• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fractional Noether theorem and fractional Lagrange equation of multi-scale mechano-electrophysiological coupling model of neuron membrane

    2023-09-05 08:48:06PengWang王鵬
    Chinese Physics B 2023年7期
    關(guān)鍵詞:王鵬

    Peng Wang(王鵬)

    School of Civil Engineering and Architecture,University of Jinan,Jinan 250022,China

    Keywords: Hamilton’s principle, Noether theorem, fractional derivative, multiscale electromechanical coupling,neuron membrane

    1.Introduction

    The action potential(AP)has been considered to be only an electric signal, and the well known Hodgkin–Huxley (H–H) model[1]is the foundation of this viewpoint.However, a recent experiment[2]found that the AP propagation accompanies mechanical deformation like swelling or contraction.So the standpoint of AP being a mechano-electrophysiological coupling process was proposed.[3]Engelbrechtet al.[4]gave a continuum mechanics model to explain this mechanoelectrical coupling phenomenon, Chenet al.[5]gave a finite element computation model and Drapaca[6]proposed an electromechanical model using Hamilton’s principle,and gave its Euler–Lagrange equation.Later, she extended this model to a fractional derivative scenario.[7]However, due to the complexity and nonlinearity, it is hard to solve the mathematical equations of these models.Symmetry is an important tool in finding the first integral, differential equation reduction and classification,[8]so we can apply symmetry in electromechanical coupling equations to find their conserved quantities,further to reduce orders of the differential equations.However,to our knowledge, the Noether symmetry and conserved quantities of neuron dynamics have not been investigated.

    Symmetry is a higher rule in physics.Since Noether revealed the relations between symmetry and conserved quantities in her eminent paper,[9]Noether theorem has had various extensions and has been applied in physics and mechanics.[10–22]Fractional calculus is increasingly important as it can more exactly describe complex phenomena in science and engineering.Fractional Noether theorem has been extended to the fractional Lagrange system, Hamilton system, generalized Hamilton system, Birkhoff system, and so on.[23–33]However,there is no research on fractional Noether symmetry in mechano-electrophysiological coupling equations of neuron dynamics.Considering the visco-elasticity of neuron membranes, we will adopt a fractional derivative of variable orders.In this paper we will generalize fractional Noether theorem to neuron dynamics.

    The structure of this paper is as follows.In Section 2 we will introduce a variable order fractional mechanoelectrophysiological model of a neuron membrane with Riemann–Liouville fractional derivative, deduce its variable order fractional Lagrange equation,and show that the variable order fractional H–H equation can be deduced from the variable order fractional Lagrange equation.In Section 3 variable order fractional Noether symmetry and conserved quantities of the neuron dynamics are studied,and the criterion of variable order fractional Noether symmetry and the form of variable order fractional conserved quantities are given.In Section 4 we will specifically discuss the deduced variable fractional conserved quantities in various conditions.The final section is the conclusion.

    2.The variable order fractional Lagrange equation of neuron membrane dynamics

    Conduction and processing of information are the characteristics of neurons.Neurons make use of electric signals to conduct information.As we know, action potential plays a key role in producing electric signals in neurons.However,experimental observations prove that action potential production is not only because of ion transmission across neuron membranes, but also accompanied with deformation of the neuron membrane, a multiscale mechanics and electrophysiology coupling process.Recently,Drapaca[7]proposed a new fractional multiscale mechano-electrophysiological coupling model using Hamilton’s principle, however its numerical solutions are in fact uncoupled.In this paper we will revisit the model,but study the more general case using Noether symmetry analysis.

    2.1.The model

    The membrane of a neuron consists of a phospholipid bilayer embedded channel protein.The propagation of electric signals in the neuron system is achieved by producing action potential accompanied with an ion channel open or shut.The action potential can induce deformation of the neuron membrane,and inversely the deformation of the neuron membrane can also induce action potential.We can use the Hodgkin–Huxley model to describe the electric process and a linear visco-elastic Kelvin–Voigt model to describe the mechanical process,and Maxwell models to control the activations of the Na+and K+channels, and the inactivation of the Na+channel, respectively.The coupling process is connected through membrane capacitance and displacement (see Fig.1).As we know, the neuron can be considered as an axis-symmetric cylinder with circular cross section, so we can study half the neuron by symmetry.

    Fig.1.Schematic of the mechano-electrophysiological coupling model of an axon membrane.The axon is considered as an axis-symmetric homogeneous circular cylinder with intracellular space filled with axoplasm, and the outer layer is the membrane.Using the symmetry and homogeneity of the column we only need to study half of the axon.At cellular scale we model the intracellular space as a viscoelastic material using the Kelvin model connected with axon capacitor(the dotted box ①),where(x2,x3,x3)denote the deformation motion of the cytoskeleton with different ionic channels, which correspond to the m,n,h gate. x1 is the displacement of the membrane.Mechanical motion or electrical stimuli can trigger the circuit.At subcellular scale ionic exchange obeys fractional Hodgkin–Huxley equations(the dotted box ②)and is controlled by Maxwell models.

    We can express the macro-mechanical kinetic energyT=m1(0(t)x1)2, wherem1denotes the half constant mass of the neuron,Ais the cross-sectional area,andx1is the macroscopic (cell level) displacement that depends on time.In order to use the nonconservative Hamilton principle proposed in Ref.[34], we use the left and right Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1

    However, definitions (1) and (2) will introduce additional memory effects for piecewise uniform accelerated motions.[35]Fortunately,when 0≤α(t)<1 the approximations

    In this paper we will use a Riemann–Liouville fractional derivative of variable orders with 0≤α(t)<1,|dα/dt|?1,t ∈(0,a).

    2.2.The fractional Lagrange equation of variable orders

    Based on the electric charge conservation law, we have a holonomic constraint to charge:eC ?eNa?eK?el=0, so the freedom of the coupling system is 10.Introduce generalized coordinates to express universally the spatial variables and electrical variables,qs(s= 1,...,10), whereq1=x1,q2=x2,q3=x3,q4=x4,q5=eNa,q6=eK,q7=el,q8= ?x2,q9= ?x3,q10= ?x4.The Lagrangian of the neuronal mechanoelectrophysiological model is

    The virtual work of nonconservative generalized forces is

    The Hamilton principle of the nonconservative mechanoelectrophysiological system of the axon membrane is

    By expanding the above equation, and using the communication relation0i(t)δ=δ0(t)which holds for the holonomic constrained system, and the relation of the fractional integral by parts[23–25,34]

    and the end points relationsδq(0)=0,δq(a)=0,we can get the fractional multi-scale mechano-electrophysiological coupling Lagrange equation of neuronal membrane dynamics

    whereψ=ψm+ψe.The coupling equation of motion describes the changes of ions between the outer layer and intracellular space and deformation of the neuron membrane.

    Whenψ=Qs=0, we can get the fractional Lagrange equation of a conservative system

    Putting the expression of LagrangianLinto Eq.(10), we can get the Euler–Lagrange differential equations

    whereV=Ui=qC/Cis the potential of the capacitor.

    Here the Euler–Lagrange equations are different from the equations in Ref.[7], because we suppose the elastic parameters of the cytoskeleton depend on the macro-deformation of the membrane.Kirchhoff’s current law demands0γ(t)(qC+qNa+qK+ql)=I,[7]whereIis a known external electric current applied on the membrane.

    Putting Eqs.(17)–(19) into Kirchhoff’s current law, the fractional Hodgkin–Huxley equation of the membrane potential can be found

    Because of lack of information on the mechanotransduction process of axons,the expressions ofm2,m3,m4,k2,k3,k4,η2,η3,η4,Qsare difficult to know,so in Ref.[7],the author made a simplification to neglect them by a scales comparison.However, these factors should affect the characteristics of axon action.So, in the following study we will treat the general cases by Noether symmetry analysis to study these neglected parameters and how they affect conserved quantities and the expression of these parameters, which may be useful for numerical solutions of the mechano-electrophysiological coupling equations of axons.

    3.Variable order fractional Noether theorem of neuronal membrane dynamics

    We introduce a one-parameter infinitesimal Lie transformation group in space(t,qs,˙qs)

    whereεis an infinitesimal parameter,andξ0(t,q, ˙q),ξs(t,q, ˙q)are infinitesimal transformation generators.The infinitesimal generator vector

    is the operator for the infinitesimal generator of the oneparameter Lie group of transformations(24)in space(t,q, ˙q).The first prolongation of the infinitesimal generator vector[34]is

    which defines a first extended one-parameter Lie group of transformation in space (t,q, ˙q) by partial derivatives, (˙)means first derivative tot.

    The Hamilton action is

    Under the infinitesimal transformation, the curveγis transformed to curveγ?.The corresponding Hamilton action is transformed to

    The variation ?Sof Hamilton actionSis the main linear part of the differenceS(γ?)?S(γ)to infinitesimal parameterε,and we have

    where ?denotes anisochronous variation, andδdenotes isochronous variation.Expanding the above equation,we have

    and using the relation

    wherefis an arbitrary function oft,we can get

    Put the infinitesimal transformation Eq.(24)into Eq.(30),and the following expression can be obtained:

    Definition 1If the variation of the Hamilton action satisfies

    the infinitesimal transformation(24)is a Noether symmetrical transformation.

    Based on definition 1,we can get the Noether symmetry criterion.

    Criterion 1If the infinitesimal generatorsξ0(t,q,),ξs(t,q,)satisfy

    the transformation invariance is named Noether symmetry,which is also called variational symmetry.For Noether symmetry we can deduce the invariant.

    Theorem 1For the Lagrange system (11), if the generatorsξ0(t,q, ˙q),ξs(t,q, ˙q)of the infinitesimal transformations have Noether symmetry(37),there exist fractional conserved quantities as

    which are called variable order fractional Noether conserved quantities.We can verify this theorem by defniingIN =0,which denotes thatINis a conserved quantity.[26]

    In the proving process of this theorem we have used condition(37)and variable order fractional Lagrange equation(11).In fact we can generalize the Noether symmetry to nonconservative dynamical systems.

    Definition 2If the Hamilton action is generalized quasiinvariant under the infinitesimal transformation group,that is,the variation satisfies

    the infinitesimal transformation (24) is a generalized quasisymmetrical transformation, whereGN(t,q,0i(t)q) is a gauge function,andδqsis the sum of the virtual work of the generalized non-conservative force.

    Based on definition 2,we can get the generalized Noether symmetry criterion.

    Criterion 2If there exists a gauge functionGN(t,q,0i(t)q) that makes the infinitesimal generatorsξ0(t,q,),ξs(t,q, ˙q)satisfy

    the infinitesimal transformation is named variable order fractional quasi-Noether symmetry.The Noether symmetry can always lead to conserved quantities.

    Theorem 2For the Lagrange equation Eq.(10) of neuronal membrane dynamics, if the infinitesimal generatorsξ0(t,q,),ξs(s,q,) satisfy equation (41) (criterion 2), the system has the following first integrals:

    which are variable order fractional Noether conserved quantities.

    Proof

    In the proving process of this proposition we have used condition(41)and variable order fractional Lagrange equation(10).

    4.Solutions of Noether symmetry generators and conserved quantities

    Putting the exact form of LagrangianL(6)and dissipative functionψinto the Noether identity Eq.(41),we have

    Next let us discuss the structures of Noether conserved quantities when external nonpotential forcesQs /= 0 (s=1,2,3,4,8,9,10).We will show that the forms of generalized potential forces impact the integrability of the system.In the following we use the approximate relation (3) to simplify the calculus,and for convenience we still use the symbols0i(t),ti(t).

    and we can work out the gauge function

    The corresponding Noether conserved quantities are

    and we can work out the gauge function

    The corresponding Noether conserved quantity is trivial withIN=0.

    Ifk1= const.and the generalized nonpotential forces have formsQ8=η20(t)q8,Q9=η30(t)q9,Q10=η40(t)q10,we have solutions

    and we can work out the gauge function

    The corresponding Noether conserved quantity is

    which denotes the micro mechanical potential energy.

    Ifk1=const.,C=const.,we have solutions

    and we can work out gauge functions respectively

    The corresponding conserved quantities are

    which denote the sum of the electric energy and the micro mechanical potential energy.

    In this section we have discussed the effects of parametersk(q2,q3,q4),C(q1) and non-potential forcesQson the forms of Noether conserved quantities.From the above calculations we can conclude that the Noether symmetry and Noether conserved quantities are strongly determined by nonpotential forces and the material parameters.We did not give all the conserved quantities for the neuron membrane dynamics model, because we can see the conserved quantities are strongly dependent on the external non-conservative forces and characteristic parameters of the neuron membrane.But we give general formulations(41)and(42)to calculate its conserved quantities.

    5.Conclusion

    Considering a neuron axon without myelin as an axissymmetrical cylinder with homogeneous deformation in a neuron membrane, we unified the deformation and electrophysiological multiscale coupling process through Hamilton’s principle in generalized coordinates with fractional derivative of variable orders.The Lagrange equation (10) of the variable order fractional multiscale mechano-electrophysiological model of the neuron membrane is given through which we can deduce the variable order fractional differential equations of motion found in Ref.[7] and the variable order fractional Hodgkin–Huxley equation.The variable order fractional Noether symmetry criterion (37) and (41) and Noether conserved quantities(38)and(42)are given under Lie group transformations.Through the variable order fractional Noether criterion we work out some solutions that correspond to Noether conserved quantities under different external stimuli.The results show that Noether conserved quantities closely depend on the external nonconservative forces and material parameters of the neuron, which need to be further verified by experiments.Other symmetrical methods,like Lie symmetry and Mei symmetry can also be applied to this system,and these will be studied in the future.

    Acknowledgment

    Project supported by the National Natural Science Foundation of China(Grant Nos.12272148 and 11772141).

    猜你喜歡
    王鵬
    王鵬:初心不改 篤行致遠(yuǎn)
    甲狀腺乳頭狀癌頸部淋巴結(jié)轉(zhuǎn)移的術(shù)前高頻超聲診斷分析
    Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity?
    中國(guó)畫(huà)《山居祥夜》
    有所見(jiàn),有所鑒——王鵬眼鏡40周年慶典
    跟著王鵬叔叔拍雪豹
    神奇的線條
    童話世界(2018年11期)2018-05-28 02:23:04
    藝術(shù)百家:王鵬 張凱雷
    王鵬中國(guó)畫(huà)作品
    Tracking algorithm of BPSK signal in low bit SNR and high dynamic scenarios
    久久久精品94久久精品| 又粗又硬又长又爽又黄的视频| 啦啦啦 在线观看视频| 电影成人av| 香蕉国产在线看| 午夜激情久久久久久久| 精品久久久精品久久久| 国产爽快片一区二区三区| 午夜免费男女啪啪视频观看| 天天操日日干夜夜撸| 午夜av观看不卡| 国产成人免费观看mmmm| 黄色怎么调成土黄色| 性少妇av在线| 久久综合国产亚洲精品| 欧美日韩精品网址| 亚洲av成人不卡在线观看播放网 | 亚洲一区中文字幕在线| 欧美成人午夜精品| 999久久久国产精品视频| 欧美在线黄色| 免费少妇av软件| 人体艺术视频欧美日本| 久久精品成人免费网站| av不卡在线播放| 在线观看免费高清a一片| 成人国产av品久久久| 大型av网站在线播放| 国产欧美日韩综合在线一区二区| 少妇被粗大的猛进出69影院| 久久久久久久精品精品| 狠狠婷婷综合久久久久久88av| 亚洲一码二码三码区别大吗| 九色亚洲精品在线播放| 青青草视频在线视频观看| 又粗又硬又长又爽又黄的视频| 亚洲欧洲国产日韩| 欧美日韩一级在线毛片| 你懂的网址亚洲精品在线观看| 天天操日日干夜夜撸| 国产精品亚洲av一区麻豆| 黄色怎么调成土黄色| 黄色视频在线播放观看不卡| 久久精品aⅴ一区二区三区四区| 久久毛片免费看一区二区三区| 精品高清国产在线一区| 亚洲精品中文字幕在线视频| 一区福利在线观看| 视频在线观看一区二区三区| 欧美久久黑人一区二区| 秋霞在线观看毛片| 亚洲国产精品999| cao死你这个sao货| 亚洲美女黄色视频免费看| 国产人伦9x9x在线观看| 天堂俺去俺来也www色官网| 考比视频在线观看| 嫁个100分男人电影在线观看 | 国产黄色视频一区二区在线观看| 亚洲第一av免费看| 美女脱内裤让男人舔精品视频| 亚洲欧美成人综合另类久久久| 日日夜夜操网爽| 亚洲专区国产一区二区| 亚洲国产精品999| 久久久亚洲精品成人影院| 欧美日韩亚洲国产一区二区在线观看 | 午夜免费鲁丝| 晚上一个人看的免费电影| 国产91精品成人一区二区三区 | 成人亚洲欧美一区二区av| 久久精品久久久久久噜噜老黄| 亚洲精品久久午夜乱码| 999精品在线视频| 高清视频免费观看一区二区| 久9热在线精品视频| 多毛熟女@视频| 亚洲欧美中文字幕日韩二区| 考比视频在线观看| 国产色视频综合| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美中文字幕日韩二区| 国产一卡二卡三卡精品| 男的添女的下面高潮视频| 国产精品免费大片| 热99国产精品久久久久久7| 亚洲欧美色中文字幕在线| 男女之事视频高清在线观看 | 丝袜在线中文字幕| 亚洲成色77777| 亚洲国产av新网站| 欧美乱码精品一区二区三区| avwww免费| 久久久久久久久久久久大奶| 9色porny在线观看| 飞空精品影院首页| 大陆偷拍与自拍| 欧美日韩一级在线毛片| av国产久精品久网站免费入址| 精品人妻1区二区| 亚洲av日韩精品久久久久久密 | 日韩中文字幕欧美一区二区 | 午夜日韩欧美国产| 十八禁高潮呻吟视频| 老司机影院毛片| 国产精品99久久99久久久不卡| 一区二区av电影网| 激情五月婷婷亚洲| 亚洲精品国产av蜜桃| 九草在线视频观看| 少妇的丰满在线观看| av不卡在线播放| 国产在线观看jvid| 国产精品偷伦视频观看了| 男女高潮啪啪啪动态图| 久久久久久免费高清国产稀缺| 两个人免费观看高清视频| 亚洲黑人精品在线| 高潮久久久久久久久久久不卡| 国产欧美日韩一区二区三区在线| 90打野战视频偷拍视频| 18禁裸乳无遮挡动漫免费视频| 99国产精品一区二区三区| 搡老岳熟女国产| 欧美精品一区二区大全| 一级毛片女人18水好多 | 亚洲国产精品一区二区三区在线| 亚洲国产精品一区三区| www.自偷自拍.com| 丝袜美腿诱惑在线| 亚洲av成人精品一二三区| 成人三级做爰电影| 久久久久网色| 十八禁网站网址无遮挡| 欧美黄色淫秽网站| 亚洲欧美中文字幕日韩二区| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 王馨瑶露胸无遮挡在线观看| 国产在线一区二区三区精| 中文字幕人妻丝袜制服| 久久午夜综合久久蜜桃| 亚洲av成人不卡在线观看播放网 | xxx大片免费视频| 亚洲一区中文字幕在线| 在线精品无人区一区二区三| 日韩大片免费观看网站| 一区二区三区激情视频| 丝袜美腿诱惑在线| 两个人看的免费小视频| 午夜免费成人在线视频| 日韩一本色道免费dvd| 国产精品三级大全| 日韩一区二区三区影片| 亚洲人成77777在线视频| 亚洲欧美成人综合另类久久久| 一本久久精品| 久久毛片免费看一区二区三区| 免费久久久久久久精品成人欧美视频| 2021少妇久久久久久久久久久| 久热这里只有精品99| 精品福利永久在线观看| 国产视频首页在线观看| 亚洲 国产 在线| 黄色一级大片看看| 亚洲欧洲国产日韩| 水蜜桃什么品种好| 美女高潮到喷水免费观看| 成人国语在线视频| 亚洲精品国产区一区二| 国产精品av久久久久免费| 午夜激情久久久久久久| 久久精品久久久久久久性| 久久精品人人爽人人爽视色| 国产精品欧美亚洲77777| 欧美日韩黄片免| 大香蕉久久网| 男女高潮啪啪啪动态图| 国产日韩欧美亚洲二区| 亚洲一区二区三区欧美精品| 王馨瑶露胸无遮挡在线观看| 黄片小视频在线播放| 亚洲欧洲国产日韩| 亚洲欧美激情在线| 久久中文字幕一级| 亚洲国产中文字幕在线视频| 亚洲 国产 在线| 看免费成人av毛片| 免费久久久久久久精品成人欧美视频| 欧美+亚洲+日韩+国产| 香蕉丝袜av| 国产精品免费大片| 男人舔女人的私密视频| 国产黄色免费在线视频| 中文字幕精品免费在线观看视频| 十八禁网站网址无遮挡| 色综合欧美亚洲国产小说| 国产精品一二三区在线看| 午夜福利在线免费观看网站| 久久久精品94久久精品| 亚洲国产毛片av蜜桃av| 欧美人与性动交α欧美精品济南到| 国语对白做爰xxxⅹ性视频网站| 精品国产美女av久久久久小说| 18禁黄网站禁片午夜丰满| 色婷婷久久久亚洲欧美| 国产亚洲欧美在线一区二区| 最近最新中文字幕大全电影3 | 午夜福利视频1000在线观看| 午夜日韩欧美国产| 国产精品免费一区二区三区在线| 精品午夜福利视频在线观看一区| 国产爱豆传媒在线观看 | 欧美日韩亚洲国产一区二区在线观看| 久久精品91蜜桃| a级毛片a级免费在线| 欧美另类亚洲清纯唯美| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 搡老熟女国产l中国老女人| 午夜福利一区二区在线看| 日韩有码中文字幕| 国产亚洲精品久久久久久毛片| 亚洲精品国产精品久久久不卡| 精品日产1卡2卡| 黄网站色视频无遮挡免费观看| 欧美性猛交╳xxx乱大交人| 久久精品国产99精品国产亚洲性色| 在线观看www视频免费| 黄频高清免费视频| 色播在线永久视频| 天堂动漫精品| 国产片内射在线| 999久久久国产精品视频| 一级片免费观看大全| 中文字幕av电影在线播放| 99re在线观看精品视频| 欧美色欧美亚洲另类二区| 手机成人av网站| 视频区欧美日本亚洲| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 色播亚洲综合网| 一级毛片高清免费大全| 久久99热这里只有精品18| 国产av又大| 亚洲最大成人中文| 国产黄a三级三级三级人| 老司机福利观看| 侵犯人妻中文字幕一二三四区| 长腿黑丝高跟| 亚洲天堂国产精品一区在线| 美女大奶头视频| 午夜精品在线福利| 国产精品国产高清国产av| 美女高潮到喷水免费观看| 午夜久久久在线观看| 亚洲av成人不卡在线观看播放网| 麻豆国产av国片精品| 亚洲av五月六月丁香网| 听说在线观看完整版免费高清| 正在播放国产对白刺激| 国产一区在线观看成人免费| 夜夜夜夜夜久久久久| 亚洲电影在线观看av| 国产黄色小视频在线观看| 免费在线观看日本一区| 欧美激情 高清一区二区三区| 亚洲第一欧美日韩一区二区三区| 一进一出抽搐gif免费好疼| 亚洲五月天丁香| 欧美日本视频| 女性生殖器流出的白浆| 最近最新中文字幕大全电影3 | 非洲黑人性xxxx精品又粗又长| 老司机深夜福利视频在线观看| 99在线人妻在线中文字幕| 亚洲人成电影免费在线| 国产1区2区3区精品| 两个人免费观看高清视频| www.www免费av| 成人欧美大片| 宅男免费午夜| 色尼玛亚洲综合影院| 日本五十路高清| 禁无遮挡网站| 老司机深夜福利视频在线观看| 国产一区二区在线av高清观看| 国产高清videossex| 亚洲美女黄片视频| 精品一区二区三区四区五区乱码| 久久精品人妻少妇| 日韩高清综合在线| 无限看片的www在线观看| 国产一区二区在线av高清观看| 欧美成人免费av一区二区三区| 久久国产精品影院| 欧美日韩乱码在线| 免费一级毛片在线播放高清视频| 久久天堂一区二区三区四区| 日韩欧美在线二视频| 嫩草影视91久久| 久久亚洲真实| 不卡av一区二区三区| 久久久久久国产a免费观看| 午夜成年电影在线免费观看| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲精品在线美女| 母亲3免费完整高清在线观看| 中文字幕高清在线视频| 久久久水蜜桃国产精品网| 亚洲天堂国产精品一区在线| 一区二区日韩欧美中文字幕| 成年女人毛片免费观看观看9| 不卡一级毛片| 欧美黑人巨大hd| 国产精品久久久久久人妻精品电影| 国产成人av激情在线播放| 国产精品香港三级国产av潘金莲| 欧美成人免费av一区二区三区| 2021天堂中文幕一二区在线观 | 无遮挡黄片免费观看| 久久久国产成人免费| 亚洲电影在线观看av| 亚洲五月天丁香| 婷婷亚洲欧美| 69av精品久久久久久| 国产伦在线观看视频一区| 免费在线观看完整版高清| 婷婷丁香在线五月| 国产在线观看jvid| 首页视频小说图片口味搜索| 日韩成人在线观看一区二区三区| 国产区一区二久久| 午夜福利18| 久9热在线精品视频| 在线观看免费视频日本深夜| 亚洲精品久久国产高清桃花| 欧美精品啪啪一区二区三区| 天堂√8在线中文| www.熟女人妻精品国产| 欧美又色又爽又黄视频| 最近最新中文字幕大全免费视频| 老司机深夜福利视频在线观看| 叶爱在线成人免费视频播放| 免费在线观看视频国产中文字幕亚洲| 嫩草影院精品99| 精品久久久久久久久久免费视频| 中文字幕人妻丝袜一区二区| 制服人妻中文乱码| 国产精品免费一区二区三区在线| 久久久久久久久免费视频了| 免费高清视频大片| 黄片播放在线免费| 亚洲av成人av| 真人做人爱边吃奶动态| 国产一区二区三区在线臀色熟女| 久久青草综合色| 亚洲,欧美精品.| 久久午夜综合久久蜜桃| 亚洲第一青青草原| 亚洲人成网站高清观看| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 色综合亚洲欧美另类图片| 99热这里只有精品一区 | 亚洲五月色婷婷综合| 国产精品久久视频播放| 久久香蕉精品热| 免费看十八禁软件| 一边摸一边做爽爽视频免费| 久久午夜亚洲精品久久| 亚洲国产欧美日韩在线播放| 午夜精品久久久久久毛片777| 国产成人欧美| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 国产真实乱freesex| 每晚都被弄得嗷嗷叫到高潮| 热99re8久久精品国产| 男人舔奶头视频| 免费在线观看黄色视频的| 欧美三级亚洲精品| 久久久国产成人免费| 久久久久久九九精品二区国产 | 淫妇啪啪啪对白视频| 中文字幕人妻丝袜一区二区| 国产激情偷乱视频一区二区| 成在线人永久免费视频| 欧美乱色亚洲激情| 亚洲欧美一区二区三区黑人| 亚洲一区中文字幕在线| 欧美成人一区二区免费高清观看 | 亚洲va日本ⅴa欧美va伊人久久| 亚洲性夜色夜夜综合| 99久久99久久久精品蜜桃| 欧美性猛交╳xxx乱大交人| 国产熟女xx| 俄罗斯特黄特色一大片| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 国产精品国产高清国产av| 欧美黑人巨大hd| 在线观看免费视频日本深夜| 99在线视频只有这里精品首页| 国产爱豆传媒在线观看 | 9191精品国产免费久久| 一夜夜www| 又黄又爽又免费观看的视频| 这个男人来自地球电影免费观看| 国产一区二区三区视频了| 久9热在线精品视频| 亚洲 国产 在线| av片东京热男人的天堂| 97人妻精品一区二区三区麻豆 | 色在线成人网| 精品日产1卡2卡| 午夜福利一区二区在线看| 制服人妻中文乱码| 国产午夜精品久久久久久| 亚洲av片天天在线观看| 久久中文字幕一级| 老熟妇乱子伦视频在线观看| 嫁个100分男人电影在线观看| 精品国产亚洲在线| 欧美日韩福利视频一区二区| 欧美日本亚洲视频在线播放| 婷婷丁香在线五月| 午夜免费观看网址| 99精品在免费线老司机午夜| av在线天堂中文字幕| 又黄又粗又硬又大视频| 国产激情久久老熟女| 亚洲国产看品久久| 亚洲天堂国产精品一区在线| 免费高清视频大片| 国产熟女xx| 最近最新中文字幕大全免费视频| 欧美成人午夜精品| 亚洲成人国产一区在线观看| 黄色丝袜av网址大全| 日本精品一区二区三区蜜桃| 成人精品一区二区免费| 成人亚洲精品一区在线观看| 不卡av一区二区三区| 最近最新免费中文字幕在线| 亚洲成人久久性| 18禁黄网站禁片午夜丰满| 国产野战对白在线观看| 亚洲avbb在线观看| 日韩欧美三级三区| 波多野结衣巨乳人妻| 丝袜美腿诱惑在线| 亚洲欧美精品综合一区二区三区| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 国产日本99.免费观看| 亚洲国产看品久久| 精品一区二区三区av网在线观看| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 狠狠狠狠99中文字幕| 成人国产综合亚洲| 午夜精品在线福利| 2021天堂中文幕一二区在线观 | 亚洲熟妇熟女久久| 中文资源天堂在线| 麻豆av在线久日| 悠悠久久av| 免费在线观看亚洲国产| 国产不卡一卡二| 欧美大码av| 国产精品日韩av在线免费观看| 色播在线永久视频| 一级片免费观看大全| 不卡一级毛片| 久久久久久亚洲精品国产蜜桃av| 少妇被粗大的猛进出69影院| 脱女人内裤的视频| 国产亚洲精品久久久久5区| 婷婷精品国产亚洲av| 制服诱惑二区| 人人妻人人澡欧美一区二区| 欧美中文综合在线视频| 99在线人妻在线中文字幕| 成人永久免费在线观看视频| 色精品久久人妻99蜜桃| 国产一区二区三区视频了| av福利片在线| 一级a爱片免费观看的视频| 色尼玛亚洲综合影院| 在线天堂中文资源库| 国产伦一二天堂av在线观看| 99久久无色码亚洲精品果冻| 老汉色∧v一级毛片| 两人在一起打扑克的视频| 一a级毛片在线观看| 人人澡人人妻人| 免费在线观看影片大全网站| 十分钟在线观看高清视频www| 一区二区日韩欧美中文字幕| 中文字幕av电影在线播放| 狠狠狠狠99中文字幕| 亚洲精品在线美女| 十分钟在线观看高清视频www| 精品国产美女av久久久久小说| 看片在线看免费视频| 欧美zozozo另类| 黄色 视频免费看| 国产区一区二久久| 久久中文看片网| 欧美日本视频| 久久久久九九精品影院| 亚洲精品一区av在线观看| 国产精品久久电影中文字幕| 亚洲精品国产精品久久久不卡| 天天一区二区日本电影三级| 后天国语完整版免费观看| 99国产极品粉嫩在线观看| 法律面前人人平等表现在哪些方面| 国产av不卡久久| 成人永久免费在线观看视频| 青草久久国产| 亚洲国产精品sss在线观看| 成人18禁在线播放| a级毛片a级免费在线| 国产精品1区2区在线观看.| 久久香蕉激情| 男女下面进入的视频免费午夜 | 亚洲激情在线av| 亚洲av中文字字幕乱码综合 | 一进一出抽搐gif免费好疼| 欧美成人免费av一区二区三区| 一二三四社区在线视频社区8| 国产熟女xx| 桃红色精品国产亚洲av| av中文乱码字幕在线| 久久午夜综合久久蜜桃| 欧美日韩亚洲综合一区二区三区_| 久久香蕉精品热| 国产亚洲欧美98| 免费电影在线观看免费观看| 久久精品亚洲精品国产色婷小说| 俺也久久电影网| 91成人精品电影| 91大片在线观看| 欧美激情高清一区二区三区| 夜夜看夜夜爽夜夜摸| 成人国语在线视频| www.999成人在线观看| 搞女人的毛片| 久久九九热精品免费| 美女大奶头视频| 免费在线观看日本一区| 啪啪无遮挡十八禁网站| 日韩欧美国产一区二区入口| 国内久久婷婷六月综合欲色啪| 精品久久久久久久毛片微露脸| 国产精品免费视频内射| 两人在一起打扑克的视频| 岛国视频午夜一区免费看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩一区二区精品| avwww免费| 男男h啪啪无遮挡| 国产精品久久视频播放| 国产亚洲精品第一综合不卡| 夜夜躁狠狠躁天天躁| 最近最新中文字幕大全免费视频| 欧美一区二区精品小视频在线| 午夜成年电影在线免费观看| 精品久久久久久久毛片微露脸| 亚洲熟女毛片儿| 久久久国产成人精品二区| 老汉色av国产亚洲站长工具| 777久久人妻少妇嫩草av网站| 免费在线观看亚洲国产| 88av欧美| 曰老女人黄片| 99热6这里只有精品| 亚洲激情在线av| 日韩国内少妇激情av| 久99久视频精品免费| 国产av一区二区精品久久| 91在线观看av| 精品欧美国产一区二区三| 国产高清激情床上av| 中文资源天堂在线| tocl精华| 久久狼人影院| 亚洲午夜理论影院| 国产色视频综合| 一级a爱片免费观看的视频| 丁香六月欧美| 国产精品久久视频播放| 日韩成人在线观看一区二区三区| 日日夜夜操网爽| 免费人成视频x8x8入口观看| av天堂在线播放| 黑人欧美特级aaaaaa片| 欧美在线一区亚洲| 男人舔奶头视频| 91老司机精品| 免费搜索国产男女视频| 人人妻人人澡欧美一区二区| 免费在线观看日本一区| 免费看十八禁软件| 搡老岳熟女国产| 久久久久久久久中文| 亚洲成av人片免费观看| 在线观看一区二区三区| 91九色精品人成在线观看| 欧美人与性动交α欧美精品济南到| 少妇被粗大的猛进出69影院|