• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane

    2023-09-05 08:48:06PengWang王鵬
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王鵬

    Peng Wang(王鵬)

    School of Civil Engineering and Architecture,University of Jinan,Jinan 250022,China

    Keywords: Hamilton’s principle, Noether theorem, fractional derivative, multiscale electromechanical coupling,neuron membrane

    1.Introduction

    The action potential(AP)has been considered to be only an electric signal, and the well known Hodgkin–Huxley (H–H) model[1]is the foundation of this viewpoint.However, a recent experiment[2]found that the AP propagation accompanies mechanical deformation like swelling or contraction.So the standpoint of AP being a mechano-electrophysiological coupling process was proposed.[3]Engelbrechtet al.[4]gave a continuum mechanics model to explain this mechanoelectrical coupling phenomenon, Chenet al.[5]gave a finite element computation model and Drapaca[6]proposed an electromechanical model using Hamilton’s principle,and gave its Euler–Lagrange equation.Later, she extended this model to a fractional derivative scenario.[7]However, due to the complexity and nonlinearity, it is hard to solve the mathematical equations of these models.Symmetry is an important tool in finding the first integral, differential equation reduction and classification,[8]so we can apply symmetry in electromechanical coupling equations to find their conserved quantities,further to reduce orders of the differential equations.However,to our knowledge, the Noether symmetry and conserved quantities of neuron dynamics have not been investigated.

    Symmetry is a higher rule in physics.Since Noether revealed the relations between symmetry and conserved quantities in her eminent paper,[9]Noether theorem has had various extensions and has been applied in physics and mechanics.[10–22]Fractional calculus is increasingly important as it can more exactly describe complex phenomena in science and engineering.Fractional Noether theorem has been extended to the fractional Lagrange system, Hamilton system, generalized Hamilton system, Birkhoff system, and so on.[23–33]However,there is no research on fractional Noether symmetry in mechano-electrophysiological coupling equations of neuron dynamics.Considering the visco-elasticity of neuron membranes, we will adopt a fractional derivative of variable orders.In this paper we will generalize fractional Noether theorem to neuron dynamics.

    The structure of this paper is as follows.In Section 2 we will introduce a variable order fractional mechanoelectrophysiological model of a neuron membrane with Riemann–Liouville fractional derivative, deduce its variable order fractional Lagrange equation,and show that the variable order fractional H–H equation can be deduced from the variable order fractional Lagrange equation.In Section 3 variable order fractional Noether symmetry and conserved quantities of the neuron dynamics are studied,and the criterion of variable order fractional Noether symmetry and the form of variable order fractional conserved quantities are given.In Section 4 we will specifically discuss the deduced variable fractional conserved quantities in various conditions.The final section is the conclusion.

    2.The variable order fractional Lagrange equation of neuron membrane dynamics

    Conduction and processing of information are the characteristics of neurons.Neurons make use of electric signals to conduct information.As we know, action potential plays a key role in producing electric signals in neurons.However,experimental observations prove that action potential production is not only because of ion transmission across neuron membranes, but also accompanied with deformation of the neuron membrane, a multiscale mechanics and electrophysiology coupling process.Recently,Drapaca[7]proposed a new fractional multiscale mechano-electrophysiological coupling model using Hamilton’s principle, however its numerical solutions are in fact uncoupled.In this paper we will revisit the model,but study the more general case using Noether symmetry analysis.

    2.1.The model

    The membrane of a neuron consists of a phospholipid bilayer embedded channel protein.The propagation of electric signals in the neuron system is achieved by producing action potential accompanied with an ion channel open or shut.The action potential can induce deformation of the neuron membrane,and inversely the deformation of the neuron membrane can also induce action potential.We can use the Hodgkin–Huxley model to describe the electric process and a linear visco-elastic Kelvin–Voigt model to describe the mechanical process,and Maxwell models to control the activations of the Na+and K+channels, and the inactivation of the Na+channel, respectively.The coupling process is connected through membrane capacitance and displacement (see Fig.1).As we know, the neuron can be considered as an axis-symmetric cylinder with circular cross section, so we can study half the neuron by symmetry.

    Fig.1.Schematic of the mechano-electrophysiological coupling model of an axon membrane.The axon is considered as an axis-symmetric homogeneous circular cylinder with intracellular space filled with axoplasm, and the outer layer is the membrane.Using the symmetry and homogeneity of the column we only need to study half of the axon.At cellular scale we model the intracellular space as a viscoelastic material using the Kelvin model connected with axon capacitor(the dotted box ①),where(x2,x3,x3)denote the deformation motion of the cytoskeleton with different ionic channels, which correspond to the m,n,h gate. x1 is the displacement of the membrane.Mechanical motion or electrical stimuli can trigger the circuit.At subcellular scale ionic exchange obeys fractional Hodgkin–Huxley equations(the dotted box ②)and is controlled by Maxwell models.

    We can express the macro-mechanical kinetic energyT=m1(0(t)x1)2, wherem1denotes the half constant mass of the neuron,Ais the cross-sectional area,andx1is the macroscopic (cell level) displacement that depends on time.In order to use the nonconservative Hamilton principle proposed in Ref.[34], we use the left and right Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1

    However, definitions (1) and (2) will introduce additional memory effects for piecewise uniform accelerated motions.[35]Fortunately,when 0≤α(t)<1 the approximations

    In this paper we will use a Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1,|dα/dt|?1,t ∈(0,a).

    2.2.The fractional Lagrange equation of variable orders

    Based on the electric charge conservation law, we have a holonomic constraint to charge:eC ?eNa?eK?el=0, so the freedom of the coupling system is 10.Introduce generalized coordinates to express universally the spatial variables and electrical variables,qs(s= 1,...,10), whereq1=x1,q2=x2,q3=x3,q4=x4,q5=eNa,q6=eK,q7=el,q8= ?x2,q9= ?x3,q10= ?x4.The Lagrangian of the neuronal mechanoelectrophysiological model is

    The virtual work of nonconservative generalized forces is

    The Hamilton principle of the nonconservative mechanoelectrophysiological system of the axon membrane is

    By expanding the above equation, and using the communication relation0i(t)δ=δ0(t)which holds for the holonomic constrained system, and the relation of the fractional integral by parts[23–25,34]

    and the end points relationsδq(0)=0,δq(a)=0,we can get the fractional multi-scale mechano-electrophysiological coupling Lagrange equation of neuronal membrane dynamics

    whereψ=ψm+ψe.The coupling equation of motion describes the changes of ions between the outer layer and intracellular space and deformation of the neuron membrane.

    Whenψ=Qs=0, we can get the fractional Lagrange equation of a conservative system

    Putting the expression of LagrangianLinto Eq.(10), we can get the Euler–Lagrange differential equations

    whereV=Ui=qC/Cis the potential of the capacitor.

    Here the Euler–Lagrange equations are different from the equations in Ref.[7], because we suppose the elastic parameters of the cytoskeleton depend on the macro-deformation of the membrane.Kirchhoff’s current law demands0γ(t)(qC+qNa+qK+ql)=I,[7]whereIis a known external electric current applied on the membrane.

    Putting Eqs.(17)–(19) into Kirchhoff’s current law, the fractional Hodgkin–Huxley equation of the membrane potential can be found

    Because of lack of information on the mechanotransduction process of axons,the expressions ofm2,m3,m4,k2,k3,k4,η2,η3,η4,Qsare difficult to know,so in Ref.[7],the author made a simplification to neglect them by a scales comparison.However, these factors should affect the characteristics of axon action.So, in the following study we will treat the general cases by Noether symmetry analysis to study these neglected parameters and how they affect conserved quantities and the expression of these parameters, which may be useful for numerical solutions of the mechano-electrophysiological coupling equations of axons.

    3.Variable order fractional Noether theorem of neuronal membrane dynamics

    We introduce a one-parameter infinitesimal Lie transformation group in space(t,qs,˙qs)

    whereεis an infinitesimal parameter,andξ0(t,q, ˙q),ξs(t,q, ˙q)are infinitesimal transformation generators.The infinitesimal generator vector

    is the operator for the infinitesimal generator of the oneparameter Lie group of transformations(24)in space(t,q, ˙q).The first prolongation of the infinitesimal generator vector[34]is

    which defines a first extended one-parameter Lie group of transformation in space (t,q, ˙q) by partial derivatives, (˙)means first derivative tot.

    The Hamilton action is

    Under the infinitesimal transformation, the curveγis transformed to curveγ?.The corresponding Hamilton action is transformed to

    The variation ?Sof Hamilton actionSis the main linear part of the differenceS(γ?)?S(γ)to infinitesimal parameterε,and we have

    where ?denotes anisochronous variation, andδdenotes isochronous variation.Expanding the above equation,we have

    and using the relation

    wherefis an arbitrary function oft,we can get

    Put the infinitesimal transformation Eq.(24)into Eq.(30),and the following expression can be obtained:

    Definition 1If the variation of the Hamilton action satisfies

    the infinitesimal transformation(24)is a Noether symmetrical transformation.

    Based on definition 1,we can get the Noether symmetry criterion.

    Criterion 1If the infinitesimal generatorsξ0(t,q,),ξs(t,q,)satisfy

    the transformation invariance is named Noether symmetry,which is also called variational symmetry.For Noether symmetry we can deduce the invariant.

    Theorem 1For the Lagrange system (11), if the generatorsξ0(t,q, ˙q),ξs(t,q, ˙q)of the infinitesimal transformations have Noether symmetry(37),there exist fractional conserved quantities as

    which are called variable order fractional Noether conserved quantities.We can verify this theorem by defniingIN =0,which denotes thatINis a conserved quantity.[26]

    In the proving process of this theorem we have used condition(37)and variable order fractional Lagrange equation(11).In fact we can generalize the Noether symmetry to nonconservative dynamical systems.

    Definition 2If the Hamilton action is generalized quasiinvariant under the infinitesimal transformation group,that is,the variation satisfies

    the infinitesimal transformation (24) is a generalized quasisymmetrical transformation, whereGN(t,q,0i(t)q) is a gauge function,andδqsis the sum of the virtual work of the generalized non-conservative force.

    Based on definition 2,we can get the generalized Noether symmetry criterion.

    Criterion 2If there exists a gauge functionGN(t,q,0i(t)q) that makes the infinitesimal generatorsξ0(t,q,),ξs(t,q, ˙q)satisfy

    the infinitesimal transformation is named variable order fractional quasi-Noether symmetry.The Noether symmetry can always lead to conserved quantities.

    Theorem 2For the Lagrange equation Eq.(10) of neuronal membrane dynamics, if the infinitesimal generatorsξ0(t,q,),ξs(s,q,) satisfy equation (41) (criterion 2), the system has the following first integrals:

    which are variable order fractional Noether conserved quantities.

    Proof

    In the proving process of this proposition we have used condition(41)and variable order fractional Lagrange equation(10).

    4.Solutions of Noether symmetry generators and conserved quantities

    Putting the exact form of LagrangianL(6)and dissipative functionψinto the Noether identity Eq.(41),we have

    Next let us discuss the structures of Noether conserved quantities when external nonpotential forcesQs /= 0 (s=1,2,3,4,8,9,10).We will show that the forms of generalized potential forces impact the integrability of the system.In the following we use the approximate relation (3) to simplify the calculus,and for convenience we still use the symbols0i(t),ti(t).

    and we can work out the gauge function

    The corresponding Noether conserved quantities are

    and we can work out the gauge function

    The corresponding Noether conserved quantity is trivial withIN=0.

    Ifk1= const.and the generalized nonpotential forces have formsQ8=η20(t)q8,Q9=η30(t)q9,Q10=η40(t)q10,we have solutions

    and we can work out the gauge function

    The corresponding Noether conserved quantity is

    which denotes the micro mechanical potential energy.

    Ifk1=const.,C=const.,we have solutions

    and we can work out gauge functions respectively

    The corresponding conserved quantities are

    which denote the sum of the electric energy and the micro mechanical potential energy.

    In this section we have discussed the effects of parametersk(q2,q3,q4),C(q1) and non-potential forcesQson the forms of Noether conserved quantities.From the above calculations we can conclude that the Noether symmetry and Noether conserved quantities are strongly determined by nonpotential forces and the material parameters.We did not give all the conserved quantities for the neuron membrane dynamics model, because we can see the conserved quantities are strongly dependent on the external non-conservative forces and characteristic parameters of the neuron membrane.But we give general formulations(41)and(42)to calculate its conserved quantities.

    5.Conclusion

    Considering a neuron axon without myelin as an axissymmetrical cylinder with homogeneous deformation in a neuron membrane, we unified the deformation and electrophysiological multiscale coupling process through Hamilton’s principle in generalized coordinates with fractional derivative of variable orders.The Lagrange equation (10) of the variable order fractional multiscale mechano-electrophysiological model of the neuron membrane is given through which we can deduce the variable order fractional differential equations of motion found in Ref.[7] and the variable order fractional Hodgkin–Huxley equation.The variable order fractional Noether symmetry criterion (37) and (41) and Noether conserved quantities(38)and(42)are given under Lie group transformations.Through the variable order fractional Noether criterion we work out some solutions that correspond to Noether conserved quantities under different external stimuli.The results show that Noether conserved quantities closely depend on the external nonconservative forces and material parameters of the neuron, which need to be further verified by experiments.Other symmetrical methods,like Lie symmetry and Mei symmetry can also be applied to this system,and these will be studied in the future.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).

    猜你喜歡
    王鵬
    王鵬:初心不改 篤行致遠(yuǎn)
    甲狀腺乳頭狀癌頸部淋巴結(jié)轉(zhuǎn)移的術(shù)前高頻超聲診斷分析
    Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity?
    中國(guó)畫(huà)《山居祥夜》
    有所見(jiàn),有所鑒——王鵬眼鏡40周年慶典
    跟著王鵬叔叔拍雪豹
    神奇的線條
    童話世界(2018年11期)2018-05-28 02:23:04
    藝術(shù)百家:王鵬 張凱雷
    王鵬中國(guó)畫(huà)作品
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    少妇猛男粗大的猛烈进出视频| 男女边摸边吃奶| 亚洲精品乱码久久久v下载方式| 日韩欧美精品免费久久| 大片电影免费在线观看免费| 日本午夜av视频| 久久99一区二区三区| 亚洲无线观看免费| 黄色欧美视频在线观看| 18禁动态无遮挡网站| av不卡在线播放| 国产免费视频播放在线视频| 男女国产视频网站| 久久久久久伊人网av| 国产精品国产三级专区第一集| 免费大片黄手机在线观看| 在线播放无遮挡| 精品亚洲成a人片在线观看| 秋霞在线观看毛片| 男人爽女人下面视频在线观看| 高清不卡的av网站| 亚洲精品国产色婷婷电影| 国产欧美另类精品又又久久亚洲欧美| 成人国产麻豆网| 亚洲熟女精品中文字幕| a级毛片在线看网站| 日本黄大片高清| av有码第一页| 亚洲性久久影院| 考比视频在线观看| 中文字幕久久专区| 精品亚洲成国产av| 久久久a久久爽久久v久久| 久久久久久久大尺度免费视频| 丰满饥渴人妻一区二区三| 国产亚洲一区二区精品| 久久精品夜色国产| 丰满少妇做爰视频| 亚洲婷婷狠狠爱综合网| 一二三四中文在线观看免费高清| 在线观看国产h片| 亚洲综合色惰| 日韩不卡一区二区三区视频在线| 国产一区二区三区av在线| 国产女主播在线喷水免费视频网站| 久久久久久久久久久免费av| 性高湖久久久久久久久免费观看| a级片在线免费高清观看视频| 一区二区日韩欧美中文字幕 | 寂寞人妻少妇视频99o| 伊人久久精品亚洲午夜| 久久婷婷青草| 人妻 亚洲 视频| 日韩一区二区视频免费看| 亚洲三级黄色毛片| 午夜免费观看性视频| 涩涩av久久男人的天堂| 在线观看www视频免费| 国产日韩欧美视频二区| 99久国产av精品国产电影| 亚洲综合精品二区| 国语对白做爰xxxⅹ性视频网站| 黑人欧美特级aaaaaa片| 各种免费的搞黄视频| 久久久久视频综合| 哪个播放器可以免费观看大片| 亚洲精品aⅴ在线观看| 久久国产精品大桥未久av| 久久精品人人爽人人爽视色| 大香蕉久久网| 五月开心婷婷网| 在线精品无人区一区二区三| 亚洲精品美女久久av网站| 国产av一区二区精品久久| 不卡视频在线观看欧美| 日韩在线高清观看一区二区三区| 欧美激情国产日韩精品一区| 亚洲性久久影院| 国产伦理片在线播放av一区| 国产淫语在线视频| 亚洲精品成人av观看孕妇| 18禁在线无遮挡免费观看视频| 高清不卡的av网站| 一区二区三区四区激情视频| 亚洲精品av麻豆狂野| 少妇猛男粗大的猛烈进出视频| 久久国产亚洲av麻豆专区| 卡戴珊不雅视频在线播放| 黄色怎么调成土黄色| 国产日韩一区二区三区精品不卡 | 中国国产av一级| 欧美性感艳星| 99九九线精品视频在线观看视频| 美女xxoo啪啪120秒动态图| 久久99热这里只频精品6学生| 欧美精品国产亚洲| 97超视频在线观看视频| 十分钟在线观看高清视频www| 亚洲熟女精品中文字幕| 最近最新中文字幕免费大全7| 日韩中文字幕视频在线看片| 久久人人爽人人爽人人片va| 一级片'在线观看视频| 国产精品欧美亚洲77777| 伦理电影免费视频| 国产亚洲最大av| 9色porny在线观看| 久久精品久久精品一区二区三区| 99久久综合免费| 一本久久精品| 丝袜脚勾引网站| 天堂俺去俺来也www色官网| 免费看av在线观看网站| 欧美成人精品欧美一级黄| 在线观看www视频免费| 99久久人妻综合| 欧美一级a爱片免费观看看| 蜜桃在线观看..| www.av在线官网国产| 亚洲经典国产精华液单| 三级国产精品欧美在线观看| 亚洲av国产av综合av卡| 免费观看a级毛片全部| 国产成人91sexporn| 精品久久国产蜜桃| 免费av中文字幕在线| 综合色丁香网| 黄色毛片三级朝国网站| 亚洲婷婷狠狠爱综合网| 简卡轻食公司| 免费看av在线观看网站| 午夜精品国产一区二区电影| 精品亚洲成a人片在线观看| 亚洲第一av免费看| 免费看不卡的av| 伦理电影大哥的女人| 三级国产精品欧美在线观看| 日韩人妻高清精品专区| 亚洲精品日韩av片在线观看| 久久久久精品久久久久真实原创| 日本色播在线视频| 少妇人妻久久综合中文| 一级a做视频免费观看| 欧美日韩视频高清一区二区三区二| 午夜福利视频精品| 免费日韩欧美在线观看| 亚洲欧美中文字幕日韩二区| 在线亚洲精品国产二区图片欧美 | 26uuu在线亚洲综合色| 久久久久精品久久久久真实原创| 精品午夜福利在线看| 天美传媒精品一区二区| 国产精品久久久久久av不卡| 日本欧美国产在线视频| 亚洲欧美日韩另类电影网站| 久久久久久人妻| 在线观看免费视频网站a站| 久久精品国产亚洲av涩爱| 黑丝袜美女国产一区| 亚洲av国产av综合av卡| 精品国产一区二区久久| 国国产精品蜜臀av免费| 久久国产亚洲av麻豆专区| 国产黄色视频一区二区在线观看| 999精品在线视频| 高清在线视频一区二区三区| 国产午夜精品一二区理论片| www.av在线官网国产| 成人毛片60女人毛片免费| 亚洲色图 男人天堂 中文字幕 | 九九在线视频观看精品| 这个男人来自地球电影免费观看 | 国国产精品蜜臀av免费| 在线观看国产h片| 久久午夜福利片| 久久精品夜色国产| 亚洲av在线观看美女高潮| 考比视频在线观看| 久久女婷五月综合色啪小说| 91午夜精品亚洲一区二区三区| 国产一区二区在线观看av| 国产片内射在线| 国产成人精品婷婷| 搡老乐熟女国产| 亚洲欧美清纯卡通| 丰满饥渴人妻一区二区三| 欧美 日韩 精品 国产| 久久国产精品男人的天堂亚洲 | 午夜视频国产福利| 性高湖久久久久久久久免费观看| 久久久午夜欧美精品| 街头女战士在线观看网站| 精品国产一区二区久久| 国产精品一区二区在线不卡| 王馨瑶露胸无遮挡在线观看| 久久人人爽人人片av| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 99热国产这里只有精品6| 亚洲内射少妇av| 欧美日韩视频高清一区二区三区二| 亚洲成人手机| 在线免费观看不下载黄p国产| 久久久久久久国产电影| 男人添女人高潮全过程视频| 精品酒店卫生间| 纵有疾风起免费观看全集完整版| 精品国产乱码久久久久久小说| 777米奇影视久久| 天美传媒精品一区二区| 九色亚洲精品在线播放| 国产日韩欧美亚洲二区| 91精品三级在线观看| 亚洲精品aⅴ在线观看| 国产一区二区在线观看av| 国产精品三级大全| 国产精品久久久久久av不卡| 久久精品久久久久久久性| 丁香六月天网| 国产在线视频一区二区| 天天躁夜夜躁狠狠久久av| 日本vs欧美在线观看视频| 黑人猛操日本美女一级片| 嫩草影院入口| 特大巨黑吊av在线直播| 国产日韩欧美在线精品| 人人妻人人爽人人添夜夜欢视频| 九九在线视频观看精品| 免费播放大片免费观看视频在线观看| 国产精品人妻久久久影院| 久久97久久精品| 99热全是精品| 国产欧美日韩一区二区三区在线 | 色94色欧美一区二区| 免费高清在线观看视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利视频精品| 999精品在线视频| 夜夜爽夜夜爽视频| 精品国产露脸久久av麻豆| 日韩伦理黄色片| 成人18禁高潮啪啪吃奶动态图 | 成年人午夜在线观看视频| 免费黄网站久久成人精品| 高清视频免费观看一区二区| 久久人妻熟女aⅴ| 亚洲国产av影院在线观看| 精品少妇久久久久久888优播| 亚洲精品第二区| 成人综合一区亚洲| 夜夜看夜夜爽夜夜摸| 如日韩欧美国产精品一区二区三区 | 伦精品一区二区三区| 在线天堂最新版资源| 国产精品 国内视频| 又大又黄又爽视频免费| 国产视频首页在线观看| 欧美日韩国产mv在线观看视频| 亚洲成人一二三区av| 人妻 亚洲 视频| 大话2 男鬼变身卡| 日韩制服骚丝袜av| 国产片内射在线| 国产av国产精品国产| 日韩一区二区三区影片| 久久久a久久爽久久v久久| 亚洲在久久综合| 18在线观看网站| 少妇的逼好多水| 女性被躁到高潮视频| 精品亚洲乱码少妇综合久久| 大又大粗又爽又黄少妇毛片口| 五月开心婷婷网| 五月伊人婷婷丁香| 中文字幕最新亚洲高清| 色婷婷久久久亚洲欧美| 高清毛片免费看| 国产成人精品福利久久| 国产黄频视频在线观看| 一级毛片电影观看| 精品人妻熟女av久视频| 国产淫语在线视频| 国产永久视频网站| 国产亚洲午夜精品一区二区久久| av电影中文网址| 晚上一个人看的免费电影| 国产探花极品一区二区| 伊人亚洲综合成人网| 亚洲一级一片aⅴ在线观看| 王馨瑶露胸无遮挡在线观看| 成年av动漫网址| 女性生殖器流出的白浆| 国产极品粉嫩免费观看在线 | 在线 av 中文字幕| 免费观看在线日韩| 欧美人与性动交α欧美精品济南到 | 久久鲁丝午夜福利片| 亚洲精品日韩在线中文字幕| 中文字幕最新亚洲高清| 在线免费观看不下载黄p国产| 在线观看免费视频网站a站| 高清黄色对白视频在线免费看| 十分钟在线观看高清视频www| 一区二区三区乱码不卡18| 久久久久久人妻| 女人久久www免费人成看片| 极品人妻少妇av视频| 亚洲婷婷狠狠爱综合网| 99热这里只有精品一区| 日本黄色日本黄色录像| 亚洲熟女精品中文字幕| 成人无遮挡网站| 国产色婷婷99| 熟女电影av网| 寂寞人妻少妇视频99o| 亚洲精品国产av蜜桃| 日本av免费视频播放| 亚洲五月色婷婷综合| 中文天堂在线官网| 天堂中文最新版在线下载| 91午夜精品亚洲一区二区三区| 精品午夜福利在线看| av电影中文网址| 97在线人人人人妻| 一级毛片黄色毛片免费观看视频| 色婷婷av一区二区三区视频| 美女福利国产在线| 婷婷成人精品国产| 欧美激情国产日韩精品一区| 欧美日韩成人在线一区二区| 伦理电影免费视频| 少妇人妻精品综合一区二区| 久热这里只有精品99| 我的老师免费观看完整版| 欧美另类一区| 三级国产精品片| 91精品三级在线观看| 一区二区三区精品91| 在线观看国产h片| 另类精品久久| 欧美人与善性xxx| 日本av免费视频播放| 黄片播放在线免费| 啦啦啦啦在线视频资源| 亚洲,欧美,日韩| 久久精品久久久久久噜噜老黄| 国产成人免费无遮挡视频| 熟妇人妻不卡中文字幕| 九草在线视频观看| 亚洲色图 男人天堂 中文字幕 | 18在线观看网站| 国产精品欧美亚洲77777| 一边摸一边做爽爽视频免费| 亚洲精品美女久久av网站| 日本av免费视频播放| 久久97久久精品| 国产乱人偷精品视频| 全区人妻精品视频| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 熟女av电影| 观看av在线不卡| 少妇猛男粗大的猛烈进出视频| 亚洲美女搞黄在线观看| 久久国产精品大桥未久av| 五月玫瑰六月丁香| 大香蕉97超碰在线| 青春草视频在线免费观看| 国产女主播在线喷水免费视频网站| 夫妻午夜视频| a级毛色黄片| 亚洲国产精品999| 久久久午夜欧美精品| 色视频在线一区二区三区| 亚洲av不卡在线观看| 伦理电影大哥的女人| 日本vs欧美在线观看视频| 在现免费观看毛片| 色5月婷婷丁香| 日韩伦理黄色片| 日韩亚洲欧美综合| 简卡轻食公司| 亚洲人成网站在线观看播放| 国产黄频视频在线观看| 午夜91福利影院| 秋霞伦理黄片| 久久99蜜桃精品久久| 午夜福利视频精品| 亚洲av成人精品一区久久| 亚洲精品自拍成人| 国产黄片视频在线免费观看| av线在线观看网站| 寂寞人妻少妇视频99o| 久久久久人妻精品一区果冻| 亚洲不卡免费看| 国产免费一级a男人的天堂| 久久影院123| 久久久久久人妻| 男女啪啪激烈高潮av片| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 久久免费观看电影| 久久青草综合色| 国产淫语在线视频| 亚洲美女黄色视频免费看| 黄色毛片三级朝国网站| 久久精品熟女亚洲av麻豆精品| 只有这里有精品99| 精品久久久精品久久久| 久久久精品免费免费高清| 成人黄色视频免费在线看| 国产免费一区二区三区四区乱码| 天天影视国产精品| av播播在线观看一区| 插阴视频在线观看视频| 国产精品国产av在线观看| 街头女战士在线观看网站| 午夜91福利影院| 久久久欧美国产精品| 午夜av观看不卡| 99久久精品国产国产毛片| 麻豆成人av视频| xxx大片免费视频| 久久精品国产a三级三级三级| 久久久久国产网址| 免费不卡的大黄色大毛片视频在线观看| 人妻少妇偷人精品九色| 黄色配什么色好看| 大码成人一级视频| 99热全是精品| 国产免费现黄频在线看| 亚洲伊人久久精品综合| 秋霞在线观看毛片| 人妻制服诱惑在线中文字幕| 亚洲精品色激情综合| 三级国产精品片| 精品国产一区二区三区久久久樱花| 久久久久人妻精品一区果冻| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 久久97久久精品| 在线观看人妻少妇| 制服诱惑二区| 一本大道久久a久久精品| 在线播放无遮挡| xxx大片免费视频| 韩国av在线不卡| 精品酒店卫生间| 18禁裸乳无遮挡动漫免费视频| 国产乱来视频区| 欧美激情极品国产一区二区三区 | 男人操女人黄网站| 亚洲欧美清纯卡通| 人妻一区二区av| 国产精品秋霞免费鲁丝片| 热re99久久国产66热| 伊人久久国产一区二区| 亚洲精品,欧美精品| 午夜老司机福利剧场| 男女边摸边吃奶| 亚洲国产av影院在线观看| 下体分泌物呈黄色| 国产免费现黄频在线看| 伦理电影免费视频| tube8黄色片| 99热国产这里只有精品6| 日韩 亚洲 欧美在线| 久久鲁丝午夜福利片| 国产亚洲最大av| 成年女人在线观看亚洲视频| 亚洲av.av天堂| 欧美3d第一页| 天天操日日干夜夜撸| 91精品国产国语对白视频| 国产不卡av网站在线观看| 七月丁香在线播放| 如何舔出高潮| 在线看a的网站| 黄色毛片三级朝国网站| 日韩电影二区| 看非洲黑人一级黄片| 韩国av在线不卡| 天天操日日干夜夜撸| 精品卡一卡二卡四卡免费| 人人妻人人爽人人添夜夜欢视频| 日韩伦理黄色片| 一级黄片播放器| 国产永久视频网站| 2021少妇久久久久久久久久久| av有码第一页| 色视频在线一区二区三区| 成年女人在线观看亚洲视频| 最近最新中文字幕免费大全7| 熟妇人妻不卡中文字幕| 22中文网久久字幕| 99久久综合免费| 少妇高潮的动态图| 人人澡人人妻人| 另类亚洲欧美激情| 亚洲国产欧美在线一区| 老熟女久久久| 婷婷色综合大香蕉| 亚洲五月色婷婷综合| 永久免费av网站大全| 午夜福利影视在线免费观看| 欧美日本中文国产一区发布| 男女国产视频网站| 久久狼人影院| 色吧在线观看| 久久久久久久国产电影| 黄片无遮挡物在线观看| 日韩 亚洲 欧美在线| 国产成人精品无人区| 插阴视频在线观看视频| 人体艺术视频欧美日本| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| 黑人欧美特级aaaaaa片| 成人午夜精彩视频在线观看| 777米奇影视久久| 亚洲少妇的诱惑av| 亚洲精品日韩av片在线观看| 青春草国产在线视频| 国产黄色免费在线视频| 亚洲欧美一区二区三区国产| 国产女主播在线喷水免费视频网站| 好男人视频免费观看在线| 人人妻人人澡人人爽人人夜夜| 91在线精品国自产拍蜜月| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 高清午夜精品一区二区三区| 中国国产av一级| 国产色婷婷99| 极品人妻少妇av视频| 18禁观看日本| 26uuu在线亚洲综合色| 热re99久久精品国产66热6| 永久免费av网站大全| 在现免费观看毛片| 制服丝袜香蕉在线| 春色校园在线视频观看| 看免费成人av毛片| 国产成人a∨麻豆精品| av有码第一页| 日日爽夜夜爽网站| 国产精品.久久久| av卡一久久| 国产免费现黄频在线看| 美女福利国产在线| 亚洲成色77777| 热re99久久国产66热| 99国产综合亚洲精品| 美女内射精品一级片tv| 看十八女毛片水多多多| 亚洲欧洲精品一区二区精品久久久 | 精品久久久久久久久亚洲| 一边摸一边做爽爽视频免费| 久久免费观看电影| 狂野欧美白嫩少妇大欣赏| 中文天堂在线官网| 51国产日韩欧美| 母亲3免费完整高清在线观看 | 在线观看一区二区三区激情| 大码成人一级视频| 大又大粗又爽又黄少妇毛片口| 高清av免费在线| 赤兔流量卡办理| 日韩强制内射视频| 久久久欧美国产精品| 欧美性感艳星| 久久精品国产亚洲av涩爱| 亚洲av电影在线观看一区二区三区| 久久毛片免费看一区二区三区| 狂野欧美激情性xxxx在线观看| av视频免费观看在线观看| 亚洲欧洲日产国产| av视频免费观看在线观看| 午夜激情久久久久久久| 成年女人在线观看亚洲视频| 一级毛片电影观看| 男女无遮挡免费网站观看| 男女高潮啪啪啪动态图| 亚洲欧美成人精品一区二区| 中国国产av一级| 国产精品不卡视频一区二区| 午夜免费鲁丝| 国产成人一区二区在线| 国产av国产精品国产| 波野结衣二区三区在线| 婷婷色综合www| 91久久精品电影网| 丝袜脚勾引网站| 久久免费观看电影| 最近2019中文字幕mv第一页| 午夜日本视频在线| 婷婷成人精品国产| 亚洲av成人精品一二三区| 亚洲美女搞黄在线观看| 中国三级夫妇交换| 国产精品麻豆人妻色哟哟久久| 在线观看三级黄色| 另类亚洲欧美激情| 视频中文字幕在线观看| 五月开心婷婷网| 美女cb高潮喷水在线观看| 亚洲欧美一区二区三区黑人 | 日本黄大片高清| 国产黄色视频一区二区在线观看| 久久99精品国语久久久| 晚上一个人看的免费电影| 亚洲欧美成人综合另类久久久| 高清在线视频一区二区三区| 国产成人精品婷婷| kizo精华| 日日摸夜夜添夜夜爱|