只频精品6学生 | 国产爱豆传媒在线观看| 天堂√8在线中文| 精品欧美国产一区二区三| 国产色爽女视频免费观看| 你懂的网址亚洲精品在线观看 | 国产成人午夜福利电影在线观看| 国产真实伦视频高清在线观看| 超碰av人人做人人爽久久| 又爽又黄无遮挡网站| 欧美激情国产日韩精品一区| 亚洲怡红院男人天堂| 亚洲五月天丁香| 99久久成人亚洲精品观看| 精品国产露脸久久av麻豆 | 九九热线精品视视频播放| 午夜激情福利司机影院| 天天一区二区日本电影三级| 精品一区二区免费观看| 禁无遮挡网站| 日韩欧美在线乱码| 久久精品久久久久久噜噜老黄 | 人妻夜夜爽99麻豆av| 99久久精品热视频| 午夜老司机福利剧场| av在线老鸭窝| 亚洲精品日韩在线中文字幕| 久久6这里有精品| 18禁动态无遮挡网站| 国产精品乱码一区二三区的特点| 99久久中文字幕三级久久日本| 国产亚洲av嫩草精品影院| 久久久久久久亚洲中文字幕| 汤姆久久久久久久影院中文字幕 | 97热精品久久久久久| 在线播放国产精品三级| 大话2 男鬼变身卡| 成人漫画全彩无遮挡| 日本黄色片子视频| 国产精品1区2区在线观看.| www.色视频.com| 亚洲综合精品二区| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 2021少妇久久久久久久久久久| 午夜精品一区二区三区免费看| 男的添女的下面高潮视频| 色综合站精品国产| 免费看日本二区| 国产精品.久久久| 色综合亚洲欧美另类图片| 亚洲综合精品二区| 久久亚洲国产成人精品v| 哪个播放器可以免费观看大片| 女人十人毛片免费观看3o分钟| 国产91av在线免费观看| 寂寞人妻少妇视频99o| 亚洲内射少妇av| 免费在线观看成人毛片| 看免费成人av毛片| 亚洲av成人av| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 国产伦精品一区二区三区视频9| 日韩欧美精品免费久久| 日韩在线高清观看一区二区三区| 亚洲av成人精品一二三区| 插阴视频在线观看视频| 国产精品不卡视频一区二区| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲成色77777| 亚洲一级一片aⅴ在线观看| 午夜爱爱视频在线播放| 国产毛片a区久久久久| www.色视频.com| 亚洲国产色片| 少妇熟女aⅴ在线视频| 九九久久精品国产亚洲av麻豆| 男人的好看免费观看在线视频| 日韩成人伦理影院| 成人国产麻豆网| 日韩高清综合在线| 亚洲成av人片在线播放无| 久久精品国产自在天天线| 国模一区二区三区四区视频| 小蜜桃在线观看免费完整版高清| 热99在线观看视频| 国产美女午夜福利| h日本视频在线播放| 爱豆传媒免费全集在线观看| 99热这里只有是精品在线观看| 欧美激情国产日韩精品一区| 亚州av有码| 免费在线观看成人毛片| 色网站视频免费| 高清av免费在线| 国产精品一二三区在线看| www.av在线官网国产| 亚州av有码| 人妻系列 视频| 岛国毛片在线播放| 欧美性猛交黑人性爽| 亚洲精品456在线播放app| 在线a可以看的网站| АⅤ资源中文在线天堂| 久久久国产成人精品二区| h日本视频在线播放| 久久人人爽人人爽人人片va| 亚洲av不卡在线观看| 精品国产露脸久久av麻豆 | 成人午夜高清在线视频| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 国产黄色视频一区二区在线观看 | 午夜福利视频1000在线观看| 久久久久久久久久成人| 中文精品一卡2卡3卡4更新| 国产69精品久久久久777片| 欧美最新免费一区二区三区| 欧美性猛交╳xxx乱大交人| 内地一区二区视频在线| 亚洲精品日韩在线中文字幕| 国产精华一区二区三区| 不卡视频在线观看欧美| 少妇的逼好多水| 亚洲欧美精品综合久久99| 天堂中文最新版在线下载 | av国产免费在线观看| 日韩高清综合在线| kizo精华| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 欧美日韩一区二区视频在线观看视频在线 | 极品教师在线视频| 国产免费福利视频在线观看| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 日日啪夜夜撸| 色播亚洲综合网| 大又大粗又爽又黄少妇毛片口| 村上凉子中文字幕在线| 成人av在线播放网站| 看免费成人av毛片| 我要看日韩黄色一级片| 亚洲在线自拍视频| 91aial.com中文字幕在线观看| 久久午夜福利片| kizo精华| 国产精品,欧美在线| 成年免费大片在线观看| 国产一级毛片七仙女欲春2| 18禁在线播放成人免费| 国产 一区 欧美 日韩| 汤姆久久久久久久影院中文字幕 | 韩国av在线不卡| 在线a可以看的网站| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| 国产乱人视频| 2021少妇久久久久久久久久久| 不卡视频在线观看欧美| 中文字幕熟女人妻在线| 夜夜爽夜夜爽视频| eeuss影院久久| 人妻少妇偷人精品九色| 国产av码专区亚洲av| 青春草亚洲视频在线观看| 又爽又黄a免费视频| 日日啪夜夜撸| 能在线免费观看的黄片| 三级男女做爰猛烈吃奶摸视频| 综合色av麻豆| 国产成人精品一,二区| 国产一区二区三区av在线| 欧美色视频一区免费| 九草在线视频观看| 99九九线精品视频在线观看视频| 国产激情偷乱视频一区二区| 国产精品一区二区三区四区久久| 日韩欧美国产在线观看| 亚洲欧洲国产日韩| 99热6这里只有精品| 色网站视频免费| 免费观看人在逋| 天堂网av新在线| 亚洲精品成人久久久久久| 乱系列少妇在线播放| 成年版毛片免费区| 视频中文字幕在线观看| 国产色婷婷99| 国产精品,欧美在线| 亚洲精品456在线播放app| 成人毛片a级毛片在线播放| 91精品伊人久久大香线蕉| 欧美潮喷喷水| 中文精品一卡2卡3卡4更新| 亚洲人成网站在线播| 久久欧美精品欧美久久欧美| 久99久视频精品免费| 波野结衣二区三区在线| 18禁在线播放成人免费| 欧美高清成人免费视频www| av免费在线看不卡| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 久久精品夜色国产| 两个人的视频大全免费| 天天躁日日操中文字幕| 亚洲最大成人中文| 丰满乱子伦码专区| 国产探花在线观看一区二区| 亚洲一级一片aⅴ在线观看| 亚洲av电影不卡..在线观看| av免费观看日本| 熟女人妻精品中文字幕| 大话2 男鬼变身卡| 大香蕉97超碰在线| 色网站视频免费| 国产高清有码在线观看视频| 日韩国内少妇激情av| 亚洲国产欧美人成| 可以在线观看毛片的网站| 七月丁香在线播放| 精品人妻一区二区三区麻豆| 久久久久精品久久久久真实原创| 欧美3d第一页| 亚洲精品,欧美精品| 国产精品久久久久久精品电影小说 | 一级毛片久久久久久久久女| 一级毛片aaaaaa免费看小| 亚洲av.av天堂| 国产91av在线免费观看| 精品人妻视频免费看| 免费黄色在线免费观看| 91午夜精品亚洲一区二区三区| 国产精华一区二区三区| av.在线天堂| 18禁裸乳无遮挡免费网站照片| av在线亚洲专区| 国产黄a三级三级三级人| 观看免费一级毛片| 亚洲av男天堂| 直男gayav资源| 日韩中字成人| 麻豆av噜噜一区二区三区| 久久久久久九九精品二区国产| 亚洲欧美清纯卡通| 美女脱内裤让男人舔精品视频| 亚洲aⅴ乱码一区二区在线播放| 免费av观看视频| 精品久久国产蜜桃| 国产淫语在线视频| АⅤ资源中文在线天堂| 国产av一区在线观看免费| 国产一区二区在线观看日韩| 18禁动态无遮挡网站| 亚洲成人精品中文字幕电影| 国产视频内射| 亚洲自拍偷在线| 日韩一区二区三区影片| 亚洲精品,欧美精品| 激情 狠狠 欧美| 成人美女网站在线观看视频| 亚洲av免费在线观看| 亚洲国产精品国产精品| 亚洲av.av天堂| 亚洲图色成人| 国产精品久久久久久精品电影| 99久国产av精品| 国产av在哪里看| 最近的中文字幕免费完整| 国产免费一级a男人的天堂| 亚洲国产最新在线播放| 插逼视频在线观看| 国产精品久久视频播放| 免费av不卡在线播放| av在线播放精品| 伦精品一区二区三区| 听说在线观看完整版免费高清| 精品久久久久久久人妻蜜臀av| 高清av免费在线| 啦啦啦观看免费观看视频高清| 国产一区亚洲一区在线观看| 大又大粗又爽又黄少妇毛片口| 亚洲自偷自拍三级| 成人美女网站在线观看视频| 亚洲18禁久久av| 国产大屁股一区二区在线视频| 亚洲国产精品专区欧美| 日韩欧美国产在线观看| 黑人高潮一二区| 国产亚洲av片在线观看秒播厂 | 国产亚洲最大av| 99久久精品一区二区三区| 亚洲熟妇中文字幕五十中出| 可以在线观看毛片的网站| 国产av不卡久久| 欧美97在线视频| 国产亚洲91精品色在线| 99久久精品一区二区三区| 床上黄色一级片| 啦啦啦观看免费观看视频高清| 亚洲国产欧洲综合997久久,| 成人欧美大片| 男女国产视频网站| 欧美日韩国产亚洲二区| 国产高清有码在线观看视频| 国产白丝娇喘喷水9色精品| 69av精品久久久久久| 亚洲最大成人中文| 亚洲五月天丁香| 免费av不卡在线播放| 午夜福利在线观看吧| 三级经典国产精品| 成人无遮挡网站| 国产老妇女一区| 亚洲精品国产av成人精品| 精品国产一区二区三区久久久樱花 | 老女人水多毛片| 日韩大片免费观看网站 | 国产伦精品一区二区三区视频9| 内地一区二区视频在线| 日本wwww免费看| 国产久久久一区二区三区| 搡女人真爽免费视频火全软件| 免费看av在线观看网站| 最近中文字幕2019免费版| 长腿黑丝高跟| 久久久久久久午夜电影| av卡一久久| 成人高潮视频无遮挡免费网站| 亚洲成人中文字幕在线播放| 久久精品国产亚洲网站| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 欧美潮喷喷水| 亚洲av.av天堂| 午夜精品国产一区二区电影 | 简卡轻食公司| 亚洲中文字幕日韩| 偷拍熟女少妇极品色| 亚洲人成网站高清观看| 成人三级黄色视频| 久久久国产成人免费| 女人久久www免费人成看片 | 中文字幕av在线有码专区| 免费av毛片视频| 国产精品一区www在线观看| 成人二区视频| 小说图片视频综合网站| 国产精品久久视频播放| 免费无遮挡裸体视频| 成人漫画全彩无遮挡| 少妇的逼水好多| 亚洲精品色激情综合| 国产在线一区二区三区精 | 亚洲内射少妇av| 国产成人精品一,二区| 亚洲av男天堂| 免费黄网站久久成人精品| 97人妻精品一区二区三区麻豆| 亚洲欧美一区二区三区国产| 亚洲第一区二区三区不卡| 日本猛色少妇xxxxx猛交久久| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品日韩av片在线观看| 国产片特级美女逼逼视频| 看免费成人av毛片| 精品一区二区免费观看| 麻豆国产97在线/欧美| 午夜免费激情av| 看免费成人av毛片| 久久久精品欧美日韩精品| 国产 一区 欧美 日韩| 亚洲欧美日韩无卡精品| 一区二区三区免费毛片| 欧美高清成人免费视频www| 国产一区亚洲一区在线观看| 18禁动态无遮挡网站| 亚洲精品亚洲一区二区| 午夜精品在线福利| 亚洲av二区三区四区| 综合色丁香网| 国产日韩欧美在线精品| 亚洲伊人久久精品综合 | 夜夜爽夜夜爽视频| 在线观看一区二区三区| 日本黄色片子视频| 日韩av在线免费看完整版不卡| 亚洲va在线va天堂va国产| 看十八女毛片水多多多| 18禁在线无遮挡免费观看视频| 成年女人看的毛片在线观看| 国产中年淑女户外野战色| 免费观看a级毛片全部| 又爽又黄a免费视频| 久久人人爽人人爽人人片va| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 欧美三级亚洲精品| 免费在线观看成人毛片| 亚洲av成人精品一二三区| 国产成人精品一,二区| 国产高清国产精品国产三级 | 国产av在哪里看| 国产精品一区www在线观看| 自拍偷自拍亚洲精品老妇| 特大巨黑吊av在线直播| 日韩大片免费观看网站 | 亚洲精品色激情综合| 夜夜爽夜夜爽视频| 青青草视频在线视频观看| 国产白丝娇喘喷水9色精品| 一本一本综合久久| 亚洲自拍偷在线| 在线播放国产精品三级| 久久精品综合一区二区三区| 看免费成人av毛片| 久久国内精品自在自线图片| 免费看a级黄色片| 日本三级黄在线观看| 国产高清视频在线观看网站| 麻豆成人av视频| 欧美成人一区二区免费高清观看| 成人毛片a级毛片在线播放| 久久久国产成人精品二区| 亚洲综合色惰| 赤兔流量卡办理| 久久6这里有精品| 国产极品精品免费视频能看的| 韩国av在线不卡| 亚洲美女视频黄频| 联通29元200g的流量卡| 久久精品久久精品一区二区三区| 国产极品精品免费视频能看的| 三级国产精品片| 草草在线视频免费看| 中文字幕久久专区| 91在线精品国自产拍蜜月| 人体艺术视频欧美日本| 久久精品夜色国产| 日本wwww免费看| 国产精品野战在线观看| 国产免费视频播放在线视频 | 久久久久久久午夜电影| 看十八女毛片水多多多| 熟女人妻精品中文字幕| 免费播放大片免费观看视频在线观看 | 国产av码专区亚洲av| 在线免费观看不下载黄p国产| eeuss影院久久| 午夜精品一区二区三区免费看| 我要搜黄色片| 日本-黄色视频高清免费观看| 国产精品国产三级国产专区5o | 欧美变态另类bdsm刘玥| 日韩av在线大香蕉| 日本免费一区二区三区高清不卡| 成年av动漫网址| 国产一区二区在线av高清观看| 日韩,欧美,国产一区二区三区 | 自拍偷自拍亚洲精品老妇| 国产在视频线在精品| 久久久精品94久久精品| 国产精品一区二区在线观看99 | 九九爱精品视频在线观看| 精品久久久久久久久av| 国产精品国产高清国产av| 亚洲国产色片| 日韩精品有码人妻一区| 成人午夜精彩视频在线观看| 嫩草影院入口| 午夜日本视频在线| 日韩欧美国产在线观看| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 超碰97精品在线观看| 国产精品人妻久久久影院| 国产伦一二天堂av在线观看| 国产精华一区二区三区| 国产 一区精品| 男女那种视频在线观看| 精品免费久久久久久久清纯| 1000部很黄的大片| 亚洲人成网站在线播| 97在线视频观看| 国语自产精品视频在线第100页| 熟女人妻精品中文字幕| 亚洲怡红院男人天堂| 欧美高清成人免费视频www| 最后的刺客免费高清国语| 自拍偷自拍亚洲精品老妇| 久久精品影院6| 国产成人freesex在线| 男人和女人高潮做爰伦理| 五月伊人婷婷丁香| 国产精品野战在线观看| 精品久久久久久久末码| 自拍偷自拍亚洲精品老妇| 日本一本二区三区精品| 一个人免费在线观看电影| 我的老师免费观看完整版| 久久久久久久国产电影| 男女国产视频网站| 在线天堂最新版资源| 男人狂女人下面高潮的视频| 99在线人妻在线中文字幕| 看十八女毛片水多多多| 日韩一区二区三区影片| 国产一区亚洲一区在线观看| 国产毛片a区久久久久| 最近2019中文字幕mv第一页| 日日撸夜夜添| 久久精品国产亚洲av涩爱| 国产精品久久久久久精品电影小说 | 成人av在线播放网站| 草草在线视频免费看| 欧美日本视频| 国产精品嫩草影院av在线观看| 日本午夜av视频| a级一级毛片免费在线观看| 亚洲国产最新在线播放| 精品人妻视频免费看| 欧美潮喷喷水| 丰满少妇做爰视频| 久久国产乱子免费精品| a级一级毛片免费在线观看| 日韩欧美精品免费久久| 亚洲精品日韩av片在线观看| 99久久精品一区二区三区| 性色avwww在线观看| 日本色播在线视频| 午夜视频国产福利| 午夜老司机福利剧场| 亚洲精品日韩av片在线观看| 国产伦精品一区二区三区四那| 一级毛片我不卡| 国产午夜精品久久久久久一区二区三区| 国产精品麻豆人妻色哟哟久久 | 亚洲国产精品国产精品| 免费观看人在逋| 国内少妇人妻偷人精品xxx网站| 中文字幕人妻熟人妻熟丝袜美| 一夜夜www| 亚洲精品亚洲一区二区| 亚洲av成人精品一区久久| 卡戴珊不雅视频在线播放| av在线观看视频网站免费| 亚洲三级黄色毛片| 亚洲婷婷狠狠爱综合网| 亚洲欧美日韩无卡精品| 成人午夜精彩视频在线观看| 国产精华一区二区三区| 日韩精品有码人妻一区| 国产成人一区二区在线| 成人性生交大片免费视频hd| 高清日韩中文字幕在线| 两性午夜刺激爽爽歪歪视频在线观看|