• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles calculations of high pressure and temperature properties of Fe7C3

    2023-09-05 08:48:44LiLiFan范莉莉XunLiu劉勛ChangGao高暢ZhongLiLiu劉中利YanLiLi李艷麗andHaiJunHuang黃海軍
    Chinese Physics B 2023年7期
    關(guān)鍵詞:莉莉海軍

    Li-Li Fan(范莉莉), Xun Liu(劉勛), Chang Gao(高暢), Zhong-Li Liu(劉中利),Yan-Li Li(李艷麗), and Hai-Jun Huang(黃海軍),?

    1School of Science,Wuhan University of Technology,Wuhan 430070,China

    2School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    Keywords: iron carbide,phase stability,thermoelastic properties,sound velocities,inner core

    1.Introduction

    As is well known, the Earth’s core is composed of Fe–Ni alloy with a small quantity of light elements.Based on geochemical and meteorological studies, light elements most likely originate from carbon (C), hydrogen (H), oxygen (O),sulfur (S), and silicon (Si).[1]Until now, the light elemental composition of the Earth’s core has been poorly understood.Among these light elements,C has been suggested as a major light elemental component of the Earth’s core,as C is enriched in the solar system[2]and has a high affinity for liquid iron under core–mantle differentiation conditions.[3]In addition, the shear wave velocity and Poisson’s ratio of Fe7C3are similar to those of the inner core[4,5]and Fe7C3melting experiments indicate that C might be a potential light element in the inner core.[6]

    However, whether Fe7C3is stable under core condition and the nature of its relatively stable structure remain unclear.Based on previous experimental results, two potential stable structures can be reasonably hypothesized at high temperature and pressure: hexagonal structure (space groupP63mc; h-Fe7C3) and orthorhombic structure (space groupPnma,Pmn21mc, orPbca; o-Fe7C3).[5,7–9]Nakajimaet al.found that h-Fe7C3is stable up to 71.5 GPa and 1973 K by usingin situx-ray diffraction.[10]Prescheret al.suggested that o-Fe7C3is the more stable phase up to 205 GPa and 3700 K by using single-crystal and powder x-ray diffraction.[5]Theoretical calculations have been similarly inconclusive and often inconsistent.Fanget al.found that the o-Fe7C3phase is more stable than h-Fe7C3under ambient conditions.[11]Razaet al.found that o-Fe7C3(space groupPbca)is stable below 100 GPa,while h-Fe7C3becomes more stable above 150 GPa and requires higher temperatures for stability.[12]

    The thermal equation of state(EOS)of Fe7C3was measured experimentally only at low pressures and temperatures.Litasovet al.[13]and Nakajimaet al.[10]measured the EOS below 30 GPa; however, their results deviate widely when extrapolated to the high temperature and pressure conditions of the inner core.Chen and Zhang acquired compressional(VP) and shear wave velocity (VS) data for Fe7C3up to 154 GPa at 300 K by using x-ray diffraction.[4]Subsequently,Prescheret al.investigated theVPandVSfor Fe7C3up to 158 GPa and 300 K by using the same method.[5]However,these sound velocity measurements of Fe7C3exhibited large discrepancies.[4,5]Therefore,it is necessary to investigate the crystal structure and thermoelastic properties of Fe7C3under core condition to ascertain the amount of carbon present in the inner core.

    Here, using first-principles calculations, we estimate the free energy,EOS,and sound velocity of Fe7C3.The EOS and sound velocity data for Fe7C3are calculated at 0 K–5000 K,which is close to the inner core boundary temperature obtained by phonon spectrum calculations.We also use our findings to discuss whether carbon is the main light element present in the inner core.

    2.Methods

    All calculations were performed by using the Viennaab initiosimulation package (VASP) based on density functional theory (DFT).[14]The conjugate gradient (CG) algorithm was adopted for the geometric optimization of the crystal structures.Exchange–correlation interactions were considered as the Perdew–Burke–Ernzerhof (PBE) parametrization of the gradient approximation (GGA).[15]The electron–ion interactions were represented by projected augmented-wave(PAW) pseudopotentials.[16,17]The simulation cell contained 40 atoms for o-Fe7C3.Prior to formal calculation, we calculated the free energy values of 40 and 20 atoms for h-Fe7C3at some pressure points, obtaining highly similar results.To balance the computational efficiency and precision, we selected 20 atoms for h-Fe7C3calculation at all pressure points.The cutoff energy was 500 eV.The Monkhorst–Pack mesh was 6×4×7 for o-Fe7C3and 6×6×9 for h-Fe7C3.[18]The phonon spectra and free energy of o-Fe7C3and h-Fe7C3were calculated and analyzed by using the Phonopy[19]and Phasego programs.[20]The phonon spectra and Helmholtz free energy were calculated up to 360 GPa in the quasi-harmonic approximation (QHA).During the thermodynamic simulations, we constructed 1×1×2 and 1×2×2 supercells for o- and h-Fe7C3,and set denserk-point meshes to 7×5×3 and 6×6×9 grids,respectively.[21–23]

    Previous studies have reported that Fe7C3undergoes a magnetic transition from a ferromagnetic (FM) to nonmagnetic (NM) phase at high pressure.[5]Therefore, we performed spin-limited and unlimited calculations to investigate the effect of spin on the EOS.

    The elastic constant of Fe7C3was estimated by using the stress-strain method.[24]Force constant was calculated in real space by using density functional perturbation theory.The bulk modulus and shear modulus were calculated from the elastic tensor by using the Voight–Hill–Reuss method.[24,25]Sound velocities were obtained from the following formulas:

    whereVPis the compressional wave velocity,VSis the shear wave velocity,Bis the bulk modulus,Gis the shear modulus,andρis the density.Considering the symmetry of Fe7C3,BandGcan be expressed as

    whereCx(x=11,22,33,44,55,66,12,13,or 23)values are all elastic constants.

    3.Results

    3.1.Relative stabilities of o-and h-phase Fe7C3

    To determine which structure is stable, we calculate the Gibbs free energy values of o-Fe7C3and h-Fe7C3at high pressure and temperature (Fig.1).The difference in Gibbs free energy in o-Fe7C3and h-Fe7C3is a function of temperature.At 120 GPa,the free energy value of o-Fe7C3is 14 meV/atom at 0 K and 72 meV/atom at 4000 K, less than the counterparts of h-Fe7C3.At 360 GPa, the free energy of o-Fe7C3is 17 meV/atom more than that of h-Fe7C3at 0 K, but is 29 meV/atom less than that of h-Fe7C3at 4000 K.Thus, the free energy of o-Fe7C3is less than that of h-Fe7C3at high temperatures.In this study,the energy value of self-consistent optimization convergence is set to 10?5eV, which is much smaller than the difference between the free energy values.Therefore, o-Fe7C3appears to be more stable than h-Fe7C3under inner core condition.Hereafter,we investigate the thermal properties of o-Fe7C3(instead of h-Fe7C3[26,27]) at high temperature and high pressure.

    Fig.1.Free energy values of o-Fe7C3 and h-Fe7C3 under simultaneous action of high pressure and high temperature,showing temperature-dependent(a)Gibbs free energy at 120 GPa,(b)Gibbs free energy at 360 GPa,and(c)at 120 GPa temperature-dependent difference in Gibbs free energy between o-Fe7C3 and h-Fe7C3; (d)at 360 GPa temperature-dependent difference in Gibbs free energy between o-Fe7C3 and h-Fe7C3.

    3.2.Thermal EOS of o-Fe7C3

    The Fe7C3is magnetic at low pressures and undergoes magnetic collapse at high pressures.[5]Consequently,we calculate the EOSs for o-Fe7C3with and without spin at 0 K.Figure 2 shows a comparison between the results of this study and previous results from the static compression method at room temperature[5,10,28,29]andab initiosimulations,[13,26,30]whose detailed comparisons can be found in supplementary Table 3.Below 50 GPa, the EOSs with spin consideration are consistent with static measurements at 300 K[5,10,28,29]andab initiosimulations,[13,30]all of which are higher than the simulated results without spin consideration.[13,26]With the increase of pressure, the EOSs with spin restrictions began to converge with the EOSs without spin restrictions due to demagnetization at~70 GPa–100 GPa, implying the presence of a spin phase transition.The transition pressure is consistent with that observed by using the static compression method.[5]The discontinuity in the EOS of Fe7C3near 53 GPa (or 70 GPa) is presumably attributed to a transition from a high-to low-spin state.[5,29]At 300 K, the extrapolations of the experimental measurements are different from each other considerably at inner core pressures(Fig.2),and the results obtained herein accord with the Prescheret al.’s results.[5]The differences from previous experimental results may be related to their samples, some of which were based on powder x-ray diffraction data,[29]whereas the structure reported by Prescheret al.was based on single-crystal x-ray diffraction data.[5]The pressure and density data of the non-magnetic phase fit the third-order Birch–Murnaghan(BM)equation[31]

    wherePis the pressure,ρ0is the initial density,B0is the bulk modulus, andis the pressure derivative.Thus, the bulk modulusB0=322±1 GPa and its pressure derivative=4.38±0.02 can be obtained.

    Figure 3 shows the linear compression ratio of Fe7C3at high pressure.The largest compression ratio is along theaaxis,while the smallest one is along thecaxis,indicating that Fe7C3turns anisotropic under compression.The compressibility along theaaxis is greater than that along thebaxis and thecaxis because the Fe–Fe bond is along theaaxis,which is stronger and tighter than the Fe–C bond along thebaxis andcaxis.Although the compression ratios are different from those observed in static experiments, their variation trends along all three axes are consistent with previous experimental results.[28]

    To ascertain the carbon content of the inner core,we calculate the thermal EOS of o-Fe7C3at high temperature and pressure by using QHA[22](Fig.4).

    Fig.3.Compression ratios varying with pressure in different directions.

    Fig.4.Equation of states of Fe7C3 at specific temperatures from 0 GPa to 360 GPa(dashed lines indicate Fe isotherms).

    In general,the results obtained herein are consistent with the experimental measurements of Lai.[28]In addition,we calculate the EOSs for h-Fe7C3in this study,but they almost coincide with those obtained for o-Fe7C3at high temperature and pressure.The data for pure Fe are also shown here for comparison.[32]At inner core pressures,the density of Fe7C3is 9.47%lower than that of pure Fe at a temperature of 5000 K.

    3.3.Sound velocities

    To ascertain the carbon content of the inner core,it is necessary to determine the elastic properties of Fe7C3at high temperatures and pressures.However, there are clear differences among the experimental measurements of sound velocities in Fe7C3at high pressures (Fig.5), even at room temperature.In this study,the sound velocity of Fe7C3at 0 K is calculated by using the method described in Section 2.Because we are more interested in the sound velocity of Fe7C3at core pressure, we only calculate the sound velocity for Fe7C3without spin restriction(Fig.5).

    Fig.5.Sound velocities of Fe7C3 obtained in this and previous studies,where Xs are cited from the preliminary reference Earth model[PREM],[33] showing density-dependent(a)compressional waves,(b)Debye velocities,and(c)shear wave velocities.

    The calculatedVPof Fe7C3increases linearly with density, complying with Birch’s law:VP=?1.72(±0.12)+1.15(±0.01)ρ.At 0 K, the calculatedVSis also linearly related to the density,VS=0.66(±0.05)+0.34(±0.00)ρ.The Debye velocity(VD)of Fe7C3can be calculated from the following formula:

    The calculatedVP,VD, andVSat 0 K are broadly consistent with the experimental results at 300 K obtained by Prescheret al.,[5]and higher than those obtained by Chen and Zhang,[4]particularly at high pressures.Figure 5 also shows the ab initio values.[27,30]The results obtained herein are similar to those obtained by Liet al.[27]and Daset al.,[34]but they are all less than those calculated by Ghoshet al.[30]Ghoshetal.also suggested that this deviation might be attributed to the nonlinear mixing of phonon modes.[30]

    4.Geophysical implications for inner core composition

    According to the results of this study, the effect of temperature on the sound velocity of Fe7C3is unknown.Our previous experimental results for Fe and Fe–Si alloys suggest that Birch’s law holds true at high temperatures and pressures.[35]Assuming that theVPof Fe7C3follows Birch’s law at high temperatures,we obtain theVPof Fe7C3after determining its density at inner core.The bulk wave velocity(VB)of Fe7C3at high temperatures is calculated according to its EOS given as follows:

    whereKSandKTare the bulk modulus along the isentrope and the isotherm,respectively;ρis the density;αis the thermal expansion coefficient; andγis the Grüneisen parameter.The value ofα,γ, andKTeachare obtained from the phonon spectrum, andVSat high temperatures is obtained from the following formula:

    and Poisson’s ratio is calculated from the following equation:

    The temperature profile of the inner core is calculated by usingT=TICB(ρ/ρICB)γ.The preferred value ofTICBandγare 5400 K and 1.5.[1]However,in this study,we only calculate the data forTICB=5000 K,as QHA often introduces large errors when the temperature is sufficiently high or close to the melting temperature of Fe7C3.[36]The reliability of QHA at high temperatures has been discussed previously.[37]Figure 6 shows the calculated value ofρ,VP,VS, andσof Fe7C3and the comparison with the values of preliminary reference Earth model (PREM).[33]Except for the density, the simulatedVP,VS,andσof Fe7C3obtained in this study deviated from those obtained by Daset al.[34]

    The density of Fe and Fe7C3are about 5.87%higher and 6.34%lower than the PREM values respectively in the whole range of Earth’s inner core pressure.The Fe7C3content of 44.71 wt% can explain the density deficit of the inner core(Fig.6(a))if carbon is the only light element in the core and is present as Fe7C3.Under the inner core condition, the value ofVSandσof Fe7C3are very close to the PREM values compared with those of Fe (Fig.6(c)).TheVPof Fe7C3is slightly higher than that of Fe,and both are much larger than the PREM values.Thus, carbon might be ruled out as the major light element in the Earth’s inner core,which is consistent with findings of Fe–C phase,[38]Fe–C solid solution,[39]and geochemical[40]investigations.By analyzing the Fe–C phase diagram at high temperatures and pressures, Feiet al.suggested that the carbon content of the inner core is about 2.24%.[38]More recently, Huanget al.experimentally determined Fe–C solid solution densities up to core pressures,and concluded that interstitial carbon can lower the density of iron and be present in the inner core.[39]Using geochemical methods,McDonough concluded that the carbon content of the inner core is less than 0.2%.[40]Therefore, if carbon is present in the inner core, other light elements must also be present,which has inspired many studies of the Fe–C–Si ternary system.Pamatoet al.proposed an Fe–C–Si model for the inner core composition based on the EOS of Fe–C–Si at high pressures and temperatures.[41]Daset al.found that doping a small quantity of Si impurities at carbon sites in Fe7C3carbide phases can reduce theVPandVS,which are closer to the PREM data.[34]According to theVPandVSvelocities of Fe and Fe-8.6Si,and combining theVPandVSresults of Fe7C3obtained by Chen and Zhang,[4]Huanget al.[35]suggested that the density and sound velocity for an Fe–C–Si inner core both match the PREM values.However, theVPandVSdata obtained by Chenet al.are less than our calculated results and theab initiovalues obtained by Liet al.,[27]as well as the experimental data obtained by Prescheret al.[5]Therefore, further experiments are required to investigate theVPandVSof Fe7C3,particularly at high temperatures.

    Fig.6.(a)Pressure-dependent calculated densities of Fe(black line)[35] and Fe7C3 (red line), assuming a temperature of 5000 K,compared with the PREM[33] density profile.Fe7C3 (pink line) and Fe7(C,Si)3 (blue dotted line) are cited from Ref.[34].Fe–1Si–5C (green dotted line)is cited from Ref.[35].(b)Pressure-dependent compressional wave velocities and their comparisons.(c)Pressure-dependent shear wave celocities and their comparisons.(d)Pressure-dependent Poisson’s ratios and their comparisons.

    5.Conclusions

    In the present study, the thermal equation of state(EOS)and sound velocities of Fe7C3at high pressures are calculated by using first-principles methods.The simulated results are generally in agreement with the previous experimental results.Although the derivedVSandσof Fe7C3can reproduce the inner core values,the calculatedVPof Fe7C3is higher than that of Fe and the inner core.Therefore,it is less likely for carbon to be present only as Fe7C3in the Earth’s core.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos.41904085, 41874103, and 42274124).

    猜你喜歡
    莉莉海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    誰在悄悄幫助莉莉呢?
    我的海軍之夢
    軍事文摘(2020年22期)2021-01-04 02:17:24
    With you at that moment
    相信愛
    不倒自行車
    Look from the Anglo—American jury system of jury system in our country
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    两性夫妻黄色片| 欧美日韩精品网址| 男女午夜视频在线观看| 性高湖久久久久久久久免费观看| freevideosex欧美| 日韩av免费高清视频| 亚洲婷婷狠狠爱综合网| 久久久久久人妻| 不卡视频在线观看欧美| 欧美精品一区二区免费开放| 欧美另类一区| 成年人午夜在线观看视频| 男人舔女人的私密视频| 90打野战视频偷拍视频| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 777久久人妻少妇嫩草av网站| 国产精品麻豆人妻色哟哟久久| 国产成人精品在线电影| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| 美女视频免费永久观看网站| 捣出白浆h1v1| 日本av免费视频播放| 午夜久久久在线观看| 一本大道久久a久久精品| 自线自在国产av| 不卡视频在线观看欧美| 一区二区av电影网| 久久韩国三级中文字幕| 精品人妻一区二区三区麻豆| 国产有黄有色有爽视频| 啦啦啦在线观看免费高清www| 国语对白做爰xxxⅹ性视频网站| www.自偷自拍.com| av有码第一页| 国产97色在线日韩免费| 亚洲国产精品成人久久小说| 国产不卡av网站在线观看| 亚洲精品自拍成人| 欧美日韩视频高清一区二区三区二| 一区二区三区激情视频| 国产一区二区三区综合在线观看| 少妇被粗大猛烈的视频| 人妻人人澡人人爽人人| 亚洲国产看品久久| 亚洲av日韩在线播放| 国产精品亚洲av一区麻豆 | 18禁动态无遮挡网站| 伦精品一区二区三区| 国产极品天堂在线| av国产精品久久久久影院| 妹子高潮喷水视频| 欧美人与善性xxx| 久久99精品国语久久久| 亚洲精品久久午夜乱码| 亚洲伊人色综图| 亚洲av电影在线进入| 99热国产这里只有精品6| 久久精品久久精品一区二区三区| 亚洲av在线观看美女高潮| 欧美最新免费一区二区三区| 少妇的丰满在线观看| 亚洲欧美清纯卡通| h视频一区二区三区| 亚洲精品aⅴ在线观看| 国产国语露脸激情在线看| 久久久久视频综合| 国产麻豆69| 国产激情久久老熟女| 91在线精品国自产拍蜜月| 性色avwww在线观看| 秋霞在线观看毛片| 精品99又大又爽又粗少妇毛片| 亚洲第一av免费看| 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 交换朋友夫妻互换小说| 中文欧美无线码| 久久这里只有精品19| 一本色道久久久久久精品综合| av一本久久久久| 卡戴珊不雅视频在线播放| 热99国产精品久久久久久7| 精品国产超薄肉色丝袜足j| 亚洲,欧美精品.| 亚洲熟女精品中文字幕| 日日摸夜夜添夜夜爱| 久久人人97超碰香蕉20202| 黑丝袜美女国产一区| 精品国产一区二区久久| 99九九在线精品视频| 在线观看人妻少妇| 一级,二级,三级黄色视频| 中国国产av一级| 久久久精品区二区三区| 亚洲久久久国产精品| 亚洲av日韩在线播放| 国产免费福利视频在线观看| 叶爱在线成人免费视频播放| 欧美激情高清一区二区三区 | 视频在线观看一区二区三区| 99热网站在线观看| 午夜免费鲁丝| 好男人视频免费观看在线| 大片免费播放器 马上看| 国产在视频线精品| 下体分泌物呈黄色| 欧美亚洲日本最大视频资源| 涩涩av久久男人的天堂| 免费看不卡的av| 色94色欧美一区二区| 天天操日日干夜夜撸| 久久这里只有精品19| 中文字幕最新亚洲高清| 一本久久精品| 欧美亚洲日本最大视频资源| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜一区二区 | 天天躁夜夜躁狠狠久久av| 国产麻豆69| 99久久精品国产国产毛片| 男女无遮挡免费网站观看| 汤姆久久久久久久影院中文字幕| 99久久综合免费| 欧美av亚洲av综合av国产av | √禁漫天堂资源中文www| 人妻系列 视频| 国产在线视频一区二区| 日韩制服骚丝袜av| 不卡av一区二区三区| 成年动漫av网址| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 免费黄频网站在线观看国产| 男的添女的下面高潮视频| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 大香蕉久久成人网| 夜夜骑夜夜射夜夜干| 午夜免费观看性视频| 成人手机av| 日日爽夜夜爽网站| 巨乳人妻的诱惑在线观看| 男女边摸边吃奶| 综合色丁香网| 男人添女人高潮全过程视频| 美女主播在线视频| av女优亚洲男人天堂| 欧美激情 高清一区二区三区| 国产欧美日韩综合在线一区二区| 成年人午夜在线观看视频| 久久av网站| 亚洲欧美成人综合另类久久久| 99久国产av精品国产电影| 在线观看免费视频网站a站| 只有这里有精品99| 我要看黄色一级片免费的| 成人午夜精彩视频在线观看| 亚洲av男天堂| 建设人人有责人人尽责人人享有的| 免费大片黄手机在线观看| 成人国产av品久久久| 18禁观看日本| 男的添女的下面高潮视频| 午夜免费鲁丝| 精品一品国产午夜福利视频| 亚洲av成人精品一二三区| 女性被躁到高潮视频| 亚洲,欧美精品.| 精品一区二区三区四区五区乱码 | 国产精品 欧美亚洲| 国产一级毛片在线| 国产av精品麻豆| 黑人猛操日本美女一级片| 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 人人澡人人妻人| av在线app专区| 母亲3免费完整高清在线观看 | 考比视频在线观看| 亚洲av.av天堂| 一级黄片播放器| 久久女婷五月综合色啪小说| 9色porny在线观看| 免费少妇av软件| 久久99精品国语久久久| 人妻人人澡人人爽人人| 久久久久精品人妻al黑| 亚洲综合色网址| 在线观看www视频免费| 久久久久久久久久人人人人人人| 中国国产av一级| 伊人久久国产一区二区| 国产精品偷伦视频观看了| 久久精品国产综合久久久| 另类亚洲欧美激情| 色吧在线观看| 晚上一个人看的免费电影| 免费女性裸体啪啪无遮挡网站| 中国国产av一级| 亚洲少妇的诱惑av| 婷婷色综合大香蕉| 精品少妇一区二区三区视频日本电影 | 18禁动态无遮挡网站| 久久99精品国语久久久| 王馨瑶露胸无遮挡在线观看| 18禁国产床啪视频网站| 成年女人毛片免费观看观看9 | 又大又黄又爽视频免费| 三级国产精品片| 99精国产麻豆久久婷婷| av在线播放精品| 久久精品熟女亚洲av麻豆精品| 哪个播放器可以免费观看大片| 女性被躁到高潮视频| 亚洲国产日韩一区二区| 免费av中文字幕在线| 免费黄网站久久成人精品| 交换朋友夫妻互换小说| 丝袜美足系列| 在线精品无人区一区二区三| 欧美国产精品一级二级三级| 丁香六月天网| 又大又黄又爽视频免费| 蜜桃国产av成人99| 国产黄色免费在线视频| 国产老妇伦熟女老妇高清| 亚洲国产日韩一区二区| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美精品综合一区二区三区 | 亚洲情色 制服丝袜| 丁香六月天网| 成人国产麻豆网| 亚洲欧美精品综合一区二区三区 | 啦啦啦在线免费观看视频4| 精品一品国产午夜福利视频| 日韩三级伦理在线观看| 久久人人97超碰香蕉20202| 午夜日本视频在线| 国产片特级美女逼逼视频| 捣出白浆h1v1| 久久热在线av| 美女中出高潮动态图| 免费播放大片免费观看视频在线观看| 另类精品久久| 男的添女的下面高潮视频| 精品卡一卡二卡四卡免费| 亚洲精品一二三| 爱豆传媒免费全集在线观看| 久久人人97超碰香蕉20202| 婷婷色麻豆天堂久久| 性色avwww在线观看| 精品少妇黑人巨大在线播放| 男女国产视频网站| 精品一品国产午夜福利视频| 国产精品人妻久久久影院| 飞空精品影院首页| 国产精品 国内视频| 一级毛片我不卡| 99国产精品免费福利视频| 国产激情久久老熟女| 高清在线视频一区二区三区| 99香蕉大伊视频| 侵犯人妻中文字幕一二三四区| 熟女电影av网| av国产久精品久网站免费入址| 在线精品无人区一区二区三| 青春草亚洲视频在线观看| 免费黄频网站在线观看国产| 少妇人妻久久综合中文| 日韩制服丝袜自拍偷拍| 欧美日韩成人在线一区二区| 少妇 在线观看| 一级毛片黄色毛片免费观看视频| 午夜日韩欧美国产| www.av在线官网国产| 久久久精品94久久精品| 国产一区有黄有色的免费视频| 日韩中字成人| 蜜桃国产av成人99| 欧美精品一区二区免费开放| 建设人人有责人人尽责人人享有的| 国产成人精品无人区| 热re99久久国产66热| 国产精品二区激情视频| 国产精品一区二区在线不卡| 欧美变态另类bdsm刘玥| 国产成人精品婷婷| tube8黄色片| 日本色播在线视频| 啦啦啦啦在线视频资源| 超色免费av| 亚洲一区中文字幕在线| 久久人妻熟女aⅴ| 亚洲婷婷狠狠爱综合网| 人人妻人人澡人人爽人人夜夜| 成人漫画全彩无遮挡| 亚洲三级黄色毛片| 国产男人的电影天堂91| 天天影视国产精品| av免费在线看不卡| 国产日韩欧美亚洲二区| 亚洲av.av天堂| 天天躁夜夜躁狠狠躁躁| 少妇被粗大猛烈的视频| 在线亚洲精品国产二区图片欧美| 国产 一区精品| 国产日韩欧美视频二区| 午夜日本视频在线| 99热全是精品| 欧美日韩成人在线一区二区| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 水蜜桃什么品种好| 日韩一本色道免费dvd| 国产精品熟女久久久久浪| 99国产综合亚洲精品| 中文字幕av电影在线播放| 亚洲男人天堂网一区| 男女国产视频网站| 免费看不卡的av| 有码 亚洲区| 国产日韩欧美在线精品| 国产男人的电影天堂91| 男女无遮挡免费网站观看| 中文字幕色久视频| 美女午夜性视频免费| 七月丁香在线播放| av在线app专区| 亚洲国产av新网站| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产av影院在线观看| 久久久久久久国产电影| 最黄视频免费看| 妹子高潮喷水视频| 日本午夜av视频| 一级黄片播放器| 1024视频免费在线观看| 日韩一区二区三区影片| 久久99蜜桃精品久久| 秋霞在线观看毛片| 久久99蜜桃精品久久| 日韩一区二区三区影片| 久久99蜜桃精品久久| 日韩中文字幕欧美一区二区 | 亚洲av日韩在线播放| 免费在线观看视频国产中文字幕亚洲 | 久久热在线av| 国产精品不卡视频一区二区| 天堂8中文在线网| 午夜福利,免费看| 久久影院123| 一区二区日韩欧美中文字幕| 久久久精品94久久精品| 熟女av电影| 久久午夜综合久久蜜桃| 中文字幕人妻丝袜一区二区 | 国产精品蜜桃在线观看| 国产国语露脸激情在线看| 午夜精品国产一区二区电影| 日韩精品有码人妻一区| 欧美成人午夜免费资源| 亚洲国产av影院在线观看| 免费黄网站久久成人精品| 最新中文字幕久久久久| 狠狠精品人妻久久久久久综合| 国产熟女午夜一区二区三区| 熟妇人妻不卡中文字幕| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 精品国产一区二区久久| 老女人水多毛片| 免费不卡的大黄色大毛片视频在线观看| 精品人妻一区二区三区麻豆| av又黄又爽大尺度在线免费看| 一级爰片在线观看| 免费久久久久久久精品成人欧美视频| 午夜免费男女啪啪视频观看| 黑人欧美特级aaaaaa片| 岛国毛片在线播放| 久久精品国产综合久久久| 色网站视频免费| 亚洲综合精品二区| 亚洲av男天堂| 欧美在线黄色| 黑人猛操日本美女一级片| 国产精品国产av在线观看| 国产亚洲午夜精品一区二区久久| 18+在线观看网站| 在线观看国产h片| 亚洲欧美成人精品一区二区| 久久99热这里只频精品6学生| 看免费成人av毛片| 日日摸夜夜添夜夜爱| 久久久国产精品麻豆| 好男人视频免费观看在线| 美女脱内裤让男人舔精品视频| 亚洲精品国产av成人精品| 午夜福利在线观看免费完整高清在| 超碰成人久久| 一级,二级,三级黄色视频| 一边摸一边做爽爽视频免费| 国产精品无大码| 婷婷成人精品国产| 精品国产一区二区久久| 国产成人精品一,二区| 久久久久国产一级毛片高清牌| 国产成人精品一,二区| 一边亲一边摸免费视频| 熟女av电影| 最近中文字幕高清免费大全6| 国产一区二区激情短视频 | a级毛片在线看网站| 少妇熟女欧美另类| 亚洲色图 男人天堂 中文字幕| 国产成人欧美| 一区二区av电影网| 国产日韩欧美在线精品| 亚洲精品国产色婷婷电影| 国产精品二区激情视频| 精品少妇内射三级| 中文字幕人妻丝袜制服| 国产精品久久久久久精品电影小说| 91午夜精品亚洲一区二区三区| 天堂俺去俺来也www色官网| 亚洲美女黄色视频免费看| 亚洲精品国产av蜜桃| 国产麻豆69| 亚洲欧美色中文字幕在线| 熟女少妇亚洲综合色aaa.| 成人午夜精彩视频在线观看| 日本av手机在线免费观看| 国产精品.久久久| 亚洲国产最新在线播放| 天天操日日干夜夜撸| 99热全是精品| 免费在线观看黄色视频的| 国产日韩欧美亚洲二区| √禁漫天堂资源中文www| 国产伦理片在线播放av一区| 在线观看免费高清a一片| 香蕉丝袜av| 欧美日韩av久久| 久久99精品国语久久久| 日韩制服丝袜自拍偷拍| 亚洲av福利一区| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 99国产综合亚洲精品| 曰老女人黄片| 制服诱惑二区| 精品亚洲成国产av| 国产精品三级大全| 国产精品二区激情视频| 精品久久久精品久久久| 日韩人妻精品一区2区三区| 国产无遮挡羞羞视频在线观看| 成人国产麻豆网| 天天影视国产精品| 久久热在线av| 国产高清不卡午夜福利| 午夜激情av网站| 如日韩欧美国产精品一区二区三区| 999久久久国产精品视频| 中国三级夫妇交换| 国产午夜精品一二区理论片| av国产精品久久久久影院| 日本av手机在线免费观看| 免费大片黄手机在线观看| 丰满少妇做爰视频| 亚洲精品自拍成人| 久久人人97超碰香蕉20202| 精品久久蜜臀av无| 亚洲视频免费观看视频| 热re99久久国产66热| 满18在线观看网站| 亚洲成人一二三区av| 少妇人妻久久综合中文| 两个人免费观看高清视频| 青青草视频在线视频观看| 免费高清在线观看日韩| 国产成人aa在线观看| 日本午夜av视频| 日本91视频免费播放| 男女高潮啪啪啪动态图| 女性生殖器流出的白浆| 久久久久精品性色| 美女主播在线视频| 巨乳人妻的诱惑在线观看| 国产日韩一区二区三区精品不卡| 老司机影院毛片| a 毛片基地| 男人操女人黄网站| 免费黄频网站在线观看国产| 亚洲av电影在线观看一区二区三区| 岛国毛片在线播放| 男人爽女人下面视频在线观看| 亚洲精品视频女| 伊人久久大香线蕉亚洲五| 又粗又硬又长又爽又黄的视频| 伦精品一区二区三区| 人妻人人澡人人爽人人| 欧美日韩成人在线一区二区| 亚洲少妇的诱惑av| 国产高清国产精品国产三级| 久久久久久久久久人人人人人人| 少妇人妻精品综合一区二区| 国产麻豆69| 人妻 亚洲 视频| 我的亚洲天堂| 永久网站在线| 美女视频免费永久观看网站| 亚洲国产欧美在线一区| a级片在线免费高清观看视频| 男男h啪啪无遮挡| 亚洲一码二码三码区别大吗| 欧美成人精品欧美一级黄| av免费在线看不卡| 国产毛片在线视频| 久久精品国产综合久久久| 亚洲精品视频女| 老熟女久久久| 精品一区在线观看国产| 看十八女毛片水多多多| 欧美精品亚洲一区二区| 久久久精品国产亚洲av高清涩受| 成年动漫av网址| 亚洲精品av麻豆狂野| 天堂中文最新版在线下载| 丝袜脚勾引网站| 亚洲一区二区三区欧美精品| 日日爽夜夜爽网站| 晚上一个人看的免费电影| 免费观看a级毛片全部| 飞空精品影院首页| 少妇被粗大猛烈的视频| 丝瓜视频免费看黄片| av片东京热男人的天堂| 亚洲美女搞黄在线观看| 少妇人妻久久综合中文| 亚洲第一av免费看| 免费av中文字幕在线| 另类亚洲欧美激情| 国产成人av激情在线播放| 不卡视频在线观看欧美| 亚洲成人手机| 中文字幕另类日韩欧美亚洲嫩草| 曰老女人黄片| 一区二区三区精品91| 国产精品蜜桃在线观看| 少妇人妻久久综合中文| 免费少妇av软件| 黑人猛操日本美女一级片| 赤兔流量卡办理| 两个人看的免费小视频| 深夜精品福利| 大片免费播放器 马上看| 国产免费福利视频在线观看| 9热在线视频观看99| 视频在线观看一区二区三区| 久久久久久免费高清国产稀缺| 国产极品粉嫩免费观看在线| 欧美日本亚洲视频在线播放| 97超级碰碰碰精品色视频在线观看| 国产真人三级小视频在线观看| svipshipincom国产片| 亚洲av美国av| 日日爽夜夜爽网站| 亚洲性夜色夜夜综合| 老司机亚洲免费影院| 丝袜人妻中文字幕| 久久久久久免费高清国产稀缺| 亚洲人成电影免费在线| 午夜影院日韩av| 国产亚洲欧美精品永久| 他把我摸到了高潮在线观看| 夜夜躁狠狠躁天天躁| 国产一区二区在线av高清观看| 亚洲av成人一区二区三| 欧美日韩乱码在线| 欧美日韩av久久| 十八禁人妻一区二区| 国产一区二区三区视频了| 欧美日韩福利视频一区二区| 女人高潮潮喷娇喘18禁视频| 欧美成人免费av一区二区三区| 欧美午夜高清在线| 可以在线观看毛片的网站| 叶爱在线成人免费视频播放| 国产精品国产高清国产av| 日韩大码丰满熟妇| 三上悠亚av全集在线观看| 在线av久久热| 国产免费av片在线观看野外av| 精品国产乱子伦一区二区三区| 国产一区二区三区在线臀色熟女 | 在线观看www视频免费| 国产成人一区二区三区免费视频网站| 亚洲国产精品999在线| 亚洲精品国产色婷婷电影| x7x7x7水蜜桃| 国产高清激情床上av| 一本综合久久免费| 一级作爱视频免费观看| 天天影视国产精品| xxx96com| 国产精品自产拍在线观看55亚洲| 欧美精品亚洲一区二区| 欧美日韩福利视频一区二区| 国产又爽黄色视频| 看免费av毛片| cao死你这个sao货| 色哟哟哟哟哟哟| 成年女人毛片免费观看观看9|