• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles calculations of high pressure and temperature properties of Fe7C3

    2023-09-05 08:48:44LiLiFan范莉莉XunLiu劉勛ChangGao高暢ZhongLiLiu劉中利YanLiLi李艷麗andHaiJunHuang黃海軍
    Chinese Physics B 2023年7期
    關(guān)鍵詞:莉莉海軍

    Li-Li Fan(范莉莉), Xun Liu(劉勛), Chang Gao(高暢), Zhong-Li Liu(劉中利),Yan-Li Li(李艷麗), and Hai-Jun Huang(黃海軍),?

    1School of Science,Wuhan University of Technology,Wuhan 430070,China

    2School of Materials Science and Engineering,Harbin Institute of Technology,Harbin 150001,China

    Keywords: iron carbide,phase stability,thermoelastic properties,sound velocities,inner core

    1.Introduction

    As is well known, the Earth’s core is composed of Fe–Ni alloy with a small quantity of light elements.Based on geochemical and meteorological studies, light elements most likely originate from carbon (C), hydrogen (H), oxygen (O),sulfur (S), and silicon (Si).[1]Until now, the light elemental composition of the Earth’s core has been poorly understood.Among these light elements,C has been suggested as a major light elemental component of the Earth’s core,as C is enriched in the solar system[2]and has a high affinity for liquid iron under core–mantle differentiation conditions.[3]In addition, the shear wave velocity and Poisson’s ratio of Fe7C3are similar to those of the inner core[4,5]and Fe7C3melting experiments indicate that C might be a potential light element in the inner core.[6]

    However, whether Fe7C3is stable under core condition and the nature of its relatively stable structure remain unclear.Based on previous experimental results, two potential stable structures can be reasonably hypothesized at high temperature and pressure: hexagonal structure (space groupP63mc; h-Fe7C3) and orthorhombic structure (space groupPnma,Pmn21mc, orPbca; o-Fe7C3).[5,7–9]Nakajimaet al.found that h-Fe7C3is stable up to 71.5 GPa and 1973 K by usingin situx-ray diffraction.[10]Prescheret al.suggested that o-Fe7C3is the more stable phase up to 205 GPa and 3700 K by using single-crystal and powder x-ray diffraction.[5]Theoretical calculations have been similarly inconclusive and often inconsistent.Fanget al.found that the o-Fe7C3phase is more stable than h-Fe7C3under ambient conditions.[11]Razaet al.found that o-Fe7C3(space groupPbca)is stable below 100 GPa,while h-Fe7C3becomes more stable above 150 GPa and requires higher temperatures for stability.[12]

    The thermal equation of state(EOS)of Fe7C3was measured experimentally only at low pressures and temperatures.Litasovet al.[13]and Nakajimaet al.[10]measured the EOS below 30 GPa; however, their results deviate widely when extrapolated to the high temperature and pressure conditions of the inner core.Chen and Zhang acquired compressional(VP) and shear wave velocity (VS) data for Fe7C3up to 154 GPa at 300 K by using x-ray diffraction.[4]Subsequently,Prescheret al.investigated theVPandVSfor Fe7C3up to 158 GPa and 300 K by using the same method.[5]However,these sound velocity measurements of Fe7C3exhibited large discrepancies.[4,5]Therefore,it is necessary to investigate the crystal structure and thermoelastic properties of Fe7C3under core condition to ascertain the amount of carbon present in the inner core.

    Here, using first-principles calculations, we estimate the free energy,EOS,and sound velocity of Fe7C3.The EOS and sound velocity data for Fe7C3are calculated at 0 K–5000 K,which is close to the inner core boundary temperature obtained by phonon spectrum calculations.We also use our findings to discuss whether carbon is the main light element present in the inner core.

    2.Methods

    All calculations were performed by using the Viennaab initiosimulation package (VASP) based on density functional theory (DFT).[14]The conjugate gradient (CG) algorithm was adopted for the geometric optimization of the crystal structures.Exchange–correlation interactions were considered as the Perdew–Burke–Ernzerhof (PBE) parametrization of the gradient approximation (GGA).[15]The electron–ion interactions were represented by projected augmented-wave(PAW) pseudopotentials.[16,17]The simulation cell contained 40 atoms for o-Fe7C3.Prior to formal calculation, we calculated the free energy values of 40 and 20 atoms for h-Fe7C3at some pressure points, obtaining highly similar results.To balance the computational efficiency and precision, we selected 20 atoms for h-Fe7C3calculation at all pressure points.The cutoff energy was 500 eV.The Monkhorst–Pack mesh was 6×4×7 for o-Fe7C3and 6×6×9 for h-Fe7C3.[18]The phonon spectra and free energy of o-Fe7C3and h-Fe7C3were calculated and analyzed by using the Phonopy[19]and Phasego programs.[20]The phonon spectra and Helmholtz free energy were calculated up to 360 GPa in the quasi-harmonic approximation (QHA).During the thermodynamic simulations, we constructed 1×1×2 and 1×2×2 supercells for o- and h-Fe7C3,and set denserk-point meshes to 7×5×3 and 6×6×9 grids,respectively.[21–23]

    Previous studies have reported that Fe7C3undergoes a magnetic transition from a ferromagnetic (FM) to nonmagnetic (NM) phase at high pressure.[5]Therefore, we performed spin-limited and unlimited calculations to investigate the effect of spin on the EOS.

    The elastic constant of Fe7C3was estimated by using the stress-strain method.[24]Force constant was calculated in real space by using density functional perturbation theory.The bulk modulus and shear modulus were calculated from the elastic tensor by using the Voight–Hill–Reuss method.[24,25]Sound velocities were obtained from the following formulas:

    whereVPis the compressional wave velocity,VSis the shear wave velocity,Bis the bulk modulus,Gis the shear modulus,andρis the density.Considering the symmetry of Fe7C3,BandGcan be expressed as

    whereCx(x=11,22,33,44,55,66,12,13,or 23)values are all elastic constants.

    3.Results

    3.1.Relative stabilities of o-and h-phase Fe7C3

    To determine which structure is stable, we calculate the Gibbs free energy values of o-Fe7C3and h-Fe7C3at high pressure and temperature (Fig.1).The difference in Gibbs free energy in o-Fe7C3and h-Fe7C3is a function of temperature.At 120 GPa,the free energy value of o-Fe7C3is 14 meV/atom at 0 K and 72 meV/atom at 4000 K, less than the counterparts of h-Fe7C3.At 360 GPa, the free energy of o-Fe7C3is 17 meV/atom more than that of h-Fe7C3at 0 K, but is 29 meV/atom less than that of h-Fe7C3at 4000 K.Thus, the free energy of o-Fe7C3is less than that of h-Fe7C3at high temperatures.In this study,the energy value of self-consistent optimization convergence is set to 10?5eV, which is much smaller than the difference between the free energy values.Therefore, o-Fe7C3appears to be more stable than h-Fe7C3under inner core condition.Hereafter,we investigate the thermal properties of o-Fe7C3(instead of h-Fe7C3[26,27]) at high temperature and high pressure.

    Fig.1.Free energy values of o-Fe7C3 and h-Fe7C3 under simultaneous action of high pressure and high temperature,showing temperature-dependent(a)Gibbs free energy at 120 GPa,(b)Gibbs free energy at 360 GPa,and(c)at 120 GPa temperature-dependent difference in Gibbs free energy between o-Fe7C3 and h-Fe7C3; (d)at 360 GPa temperature-dependent difference in Gibbs free energy between o-Fe7C3 and h-Fe7C3.

    3.2.Thermal EOS of o-Fe7C3

    The Fe7C3is magnetic at low pressures and undergoes magnetic collapse at high pressures.[5]Consequently,we calculate the EOSs for o-Fe7C3with and without spin at 0 K.Figure 2 shows a comparison between the results of this study and previous results from the static compression method at room temperature[5,10,28,29]andab initiosimulations,[13,26,30]whose detailed comparisons can be found in supplementary Table 3.Below 50 GPa, the EOSs with spin consideration are consistent with static measurements at 300 K[5,10,28,29]andab initiosimulations,[13,30]all of which are higher than the simulated results without spin consideration.[13,26]With the increase of pressure, the EOSs with spin restrictions began to converge with the EOSs without spin restrictions due to demagnetization at~70 GPa–100 GPa, implying the presence of a spin phase transition.The transition pressure is consistent with that observed by using the static compression method.[5]The discontinuity in the EOS of Fe7C3near 53 GPa (or 70 GPa) is presumably attributed to a transition from a high-to low-spin state.[5,29]At 300 K, the extrapolations of the experimental measurements are different from each other considerably at inner core pressures(Fig.2),and the results obtained herein accord with the Prescheret al.’s results.[5]The differences from previous experimental results may be related to their samples, some of which were based on powder x-ray diffraction data,[29]whereas the structure reported by Prescheret al.was based on single-crystal x-ray diffraction data.[5]The pressure and density data of the non-magnetic phase fit the third-order Birch–Murnaghan(BM)equation[31]

    wherePis the pressure,ρ0is the initial density,B0is the bulk modulus, andis the pressure derivative.Thus, the bulk modulusB0=322±1 GPa and its pressure derivative=4.38±0.02 can be obtained.

    Figure 3 shows the linear compression ratio of Fe7C3at high pressure.The largest compression ratio is along theaaxis,while the smallest one is along thecaxis,indicating that Fe7C3turns anisotropic under compression.The compressibility along theaaxis is greater than that along thebaxis and thecaxis because the Fe–Fe bond is along theaaxis,which is stronger and tighter than the Fe–C bond along thebaxis andcaxis.Although the compression ratios are different from those observed in static experiments, their variation trends along all three axes are consistent with previous experimental results.[28]

    To ascertain the carbon content of the inner core,we calculate the thermal EOS of o-Fe7C3at high temperature and pressure by using QHA[22](Fig.4).

    Fig.3.Compression ratios varying with pressure in different directions.

    Fig.4.Equation of states of Fe7C3 at specific temperatures from 0 GPa to 360 GPa(dashed lines indicate Fe isotherms).

    In general,the results obtained herein are consistent with the experimental measurements of Lai.[28]In addition,we calculate the EOSs for h-Fe7C3in this study,but they almost coincide with those obtained for o-Fe7C3at high temperature and pressure.The data for pure Fe are also shown here for comparison.[32]At inner core pressures,the density of Fe7C3is 9.47%lower than that of pure Fe at a temperature of 5000 K.

    3.3.Sound velocities

    To ascertain the carbon content of the inner core,it is necessary to determine the elastic properties of Fe7C3at high temperatures and pressures.However, there are clear differences among the experimental measurements of sound velocities in Fe7C3at high pressures (Fig.5), even at room temperature.In this study,the sound velocity of Fe7C3at 0 K is calculated by using the method described in Section 2.Because we are more interested in the sound velocity of Fe7C3at core pressure, we only calculate the sound velocity for Fe7C3without spin restriction(Fig.5).

    Fig.5.Sound velocities of Fe7C3 obtained in this and previous studies,where Xs are cited from the preliminary reference Earth model[PREM],[33] showing density-dependent(a)compressional waves,(b)Debye velocities,and(c)shear wave velocities.

    The calculatedVPof Fe7C3increases linearly with density, complying with Birch’s law:VP=?1.72(±0.12)+1.15(±0.01)ρ.At 0 K, the calculatedVSis also linearly related to the density,VS=0.66(±0.05)+0.34(±0.00)ρ.The Debye velocity(VD)of Fe7C3can be calculated from the following formula:

    The calculatedVP,VD, andVSat 0 K are broadly consistent with the experimental results at 300 K obtained by Prescheret al.,[5]and higher than those obtained by Chen and Zhang,[4]particularly at high pressures.Figure 5 also shows the ab initio values.[27,30]The results obtained herein are similar to those obtained by Liet al.[27]and Daset al.,[34]but they are all less than those calculated by Ghoshet al.[30]Ghoshetal.also suggested that this deviation might be attributed to the nonlinear mixing of phonon modes.[30]

    4.Geophysical implications for inner core composition

    According to the results of this study, the effect of temperature on the sound velocity of Fe7C3is unknown.Our previous experimental results for Fe and Fe–Si alloys suggest that Birch’s law holds true at high temperatures and pressures.[35]Assuming that theVPof Fe7C3follows Birch’s law at high temperatures,we obtain theVPof Fe7C3after determining its density at inner core.The bulk wave velocity(VB)of Fe7C3at high temperatures is calculated according to its EOS given as follows:

    whereKSandKTare the bulk modulus along the isentrope and the isotherm,respectively;ρis the density;αis the thermal expansion coefficient; andγis the Grüneisen parameter.The value ofα,γ, andKTeachare obtained from the phonon spectrum, andVSat high temperatures is obtained from the following formula:

    and Poisson’s ratio is calculated from the following equation:

    The temperature profile of the inner core is calculated by usingT=TICB(ρ/ρICB)γ.The preferred value ofTICBandγare 5400 K and 1.5.[1]However,in this study,we only calculate the data forTICB=5000 K,as QHA often introduces large errors when the temperature is sufficiently high or close to the melting temperature of Fe7C3.[36]The reliability of QHA at high temperatures has been discussed previously.[37]Figure 6 shows the calculated value ofρ,VP,VS, andσof Fe7C3and the comparison with the values of preliminary reference Earth model (PREM).[33]Except for the density, the simulatedVP,VS,andσof Fe7C3obtained in this study deviated from those obtained by Daset al.[34]

    The density of Fe and Fe7C3are about 5.87%higher and 6.34%lower than the PREM values respectively in the whole range of Earth’s inner core pressure.The Fe7C3content of 44.71 wt% can explain the density deficit of the inner core(Fig.6(a))if carbon is the only light element in the core and is present as Fe7C3.Under the inner core condition, the value ofVSandσof Fe7C3are very close to the PREM values compared with those of Fe (Fig.6(c)).TheVPof Fe7C3is slightly higher than that of Fe,and both are much larger than the PREM values.Thus, carbon might be ruled out as the major light element in the Earth’s inner core,which is consistent with findings of Fe–C phase,[38]Fe–C solid solution,[39]and geochemical[40]investigations.By analyzing the Fe–C phase diagram at high temperatures and pressures, Feiet al.suggested that the carbon content of the inner core is about 2.24%.[38]More recently, Huanget al.experimentally determined Fe–C solid solution densities up to core pressures,and concluded that interstitial carbon can lower the density of iron and be present in the inner core.[39]Using geochemical methods,McDonough concluded that the carbon content of the inner core is less than 0.2%.[40]Therefore, if carbon is present in the inner core, other light elements must also be present,which has inspired many studies of the Fe–C–Si ternary system.Pamatoet al.proposed an Fe–C–Si model for the inner core composition based on the EOS of Fe–C–Si at high pressures and temperatures.[41]Daset al.found that doping a small quantity of Si impurities at carbon sites in Fe7C3carbide phases can reduce theVPandVS,which are closer to the PREM data.[34]According to theVPandVSvelocities of Fe and Fe-8.6Si,and combining theVPandVSresults of Fe7C3obtained by Chen and Zhang,[4]Huanget al.[35]suggested that the density and sound velocity for an Fe–C–Si inner core both match the PREM values.However, theVPandVSdata obtained by Chenet al.are less than our calculated results and theab initiovalues obtained by Liet al.,[27]as well as the experimental data obtained by Prescheret al.[5]Therefore, further experiments are required to investigate theVPandVSof Fe7C3,particularly at high temperatures.

    Fig.6.(a)Pressure-dependent calculated densities of Fe(black line)[35] and Fe7C3 (red line), assuming a temperature of 5000 K,compared with the PREM[33] density profile.Fe7C3 (pink line) and Fe7(C,Si)3 (blue dotted line) are cited from Ref.[34].Fe–1Si–5C (green dotted line)is cited from Ref.[35].(b)Pressure-dependent compressional wave velocities and their comparisons.(c)Pressure-dependent shear wave celocities and their comparisons.(d)Pressure-dependent Poisson’s ratios and their comparisons.

    5.Conclusions

    In the present study, the thermal equation of state(EOS)and sound velocities of Fe7C3at high pressures are calculated by using first-principles methods.The simulated results are generally in agreement with the previous experimental results.Although the derivedVSandσof Fe7C3can reproduce the inner core values,the calculatedVPof Fe7C3is higher than that of Fe and the inner core.Therefore,it is less likely for carbon to be present only as Fe7C3in the Earth’s core.

    Acknowledgement

    Project supported by the National Natural Science Foundation of China (Grant Nos.41904085, 41874103, and 42274124).

    猜你喜歡
    莉莉海軍
    曉褐蜻
    綠色天府(2022年6期)2022-07-14 11:59:42
    誰在悄悄幫助莉莉呢?
    我的海軍之夢
    軍事文摘(2020年22期)2021-01-04 02:17:24
    With you at that moment
    相信愛
    不倒自行車
    Look from the Anglo—American jury system of jury system in our country
    封面人物·楊海軍
    新聞愛好者(2016年3期)2016-12-01 06:04:24
    海軍協(xié)議1
    New Approach to Calculate the Unavailability of Identical Spares in Cold Spare Configuration
    欧美老熟妇乱子伦牲交| 国产真人三级小视频在线观看| 久久久国产欧美日韩av| 亚洲精品久久成人aⅴ小说| 亚洲熟妇中文字幕五十中出| 99国产精品一区二区蜜桃av| 国产精华一区二区三区| 99久久精品国产亚洲精品| 三级毛片av免费| 人妻久久中文字幕网| av天堂久久9| 久久精品国产综合久久久| 日韩中文字幕欧美一区二区| 午夜视频精品福利| 在线观看www视频免费| 午夜免费成人在线视频| 99re在线观看精品视频| 国产一区二区在线av高清观看| 91成年电影在线观看| 中文字幕另类日韩欧美亚洲嫩草| 国产精品久久视频播放| 男人的好看免费观看在线视频 | 91字幕亚洲| 国产免费av片在线观看野外av| 香蕉丝袜av| 国产成人av教育| 法律面前人人平等表现在哪些方面| 正在播放国产对白刺激| 中文字幕久久专区| 黄色成人免费大全| 久久久国产欧美日韩av| 1024香蕉在线观看| 99精品欧美一区二区三区四区| 十八禁网站免费在线| 成人亚洲精品一区在线观看| 亚洲五月天丁香| 久久久久国产一级毛片高清牌| 人妻丰满熟妇av一区二区三区| 麻豆一二三区av精品| 久久精品91蜜桃| 啦啦啦免费观看视频1| 成在线人永久免费视频| 欧美人与性动交α欧美精品济南到| 国产精品久久电影中文字幕| 天天一区二区日本电影三级 | 在线观看免费午夜福利视频| 色综合欧美亚洲国产小说| 久久久久国产一级毛片高清牌| 精品一区二区三区av网在线观看| 一边摸一边抽搐一进一出视频| 欧美日韩黄片免| 色哟哟哟哟哟哟| 久久久国产成人免费| 一级片免费观看大全| 午夜亚洲福利在线播放| 久久伊人香网站| 日韩国内少妇激情av| 午夜影院日韩av| 国产av精品麻豆| 夜夜夜夜夜久久久久| 欧美日本视频| av欧美777| 免费人成视频x8x8入口观看| 正在播放国产对白刺激| 午夜视频精品福利| 欧美激情高清一区二区三区| 午夜成年电影在线免费观看| 夜夜看夜夜爽夜夜摸| 日韩成人在线观看一区二区三区| 日韩免费av在线播放| 国产精品日韩av在线免费观看 | 亚洲欧美精品综合久久99| svipshipincom国产片| 黄色a级毛片大全视频| 亚洲自偷自拍图片 自拍| 亚洲av成人不卡在线观看播放网| 国产午夜精品久久久久久| 亚洲黑人精品在线| 欧美色欧美亚洲另类二区 | 少妇粗大呻吟视频| 日韩中文字幕欧美一区二区| 男人舔女人的私密视频| 一a级毛片在线观看| 久久香蕉国产精品| 啪啪无遮挡十八禁网站| 老司机午夜十八禁免费视频| 搞女人的毛片| 啦啦啦免费观看视频1| 夜夜爽天天搞| 精品国内亚洲2022精品成人| 亚洲成人精品中文字幕电影| 最近最新免费中文字幕在线| 脱女人内裤的视频| 天天躁狠狠躁夜夜躁狠狠躁| 一个人观看的视频www高清免费观看 | 人妻丰满熟妇av一区二区三区| 丝袜在线中文字幕| 日韩视频一区二区在线观看| 亚洲国产中文字幕在线视频| 一二三四在线观看免费中文在| 免费av毛片视频| 国产精华一区二区三区| 99久久99久久久精品蜜桃| 大型黄色视频在线免费观看| 亚洲七黄色美女视频| 欧美中文综合在线视频| 亚洲三区欧美一区| 淫秽高清视频在线观看| 校园春色视频在线观看| 国产一级毛片七仙女欲春2 | 首页视频小说图片口味搜索| 欧美国产精品va在线观看不卡| 国产在线观看jvid| 亚洲精华国产精华精| xxx96com| 精品人妻1区二区| а√天堂www在线а√下载| 国产精品久久电影中文字幕| 老熟妇仑乱视频hdxx| 国产精品自产拍在线观看55亚洲| 欧美中文综合在线视频| 国产精品综合久久久久久久免费 | 免费在线观看日本一区| 亚洲自拍偷在线| av网站免费在线观看视频| 伦理电影免费视频| 国产男靠女视频免费网站| 日韩欧美免费精品| 久久热在线av| 村上凉子中文字幕在线| 青草久久国产| 国产亚洲精品综合一区在线观看 | 久久欧美精品欧美久久欧美| 免费搜索国产男女视频| 精品久久久久久久人妻蜜臀av | 99久久国产精品久久久| 曰老女人黄片| 国产三级黄色录像| 国产单亲对白刺激| 不卡一级毛片| 18禁美女被吸乳视频| 多毛熟女@视频| 不卡一级毛片| 亚洲av熟女| 欧美大码av| 国产高清视频在线播放一区| 亚洲黑人精品在线| 久久久久久久久中文| 亚洲欧美日韩无卡精品| 亚洲五月婷婷丁香| 一本综合久久免费| 欧美黄色片欧美黄色片| 午夜老司机福利片| 亚洲色图av天堂| 久久精品国产清高在天天线| 亚洲人成伊人成综合网2020| 国产视频一区二区在线看| 久久久久久国产a免费观看| 少妇的丰满在线观看| 国产精品99久久99久久久不卡| 99精品欧美一区二区三区四区| 性少妇av在线| 亚洲成人免费电影在线观看| 51午夜福利影视在线观看| www.熟女人妻精品国产| 午夜影院日韩av| 麻豆av在线久日| 免费观看精品视频网站| 午夜a级毛片| 成年人黄色毛片网站| 亚洲国产日韩欧美精品在线观看 | 久久精品91无色码中文字幕| 亚洲国产欧美网| 国产不卡一卡二| 青草久久国产| 亚洲一区中文字幕在线| 美女高潮喷水抽搐中文字幕| 女人精品久久久久毛片| 999久久久精品免费观看国产| 中文字幕人妻丝袜一区二区| 波多野结衣一区麻豆| 香蕉久久夜色| 免费高清视频大片| 校园春色视频在线观看| 日本五十路高清| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 女生性感内裤真人,穿戴方法视频| 成人国语在线视频| 日韩中文字幕欧美一区二区| 亚洲一码二码三码区别大吗| 久久国产亚洲av麻豆专区| 美女大奶头视频| 禁无遮挡网站| 欧美精品啪啪一区二区三区| 女性生殖器流出的白浆| av天堂久久9| 女人高潮潮喷娇喘18禁视频| 两性夫妻黄色片| 一本大道久久a久久精品| 少妇被粗大的猛进出69影院| e午夜精品久久久久久久| 黄色成人免费大全| 黄频高清免费视频| 一级毛片高清免费大全| 美女高潮喷水抽搐中文字幕| 精品久久久久久成人av| 午夜福利18| a在线观看视频网站| 久久久久久久久中文| 国产蜜桃级精品一区二区三区| 在线观看免费午夜福利视频| 日本黄色视频三级网站网址| 大型av网站在线播放| 日韩大尺度精品在线看网址 | 久久国产精品人妻蜜桃| 亚洲国产毛片av蜜桃av| 欧美日韩福利视频一区二区| 欧美不卡视频在线免费观看 | 国产精品二区激情视频| 国产精品永久免费网站| 美女大奶头视频| 久久香蕉激情| 欧美精品亚洲一区二区| 久久中文字幕人妻熟女| 免费一级毛片在线播放高清视频 | 啦啦啦观看免费观看视频高清 | 9色porny在线观看| 久久精品国产亚洲av香蕉五月| 一进一出抽搐动态| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉国产精品| 夜夜躁狠狠躁天天躁| 啦啦啦免费观看视频1| 精品熟女少妇八av免费久了| 在线观看66精品国产| 国产成人精品在线电影| 人人澡人人妻人| 搡老岳熟女国产| 欧美日韩福利视频一区二区| 国产99白浆流出| 久久久久久久精品吃奶| 国产成人精品久久二区二区免费| 亚洲熟妇中文字幕五十中出| 最新美女视频免费是黄的| 成人三级黄色视频| 日本撒尿小便嘘嘘汇集6| 亚洲中文字幕日韩| 一级,二级,三级黄色视频| 亚洲午夜理论影院| 啦啦啦 在线观看视频| 色尼玛亚洲综合影院| av天堂在线播放| 制服诱惑二区| 亚洲五月色婷婷综合| 国内毛片毛片毛片毛片毛片| 国产1区2区3区精品| 久久婷婷人人爽人人干人人爱 | 欧美午夜高清在线| 亚洲男人的天堂狠狠| 神马国产精品三级电影在线观看 | 国产成人啪精品午夜网站| 999久久久国产精品视频| 久久天躁狠狠躁夜夜2o2o| 精品国产国语对白av| 88av欧美| 高清在线国产一区| av欧美777| 久久久久久亚洲精品国产蜜桃av| 亚洲精品在线观看二区| bbb黄色大片| 女同久久另类99精品国产91| 亚洲一码二码三码区别大吗| 两性午夜刺激爽爽歪歪视频在线观看 | 激情视频va一区二区三区| 两个人视频免费观看高清| 麻豆一二三区av精品| 国产成年人精品一区二区| 成人亚洲精品av一区二区| 女人高潮潮喷娇喘18禁视频| 国产麻豆69| 国产一级毛片七仙女欲春2 | 久久青草综合色| 国产精品久久久久久精品电影 | 欧美日韩瑟瑟在线播放| 一夜夜www| 色播在线永久视频| 亚洲国产看品久久| 嫁个100分男人电影在线观看| 日本免费a在线| 成人手机av| 一区二区三区国产精品乱码| 亚洲国产精品999在线| 亚洲狠狠婷婷综合久久图片| 成人亚洲精品av一区二区| 悠悠久久av| 男女下面插进去视频免费观看| 国产日韩一区二区三区精品不卡| 成人特级黄色片久久久久久久| 亚洲精品美女久久久久99蜜臀| 国内精品久久久久久久电影| 久久精品亚洲精品国产色婷小说| 嫩草影院精品99| 亚洲欧美日韩高清在线视频| 亚洲男人天堂网一区| 色尼玛亚洲综合影院| 巨乳人妻的诱惑在线观看| 国产麻豆69| ponron亚洲| 制服诱惑二区| 黄色 视频免费看| 一个人观看的视频www高清免费观看 | 欧美精品亚洲一区二区| 高清黄色对白视频在线免费看| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 精品久久久久久久人妻蜜臀av | 亚洲天堂国产精品一区在线| 黄色女人牲交| 国产亚洲欧美精品永久| 中文字幕人成人乱码亚洲影| 大码成人一级视频| 亚洲第一av免费看| 午夜福利成人在线免费观看| 亚洲国产毛片av蜜桃av| 久久久久国产一级毛片高清牌| 国产三级在线视频| 国产亚洲欧美98| 大型黄色视频在线免费观看| 非洲黑人性xxxx精品又粗又长| 老汉色∧v一级毛片| 99riav亚洲国产免费| 国产精品98久久久久久宅男小说| 色精品久久人妻99蜜桃| 国产精品久久电影中文字幕| 一区二区日韩欧美中文字幕| 法律面前人人平等表现在哪些方面| 啦啦啦免费观看视频1| 国产单亲对白刺激| 99re在线观看精品视频| www.精华液| 日韩精品免费视频一区二区三区| 首页视频小说图片口味搜索| 日本欧美视频一区| 老司机福利观看| 欧美在线黄色| 亚洲国产精品久久男人天堂| 色综合亚洲欧美另类图片| 婷婷丁香在线五月| 女人被躁到高潮嗷嗷叫费观| 亚洲精品久久国产高清桃花| 亚洲人成网站在线播放欧美日韩| 少妇裸体淫交视频免费看高清 | 久久久久九九精品影院| 亚洲欧美激情在线| 嫁个100分男人电影在线观看| 久久香蕉精品热| 色精品久久人妻99蜜桃| 亚洲成人免费电影在线观看| 久久久久九九精品影院| 亚洲精品中文字幕在线视频| 操出白浆在线播放| 日本五十路高清| 精品一区二区三区四区五区乱码| 女人高潮潮喷娇喘18禁视频| 老司机午夜福利在线观看视频| 91成人精品电影| 99久久精品国产亚洲精品| 女人高潮潮喷娇喘18禁视频| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 久久伊人香网站| 日韩欧美一区二区三区在线观看| 日韩欧美国产在线观看| 国产精品一区二区三区四区久久 | 韩国av一区二区三区四区| 亚洲性夜色夜夜综合| 亚洲国产欧美网| 国产精品精品国产色婷婷| 国产熟女xx| 香蕉丝袜av| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲国产毛片av蜜桃av| 美女扒开内裤让男人捅视频| 在线永久观看黄色视频| 精品无人区乱码1区二区| 不卡一级毛片| 日韩高清综合在线| 色老头精品视频在线观看| 成人亚洲精品一区在线观看| av天堂久久9| 日韩成人在线观看一区二区三区| 精品熟女少妇八av免费久了| 9热在线视频观看99| 国产精品爽爽va在线观看网站 | 欧美日韩一级在线毛片| 欧美成人性av电影在线观看| 中文亚洲av片在线观看爽| 久久亚洲精品不卡| 国产精品二区激情视频| 亚洲成人国产一区在线观看| 成人三级做爰电影| www.自偷自拍.com| 国产亚洲av嫩草精品影院| www日本在线高清视频| 黄片小视频在线播放| 少妇的丰满在线观看| 嫩草影视91久久| 黄片大片在线免费观看| 欧美性长视频在线观看| 免费高清视频大片| 久久久久国产一级毛片高清牌| 一边摸一边做爽爽视频免费| 99国产综合亚洲精品| 91麻豆av在线| 999久久久精品免费观看国产| 黑丝袜美女国产一区| 久久人妻av系列| 欧美黑人精品巨大| 热99re8久久精品国产| www.自偷自拍.com| 久久久久国产一级毛片高清牌| av欧美777| 国产精品一区二区在线不卡| 国产欧美日韩精品亚洲av| 精品高清国产在线一区| 一夜夜www| 国产精品99久久99久久久不卡| 亚洲人成电影观看| 天天躁夜夜躁狠狠躁躁| 中文字幕色久视频| 午夜福利一区二区在线看| 九色国产91popny在线| 黄色视频不卡| 老司机深夜福利视频在线观看| cao死你这个sao货| 黄网站色视频无遮挡免费观看| 午夜精品久久久久久毛片777| 日韩精品青青久久久久久| 久久久久久亚洲精品国产蜜桃av| 日韩欧美一区视频在线观看| 人人澡人人妻人| 成人免费观看视频高清| 亚洲最大成人中文| 桃红色精品国产亚洲av| 黑人巨大精品欧美一区二区蜜桃| 色综合欧美亚洲国产小说| 校园春色视频在线观看| 国产91精品成人一区二区三区| 免费观看精品视频网站| 免费看美女性在线毛片视频| 亚洲专区国产一区二区| 亚洲人成电影免费在线| 亚洲国产精品999在线| svipshipincom国产片| 亚洲成av片中文字幕在线观看| 看黄色毛片网站| 久久精品国产亚洲av高清一级| 一级a爱视频在线免费观看| 国产精品久久久久久人妻精品电影| 亚洲三区欧美一区| 国产成人一区二区三区免费视频网站| 美女午夜性视频免费| 成人18禁在线播放| 亚洲精品美女久久av网站| 香蕉久久夜色| 久久久久国内视频| 精品电影一区二区在线| 少妇的丰满在线观看| 国产精品久久久久久精品电影 | 麻豆久久精品国产亚洲av| 久久这里只有精品19| 日韩 欧美 亚洲 中文字幕| 久久人妻av系列| 视频区欧美日本亚洲| 色婷婷久久久亚洲欧美| 给我免费播放毛片高清在线观看| 神马国产精品三级电影在线观看 | 最新在线观看一区二区三区| 午夜福利一区二区在线看| 日日夜夜操网爽| 亚洲九九香蕉| 亚洲人成网站在线播放欧美日韩| 无人区码免费观看不卡| 欧美在线黄色| 精品国产乱子伦一区二区三区| 黑丝袜美女国产一区| 午夜激情av网站| 一区在线观看完整版| 色在线成人网| 日韩欧美国产在线观看| or卡值多少钱| 亚洲精品美女久久久久99蜜臀| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 纯流量卡能插随身wifi吗| 久久久久国产一级毛片高清牌| 久久中文看片网| 在线国产一区二区在线| 一级,二级,三级黄色视频| 午夜精品国产一区二区电影| 亚洲av电影不卡..在线观看| 天堂√8在线中文| 99国产精品一区二区三区| 午夜福利视频1000在线观看 | 日韩欧美在线二视频| 亚洲熟妇熟女久久| 不卡av一区二区三区| 亚洲五月婷婷丁香| 午夜福利18| 久久国产精品人妻蜜桃| 日韩欧美免费精品| 亚洲 欧美 日韩 在线 免费| 99久久精品国产亚洲精品| 丰满的人妻完整版| 9191精品国产免费久久| 国产精品久久视频播放| 久久久久亚洲av毛片大全| 午夜福利成人在线免费观看| 亚洲精品粉嫩美女一区| 老熟妇乱子伦视频在线观看| 免费在线观看黄色视频的| 99re在线观看精品视频| 日日夜夜操网爽| 亚洲一码二码三码区别大吗| 午夜视频精品福利| 免费久久久久久久精品成人欧美视频| 国产精品九九99| 少妇熟女aⅴ在线视频| 真人一进一出gif抽搐免费| 欧美av亚洲av综合av国产av| 亚洲国产精品久久男人天堂| 淫秽高清视频在线观看| 精品少妇一区二区三区视频日本电影| 欧美色欧美亚洲另类二区 | 在线国产一区二区在线| 又大又爽又粗| 精品人妻1区二区| 制服人妻中文乱码| av在线天堂中文字幕| 成人特级黄色片久久久久久久| 国产97色在线日韩免费| 岛国视频午夜一区免费看| 国产免费男女视频| 欧美色视频一区免费| 精品国产一区二区三区四区第35| 国产精品野战在线观看| av网站免费在线观看视频| 成人国产一区最新在线观看| 国产高清videossex| 淫秽高清视频在线观看| 久久香蕉精品热| 首页视频小说图片口味搜索| 亚洲精品美女久久久久99蜜臀| www日本在线高清视频| av福利片在线| 男女做爰动态图高潮gif福利片 | 久久久水蜜桃国产精品网| 日韩国内少妇激情av| 亚洲一卡2卡3卡4卡5卡精品中文| 国产又色又爽无遮挡免费看| 真人做人爱边吃奶动态| 丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 亚洲 欧美一区二区三区| 国产成人精品久久二区二区91| 日本免费一区二区三区高清不卡 | 99国产精品免费福利视频| 久久久久国产精品人妻aⅴ院| 免费在线观看黄色视频的| 国产精品久久久人人做人人爽| 咕卡用的链子| 后天国语完整版免费观看| 国产精品香港三级国产av潘金莲| 看黄色毛片网站| 大香蕉久久成人网| 亚洲国产精品sss在线观看| 级片在线观看| 久久人妻熟女aⅴ| 纯流量卡能插随身wifi吗| 国产片内射在线| 日本免费a在线| 午夜两性在线视频| 99久久综合精品五月天人人| 欧美日本中文国产一区发布| 一级a爱视频在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产欧美日韩精品亚洲av| 国语自产精品视频在线第100页| 性少妇av在线| 亚洲av成人av| 久热爱精品视频在线9| 首页视频小说图片口味搜索| 日韩三级视频一区二区三区| 侵犯人妻中文字幕一二三四区| 97超级碰碰碰精品色视频在线观看| 日本精品一区二区三区蜜桃| 欧美日韩瑟瑟在线播放| 非洲黑人性xxxx精品又粗又长| 亚洲av美国av| 欧美日韩精品网址| av片东京热男人的天堂| 国产一区二区三区综合在线观看| 一级a爱视频在线免费观看| 女人被狂操c到高潮| 美女高潮到喷水免费观看| 国产亚洲av高清不卡| 亚洲欧美精品综合久久99| 一个人免费在线观看的高清视频| 国产99白浆流出| svipshipincom国产片| 免费观看人在逋| 女人被躁到高潮嗷嗷叫费观| 国产人伦9x9x在线观看| 一夜夜www|