• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of simulating hybrid STT-MTJ/CMOS circuits based on MATLAB/Simulink

    2023-09-05 08:48:40MinHuiJi冀敏慧XinMiaoZhang張欣苗MengChunPan潘孟春QingFaDu杜青法YueGuoHu胡悅國(guó)JiaFeiHu胡佳飛WeiChengQiu邱偉成JunPingPeng彭俊平ZhuLin林珠andPeiSenLi李裴森
    Chinese Physics B 2023年7期
    關(guān)鍵詞:胡佳

    Min-Hui Ji(冀敏慧), Xin-Miao Zhang(張欣苗), Meng-Chun Pan(潘孟春), Qing-Fa Du(杜青法),Yue-Guo Hu(胡悅國(guó)), Jia-Fei Hu(胡佳飛), Wei-Cheng Qiu(邱偉成),Jun-Ping Peng(彭俊平), Zhu Lin(林珠), and Pei-Sen Li(李裴森),?

    1College of Intelligence Science and Technology,National University of Defense Technology,Changsha 410073,China

    2Beijing National Research Center for Information Science and Technology,Tsinghua University,Beijing 100084,China

    Keywords: magnetic tunneling junction (MTJ) model, spin-transfer-torque (STT), circuit simulation, MATLAB/Simulink

    1.Introduction

    With the development of big data and internet of things(IoT), the problems of “memory wall” and “energy wall”caused by the von Neumann bottleneck are becoming increasingly prominent.Recently, spintronics has been regarded as one of the most important technologies to break the bottleneck, due to the advantage of non-volatile, low power, high speed, and compatibility with the traditional complementary metal–oxide–semiconductor (CMOS) devices.[1–4]The spintransfer-torque (STT) magnetic tunneling junction (MTJ) is one of the most important elements of spintronic technology,which can be used as magnetic memory,magnetic sensors,microwave transmitting and receiving devices.[5–9]The unique multiple functions from sensing, processing to communicating, open the way for the design of new types of computing in sensing devices and paradigms.[10]For example, the spin transfer nano-oscillators(STNOs)have been utilized for the development of new neuromorphic devices and computing paradigms.[11–13]And typically, the hybrid STT-MTJ/CMOS circuits need to be considered in the design process to make full use of advantages of MTJ technology and CMOS technology.Hence, a simulation model that captures the quasi-static and dynamic behaviors of STT-MTJ devices and a hybrid simulation framework of STT-MTJ/CMOS is urgently needed.[14]

    Up to now,several hybrid STT-MTJ/CMOS models have been proposed, and most of them are programmed with the SPICE-based circuit simulators or Verilog-A compact model.[14–23]In 2012, Zhanget al.reported an compact perpendicular magnetic anisotropy (PMA) STT-MTJ model.[15]This model was programmed with the Verilog-A language.The tunnel resistance effect, the STT switching, and the stochastic behaviors were taken into account.Though this model provides an effective strategy for constructing memory and logic chips, it is personalized for the PMA MTJ devices and the precessional motion is discarded, which is one of the most important characteristics for the design of new generation of neuromorphic devices and oscillator-based computing.[24,25]For the simulation of in-plane magnetic anisotropy (IMA) STT-MTJ, in 2012, Yanget al.proposed a modified nodal analysis model with identified internal state variables in SPICE-like simulator,[16]which can deal with the dynamic behavior of devices under arbitrary driving condition,however the model parameters are not directly corresponding to the actual device parameters.Therefore, a timely and comprehensive STT-MTJ model is needed, which can easily adapt to different MTJ parameters and process technologies.Hence, In 2013, Panagopouloset al.developed a physicsbased SPICE compact hybrid MTJ/CMOS simulator.[17]The model of MTJ is implemented by using the only inbuilt components (voltage-dependent current sources, capacitors, and resistors), the dynamic behavior of MTJ was calculated by Kirchhoff’s law.This model provides the ability to predict the real magnet dynamic behaviors of IMA device and PMA STT-MTJ device.Similarly, Kazemiet al.reported an adaptive compact MTJ model[18]in 2014,which includes not only the STT effect, but also the voltage controlled magnetic anisotropy(VCMA)effect.This model can also be adapted to IMA and PMA MTJ.Both the models can predict devices’performances from material to circuit level.However,the SPICEbased model using the inbuilt components generally consists of many circuit components or electrical nodes,which are relatively complex.

    Simulink provides an interactive graphical model environment and covers the most commonly used SPICE compatible models, which enables rapid construction of a simulation model to explore the design concepts from device to system level.Therefore, in this work, we propose an MATLAB/Simulink based framework for simulating hybrid STT-MTJ/CMOS circuits.The proposed model consists of a physics-based macrospin model of the STT-MTJ device, a controlled resistor,and a current sensor.The STT-MTJ model is edited using the MATLAB script, and the output of the script adjusts the resistance of the controlled resistor, while the current flowing through the controlled resistor will be fed back to STT-MTJ device.Benefited from the modular design of Simulink, the model can be easily expanded by creating a new physical module.Compared with the conventional SPICE-based physics hybrid STT-MTJ/CMOS method,the model presented in this paper is simple,very flexible,and easy to comprehend.

    The remainder of this paper is organized as follows.In Section 2 the basic theory and key physics are described,and then the simulation framework based on MATLAB/Simulink is discussed.In Section 3 our proposed model is verified by using experiment results,and the simulation results including the hybrid STT-MTJ/CMOS circuit and the coupling of two devices are also shown.Finally, some conclusions are drawn in Section 4.

    2.The simulation framework: Theory and key physics

    2.1.MTJ construction and basics

    MTJ is a magnetic device consisting of an ultra-thin barrier layer and two ferromagnetic(FM)layers: one has a fixed magnetic orientation (fixed layer), whereas the other (free layer) can change its magnetic orientation.The device structure of MTJ is shown in Fig.1.The magnetization vector of the free layer and fixed layer are indicated bymfandmp,respectively.As is well known, the conductance (G) of the MTJ depends on the angle(θ)between the two magnetization vectors,can be calculated from.[9,26]

    whereGPandGAPare the conductance of the MTJ device when the magnetic orientations of the two ferromagnetic layers are parallel(P)and antiparallel(AP)to each other,respectively.When the free layer is parallel to the fixed layer, the resistance of MTJ is in the minimum(RP=1/GP)state,while the device is in the high resistance state(RAP=1/GAP)when the relative magnetic orientations are antiparallel.The TMR ratio can be represented by the following equation,which decreases with the bias voltageVbiasincreasing:[27]

    where TMR is the measured real value, TMR(0) is the TMR value when the bias voltage is close to zero,andVhis the corresponding bias voltage when TMR=0.5×TMR(0).

    Fig.1.Basic schematic diagram of MTJ structure consisting of a free layer,a barrier layer,and a fixed layer.

    2.2.Theories of magnetization dynamics

    The free layer magnetization is macrospin approximately in our model.[28]The magnetization precession motion can be explained by the Landau–Lifshitz–Gilbert(LLG)equation with the additional Slonczewski’s term,[16,29,30]and the equation is shown as follows:

    Here,mfandmpare the reduced magnetization vectors of the free layer and unit polarization direction of fixed layer,respectively,γis the gyromagnetic ratio,Heffis the effective field,αis the Gilbert damping factor,αJis the STT coefficient,andβJis the field-like torque coefficient.In the definition ofβ,Jis the current density, and it is assumed to be uniformly distributed on the surface.In this work, positiveJis defined as electrons flowing from the fixed layer to free layer, ˉhis the reduced Planck constant,μis the vacuum permeability,eis the electronic charge,Msis the saturation magnetization, andtis the thickness of the free layer.The polarization functiongis dependent on the angle betweenmfandmp,Pis the spin polarization factor,Λis the torque asymmetry parameter,andεis the secondary spin transfer term.The effective fieldHeffcan be expressed as the sum of several different fields,including the applied external magnetic field (Hext), the effective uniaxial anisotropy field(Hk),the demagnetization field(Hd)and the thermal noise field(Hth)[31]as follows:

    whereKuis the effective uniaxial anisotropy coefficient;Nis the demagnetizing factor, which depends on the shape and size of the free layer;[32]χis a three-dimensional Gaussian distribution with a zero mean and standard deviation,kBis the Boltzmann constant,Tis the temperature,Vis the volume of the computational cell,andδtis the simulation time step.

    2.3.MATLAB/Simulink implementation

    The proposed hybrid simulation framework can be divided into two main modules: the first is the simulation of the physics-based STT-MTJ model and the second is the analysis of the controlled resistance and peripheral circuit as shown in Fig.2.

    Fig.2.Proposed hybrid MTJ-STT/CMOS modeling framework.

    For the simplicity of simulation hybrid STT-MTJ/CMOS circuit, a MATLAB function block is used and the physicsbased STT-MTJ model is edited using the MATLAB script.First, the external magnetic fieldHextshould be offered, the initial magnetization states of free layer(mf0),the fixed layer magnetization vector(mp)and physical size of the device(l:length,w: width, andt: thickness) are input.The magnetic internal parameters mentioned above (Ms,α,P,Ku,T,...)are preset.And the effective field mentioned above(Eqs.(4)–(7))are considered in the simulation of the physics model.The LLGS equation is solved by using the improved Euler method.Therefore,the free layer magnetization vector(mf)can be obtained and the resistance (R) of the device can be calculated from Eqs.(1)–(3), as shown in the green part of Fig.2.The calculated resistance valueRis converted into a physical signal by using the Simulink-PS converter block.Therefore,the calculated valueRthat can control the resistance of the physically controlled resistor,changes fromRPtoRAP.The electrical ports of the controlled resistor can be connected with other semiconductor devices and electrical sources.Furthermore,the current sensor is used to obtain the current in the electric circuit.Then, the PS-Simulink converter block converts the physical current into the Simulink signalIin,which is used as an input current of the physics-based STT-MTJ model.

    3.Simulation results

    3.1.Physics-based STT-MTJ model

    In this subsection, the proposed physics-based STTMTJ model is verified with the experimental result.The devices studied here have the following stack bottom electrode/PtMn(15)/Co70Fe3(2.3)/Ru(0.85)/Co40Fe40B20(2.4)/MgO(0.8)/Co20Fe60B20(2.0)/top electrode (numbers in bracket denotes the thickness in unit nm),and then the stacks are fabricated into pillar shaped device with the cross-section area of 100 nm×120 nm×π/4.The schematic diagram of the STT-MTJ device stacks is illustrated in Fig.3(a).And the measured typical resistance curve scan as a function ofIis shown in Fig.3(b)(the black curve).

    The simulation is conducted by sweeping the currentIin steps ofδI.And under each current, the LLGS model is solved with a fixed time step ofδt.After each time step,the instantaneous resistanceR(t)is calculated.Based on this,the time-averaged resistance is used to evaluate the resistance for eachI.The red curve shown in Fig.3(b) represents the device’s switching characteristics calculated by using the parameters in the third column of Table 1 (switching behavior simulation values), and the values ofRPandRAPare 1 k?and 2 k?, respectively.The results show that our proposed model can capture the dynamic switching characteristics accurately.Figures 3(c) and 3(d) show the time-domain transient resistance values and the magnetization precession threedimensional (3D) trajectories of the device at different bias currents.It can be observed that atI=0.3 mA,the resistance is equal toRP, and the precession of the free layer is aroundmp.As the current decreases to?0.54 mA, the STT-MTJ switches fromRPtoRAP.Themfprecesses around thempinitially,and finally stabilizes in the antiparallel direction.The resistance in antiparallel state is affected by the voltage, and the resistance is about 1800 ? atI=0.06 mA.As the current reaches 0.08 mA,the resistance drops fromRAPtoRP.

    Fig.3.(a)Schematic illustration of STT-MTJ device,(b)measured and simulated variation of resistance with current of STT-MTJ,with Hext equaling 0 Oe(the unit 1 Oe=79.5775 A·m?1),(c)time-dependent resistances,and(d)free layer precession 3D trajectories of the STT-MTJ device at different input currents.

    Table 1.Parameters for simulating STT-MTJ switching and oscillation behaviors.

    The STT-MTJ model used for analyzing the microwave oscillation characteristics is based on the experimental data presented by Zenget al.[33]For the large interfacial perpendicular anisotropy,the stable oscillation can be achieved without an external magnetic field.The parameters used to match the sustained oscillations are listed in the last column in Table 1(oscillation behavior simulation values)and the interfacial perpendicular anisotropy is included in the effective uniaxial anisotropy.Figure 4(a) shows the time-dependent transient resistance with the input currentI=?0.2 mA (the total simulation time is 60 ns, to observe the change of resistance clearly, only the results within 10 ns are shown here).Figure 4(b) shows the FFT result of the transient resistance.As can be seen from the figure, the fundamental frequency is 1.01 GHz.The 3D trajectory of themfmagnetization is shown in Fig.4(c), which is initially circular and gradually evolves into stable out-of-plane precession orbits.Figure 4(d)shows the microwave oscillation fundamental frequency as a function of bias current.The black curve is the experiment result reproduced from Zenget al.’s work,[33]the red circles and blue triangles show the simulation results based on our framework without and with the thermal noise, respectively.Note that the simulation results are consistent with the experimental results, and the oscillation frequency decreases with the increase of absolute current value at a rate of about 1.78 GHz/mA, demonstrating the validity of our proposed physics-based STT-MTJ model.

    Fig.4.(a)Resistance,(b)resistance spectrum,and(c)free layer precession 3D trajectory of STNO device when the input current is ?0.2 mA.(d)STNO oscillation fundamental frequency as a function of I with and without thermal noise with Hext equaling 0 Oe,the point marked in pentagram indicating that the corresponding frequency is 1.01 GHz when the input current is?0.2 mA.

    3.2.Devices level simulation

    For the hybrid simulation of STT-MTJ/CMOS circuits,our proposed framework is used to simulate the pre-charge sense amplifier(PCSA)circuit proposed by Zhaoet al.[34]The circuit is composed of two STT-MTJ devices, three NMOS transistors and four PMOS transistors.The circuit can sense the magnetic configuration of the MTJ at a high speed.Figure 5(a) shows the schematic of the proposed circuits, whereRPandRAPof the STT-MTJ device are 4.7 k? and 11.7 k?,respectively, and the remaining magnetic parameters are the same as the switching behavior simulation values.Moreover the parameters of the transistors are based on the 90-nm BSIM4 model.[35]The control signals and the corresponding simulation results are shown in Fig.5(b).It is observed that when “SEN” is set to zero, the polarization voltages of the two MTJs,QmandQm_barare both equal toVdd.And when“SEN”changes to a high level,both two voltages begin to decrease due to MTJs discharging.The resistance of MTJ1 is set toRAP,whereas the resistance of MTJ0 isRP.Therefore, the discharge speed in the MTJ0 branch is faster than that in the MTJ1 branch.When the difference betweenQmandQmbaris less than the threshold voltage of P1, the P1 will be open andQm_Barwill be charged toVdd,whileQmwill continue discharge to zero potential.The simulation result is consistent with the result in Ref.[34].

    Fig.5.(a)PCSA circuit consisting of STT-MTJ devices,three NMOS transistors and four PMOS transistors,(b)control single(SEN)and the simulated voltage results of Qm and Qmbar.

    The coupling of the STNOs is a promising component for neuromorphic computing and associative memory.[13]And our proposed framework can emulate the coupling characteristics of the STNO conveniently.Figure 6(a) shows the electrical coupling simulation method of two STNOs.[4]The simulation parameters are the same as the ones listed in Table 1 (oscillator behavior simulation values).The independent bias currents(Ibias1andIbias2)and external magnetic fields(Hbias1andHbias2) are applied to STNOs.By appropriately controlling the bias current and external magnetic field, the microwave signal can be generated,and the devices are coupled with each other.TheIbroadcaston the feedback branch is calculated from the following equation:

    whereC1andC2are the coupling constants, which are determined by the coupling circuit;mx1andmx2are free layer magnetizationx-direction components.The currents flowing through the STNO areIinput1andIinput2, respectively.Therefore, the input current is the combination of the bias current and feedback current

    Based on the proposed electrical coupling simulation method, in order to analyze the coupling behavior, the bias current and external magnetic field are changed independently.First, the bias currents of both STNOs are kept at?0.2 mA.The external magnetic field,perpendicular to plane free layer,of STNO2 is constant at a zero magnetic field,while the magnetic field sensed by STNO1 changes from?3 mT to 3 mT.For a non-zero coupling coefficient(C1=C2=0.01),the frequency of the two STNOs is locked in a suitable magnetic field range from?0.6 mT to 0.6 mT.The simulation results are shown in Fig.6(b).In addition,the external magnetic field of the two STNOs is set to 0 mT,theIbias2is set to?0.2 mA,while theIbias1is varying.The coupling coefficients remain unchanged.The oscillation frequencies of the two STNOs are shown in Fig.6(c), which demonstrate the same rules as unilaterally changingHbias1.

    Fig.6.(a)Schematic diagram of two STNOs with electrical coupling,STNO oscillation frequencies as a function of(b)magnetic field applied perpendicular to the plane of free layer and(c)bias current under constant zero magnetic field(T =0 K).

    4.Conclusions

    This work presents a hybrid STT-MTJ/CMOS model framework based on MATLAB/Simulink, which is mainly composed of a physics-based STT-MTJ model, a controlled resistor, and a current sensor.The physics model developed under the single domain approximation is benchmarked with experimental results.Based on the proposed hybrid STTMTJ/CMOS model framework, the PCSA circuit consisting of two STT-MTJ devices and the coupling of two STNOs are simulated.The simulation results are consistent with the published results.It is pointed out that the model is applicable to both IMA device and PMA STT-MTJ device by presetting the direction of fixed layer and uniaxial anisotropy parameter.Our proposed model paves the way for the hybrid STTMTJ/CMOS simulation of device, circuit, and system architecture,including not only the design of spin-based logic and memory devices, but also the development of the neuromorphic devices and oscillation-based computing framework.

    Acknowledgements

    Project supported by the National Natural Science Foundation of China (Grant No.62004223), the Science and Technology Innovation Program of Hunan Province, China(Grant No.2022RC1094), the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics,China(Grant No.KF202012),and the Hunan Provincial Science Innovation Project for Postgraduate,China(Grant No.CX20210086).

    猜你喜歡
    胡佳
    顛沛人生燃詩(shī)意,曠世才思濟(jì)后生
    媽媽家的門(mén)
    Entanglement generation and protection for two atoms in the presence of two parallel mirrors
    山歌
    孝順的外婆
    別跳
    彩虹
    會(huì)變色的芙蓉花
    神奇的鹽
    勇捅蜂巢
    国内少妇人妻偷人精品xxx网站| 久久精品夜夜夜夜夜久久蜜豆| av免费在线看不卡| 国产成人免费观看mmmm| 一个人观看的视频www高清免费观看| 国产黄色视频一区二区在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 男插女下体视频免费在线播放| 国产亚洲一区二区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 村上凉子中文字幕在线| 久久久久久大精品| 成人性生交大片免费视频hd| 真实男女啪啪啪动态图| 黄色日韩在线| 亚洲av成人精品一二三区| 91久久精品国产一区二区三区| 国产老妇伦熟女老妇高清| 九九爱精品视频在线观看| 伊人久久精品亚洲午夜| 少妇被粗大猛烈的视频| av卡一久久| 蜜桃亚洲精品一区二区三区| 国产精品99久久久久久久久| 亚洲自拍偷在线| 久久人人爽人人爽人人片va| 2021少妇久久久久久久久久久| av线在线观看网站| 女人久久www免费人成看片 | 小蜜桃在线观看免费完整版高清| 久久久午夜欧美精品| 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 91精品一卡2卡3卡4卡| 天天躁夜夜躁狠狠久久av| av又黄又爽大尺度在线免费看 | 九草在线视频观看| 国产精品久久久久久精品电影| 欧美激情在线99| 蜜桃亚洲精品一区二区三区| 国产精品一区二区在线观看99 | 亚洲18禁久久av| 97热精品久久久久久| 99热这里只有精品一区| 久久久久久久久久久免费av| 色综合亚洲欧美另类图片| 色播亚洲综合网| 99久国产av精品| 国产伦理片在线播放av一区| 日本色播在线视频| 欧美成人a在线观看| 午夜精品国产一区二区电影 | 成人亚洲精品av一区二区| 欧美+日韩+精品| 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 久久精品夜色国产| 欧美+日韩+精品| 国产一区二区三区av在线| 亚洲av电影在线观看一区二区三区 | 国产一区二区在线av高清观看| 国产老妇伦熟女老妇高清| 午夜精品一区二区三区免费看| 欧美三级亚洲精品| 有码 亚洲区| 久99久视频精品免费| 看片在线看免费视频| 国内少妇人妻偷人精品xxx网站| 国产一区二区在线av高清观看| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 亚洲自拍偷在线| 搡老妇女老女人老熟妇| 国产v大片淫在线免费观看| 国产精品乱码一区二三区的特点| 精华霜和精华液先用哪个| 国产高清有码在线观看视频| 中文在线观看免费www的网站| 亚洲成人av在线免费| 九九久久精品国产亚洲av麻豆| 欧美成人一区二区免费高清观看| 夜夜爽夜夜爽视频| 亚洲精品久久久久久婷婷小说 | 免费人成在线观看视频色| 男的添女的下面高潮视频| 精品久久久久久久久av| 建设人人有责人人尽责人人享有的 | 波多野结衣高清无吗| or卡值多少钱| 中文字幕制服av| 国产毛片a区久久久久| 免费播放大片免费观看视频在线观看 | 久久精品国产99精品国产亚洲性色| 国产精品不卡视频一区二区| 少妇被粗大猛烈的视频| 在现免费观看毛片| 97超碰精品成人国产| 国产精品福利在线免费观看| 欧美一区二区亚洲| 特大巨黑吊av在线直播| 美女脱内裤让男人舔精品视频| 日韩大片免费观看网站 | 波野结衣二区三区在线| 亚洲一级一片aⅴ在线观看| 亚洲av免费高清在线观看| 欧美97在线视频| 国产乱人视频| 超碰av人人做人人爽久久| 国产精品伦人一区二区| 国产熟女欧美一区二区| a级毛片免费高清观看在线播放| 桃色一区二区三区在线观看| 一个人看的www免费观看视频| 色吧在线观看| 少妇的逼好多水| 超碰av人人做人人爽久久| 一卡2卡三卡四卡精品乱码亚洲| 国产精品1区2区在线观看.| 在线免费观看的www视频| 最近手机中文字幕大全| 国产又色又爽无遮挡免| 久久精品国产自在天天线| 18禁在线无遮挡免费观看视频| 丝袜喷水一区| 欧美又色又爽又黄视频| 亚洲婷婷狠狠爱综合网| 天堂av国产一区二区熟女人妻| 只有这里有精品99| 午夜福利视频1000在线观看| 国产精品一区二区在线观看99 | 男女边吃奶边做爰视频| 99热这里只有是精品在线观看| 国产亚洲精品av在线| 婷婷色综合大香蕉| 亚洲四区av| a级一级毛片免费在线观看| 国产精品国产三级专区第一集| 视频中文字幕在线观看| 男女那种视频在线观看| av在线观看视频网站免费| 一级二级三级毛片免费看| 亚洲精品456在线播放app| 网址你懂的国产日韩在线| 亚洲精品乱久久久久久| 干丝袜人妻中文字幕| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 三级毛片av免费| 久久精品国产亚洲av涩爱| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 国产精品99久久久久久久久| 久久精品影院6| 韩国av在线不卡| 伦理电影大哥的女人| 丰满人妻一区二区三区视频av| 能在线免费观看的黄片| 黄色日韩在线| 亚洲熟妇中文字幕五十中出| 亚洲av电影不卡..在线观看| 91久久精品电影网| 久久韩国三级中文字幕| 免费一级毛片在线播放高清视频| 亚洲av成人精品一二三区| 亚洲欧美日韩高清专用| 久久久久国产网址| 97超视频在线观看视频| 秋霞在线观看毛片| 精品国产露脸久久av麻豆 | 日日摸夜夜添夜夜爱| 国产亚洲av片在线观看秒播厂 | 26uuu在线亚洲综合色| 午夜福利视频1000在线观看| 国产精品乱码一区二三区的特点| 久久精品影院6| 国产一级毛片在线| 中文天堂在线官网| 国产精品久久久久久av不卡| 建设人人有责人人尽责人人享有的 | 97人妻精品一区二区三区麻豆| 亚洲精品影视一区二区三区av| 国产色婷婷99| 最新中文字幕久久久久| 在线免费观看不下载黄p国产| 伦理电影大哥的女人| 99在线人妻在线中文字幕| 麻豆av噜噜一区二区三区| 小说图片视频综合网站| 超碰av人人做人人爽久久| 国产精品永久免费网站| 亚洲成人精品中文字幕电影| 国产人妻一区二区三区在| 国产成人freesex在线| 亚州av有码| 啦啦啦啦在线视频资源| 22中文网久久字幕| 性色avwww在线观看| 人人妻人人看人人澡| 久久久久精品久久久久真实原创| 三级毛片av免费| 亚洲成色77777| 国产精品日韩av在线免费观看| 免费黄网站久久成人精品| 纵有疾风起免费观看全集完整版 | 最近手机中文字幕大全| 国产毛片a区久久久久| 一边亲一边摸免费视频| 超碰97精品在线观看| 亚洲中文字幕日韩| av在线播放精品| 黄色欧美视频在线观看| 少妇人妻一区二区三区视频| 最近手机中文字幕大全| 欧美激情久久久久久爽电影| 床上黄色一级片| 欧美另类亚洲清纯唯美| 国产乱人视频| 亚洲五月天丁香| 国产又色又爽无遮挡免| 日日撸夜夜添| 成人亚洲精品av一区二区| 中文天堂在线官网| 毛片一级片免费看久久久久| 久久久久免费精品人妻一区二区| 床上黄色一级片| 蜜桃久久精品国产亚洲av| 日本免费一区二区三区高清不卡| 99久久无色码亚洲精品果冻| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产欧美人成| 亚洲久久久久久中文字幕| 久久精品人妻少妇| 99久国产av精品国产电影| 亚洲欧美日韩东京热| av免费在线看不卡| 亚洲av不卡在线观看| 纵有疾风起免费观看全集完整版 | 国产片特级美女逼逼视频| 九草在线视频观看| 亚洲内射少妇av| 精品久久久久久成人av| 久久国产乱子免费精品| 国产精品国产三级国产专区5o | 秋霞在线观看毛片| 全区人妻精品视频| 亚洲高清免费不卡视频| 伊人久久精品亚洲午夜| 99九九线精品视频在线观看视频| 波多野结衣巨乳人妻| 七月丁香在线播放| 欧美高清性xxxxhd video| 男人舔奶头视频| 美女cb高潮喷水在线观看| 熟妇人妻久久中文字幕3abv| 91久久精品国产一区二区三区| 国产在视频线在精品| 亚洲精品,欧美精品| 日本一二三区视频观看| 老司机影院毛片| 我要搜黄色片| 久久久欧美国产精品| 高清日韩中文字幕在线| 国产久久久一区二区三区| 自拍偷自拍亚洲精品老妇| 久久久色成人| 国产高清不卡午夜福利| 亚洲欧美日韩卡通动漫| 日韩国内少妇激情av| 久久久久久久午夜电影| 啦啦啦韩国在线观看视频| 热99在线观看视频| 日本黄色片子视频| 日韩欧美 国产精品| 丰满少妇做爰视频| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 国产高清三级在线| 色吧在线观看| 亚洲天堂国产精品一区在线| 精品久久久久久电影网 | 久久99热这里只有精品18| 国国产精品蜜臀av免费| 乱码一卡2卡4卡精品| 美女大奶头视频| 在线免费观看不下载黄p国产| 国产极品精品免费视频能看的| 欧美zozozo另类| 国产又色又爽无遮挡免| 亚洲综合色惰| 久久久久久久久久久丰满| 精品人妻视频免费看| 午夜激情欧美在线| ponron亚洲| 禁无遮挡网站| 免费av不卡在线播放| 一级毛片久久久久久久久女| av在线亚洲专区| 男女边吃奶边做爰视频| av专区在线播放| 国产私拍福利视频在线观看| 亚洲久久久久久中文字幕| 亚洲自拍偷在线| 午夜激情欧美在线| 亚洲成人av在线免费| 欧美一区二区国产精品久久精品| 国产一级毛片在线| 在线天堂最新版资源| 日日摸夜夜添夜夜添av毛片| 亚洲成人av在线免费| 一个人免费在线观看电影| 午夜精品一区二区三区免费看| 国产不卡一卡二| 三级毛片av免费| 内射极品少妇av片p| 久久99精品国语久久久| 97热精品久久久久久| 久久精品熟女亚洲av麻豆精品 | 日本一本二区三区精品| 久久国产乱子免费精品| 最近2019中文字幕mv第一页| 欧美日韩综合久久久久久| 在线免费观看的www视频| 成人二区视频| 在线观看66精品国产| 成年女人永久免费观看视频| 精品久久久久久成人av| 国产成人精品久久久久久| 九九热线精品视视频播放| 91在线精品国自产拍蜜月| 国产大屁股一区二区在线视频| 永久免费av网站大全| 欧美性感艳星| 国产在线一区二区三区精 | 久久久久久大精品| 精品久久久久久成人av| 成人毛片60女人毛片免费| 一夜夜www| 国产成人a区在线观看| 男女啪啪激烈高潮av片| 性插视频无遮挡在线免费观看| 可以在线观看毛片的网站| 五月伊人婷婷丁香| 国产精华一区二区三区| 亚洲中文字幕日韩| 性插视频无遮挡在线免费观看| 大香蕉久久网| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 视频中文字幕在线观看| 亚洲性久久影院| 嫩草影院精品99| 国产成人午夜福利电影在线观看| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 亚洲av一区综合| 麻豆成人av视频| 久久综合国产亚洲精品| 国产精品乱码一区二三区的特点| 一夜夜www| 不卡视频在线观看欧美| 日日干狠狠操夜夜爽| 国产精品乱码一区二三区的特点| 一区二区三区四区激情视频| 女人久久www免费人成看片 | 男人舔奶头视频| 午夜激情欧美在线| 亚洲欧美精品专区久久| 老司机福利观看| 国产一区二区在线观看日韩| 亚洲图色成人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日韩av在线大香蕉| 国语自产精品视频在线第100页| 日韩av在线大香蕉| 九九在线视频观看精品| 在现免费观看毛片| 又粗又爽又猛毛片免费看| 免费黄色在线免费观看| 亚洲精品,欧美精品| 美女高潮的动态| 亚洲国产精品sss在线观看| 欧美丝袜亚洲另类| 久久欧美精品欧美久久欧美| 婷婷色av中文字幕| 日韩精品有码人妻一区| 国产综合懂色| 国产成人福利小说| 国产成人午夜福利电影在线观看| 观看美女的网站| 看免费成人av毛片| 能在线免费看毛片的网站| 日本免费在线观看一区| 国产淫片久久久久久久久| 22中文网久久字幕| 秋霞在线观看毛片| av国产免费在线观看| 欧美成人免费av一区二区三区| 26uuu在线亚洲综合色| 亚洲美女搞黄在线观看| 97超视频在线观看视频| 免费一级毛片在线播放高清视频| 欧美性感艳星| 女人久久www免费人成看片 | 免费看a级黄色片| 欧美3d第一页| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 变态另类丝袜制服| 日韩在线高清观看一区二区三区| 日本av手机在线免费观看| 人妻制服诱惑在线中文字幕| 性插视频无遮挡在线免费观看| 欧美区成人在线视频| 99久国产av精品国产电影| 边亲边吃奶的免费视频| 国产亚洲一区二区精品| 国内揄拍国产精品人妻在线| 丝袜喷水一区| 一级毛片电影观看 | 久久久久久国产a免费观看| 午夜视频国产福利| 精品免费久久久久久久清纯| .国产精品久久| 国产亚洲av嫩草精品影院| 身体一侧抽搐| 麻豆精品久久久久久蜜桃| 欧美日韩在线观看h| 国产91av在线免费观看| 亚洲精品色激情综合| 秋霞伦理黄片| 18禁在线播放成人免费| 大香蕉久久网| 亚洲四区av| 久久精品人妻少妇| 国产精品蜜桃在线观看| 亚洲伊人久久精品综合 | 久久这里只有精品中国| 欧美一级a爱片免费观看看| 色哟哟·www| 欧美日韩国产亚洲二区| 亚洲精品影视一区二区三区av| 欧美日韩一区二区视频在线观看视频在线 | 91午夜精品亚洲一区二区三区| 成年免费大片在线观看| 国产一区二区在线观看日韩| 国产高清三级在线| 日韩强制内射视频| 国内精品一区二区在线观看| 禁无遮挡网站| 日韩av在线免费看完整版不卡| 日韩一区二区视频免费看| 国产成人精品一,二区| 亚洲av福利一区| kizo精华| 嫩草影院入口| 人妻夜夜爽99麻豆av| 乱系列少妇在线播放| av播播在线观看一区| 亚洲不卡免费看| 日韩欧美三级三区| 赤兔流量卡办理| 舔av片在线| 国产精品乱码一区二三区的特点| 亚洲va在线va天堂va国产| 22中文网久久字幕| 女的被弄到高潮叫床怎么办| 我的女老师完整版在线观看| 免费一级毛片在线播放高清视频| 日本免费a在线| 三级男女做爰猛烈吃奶摸视频| 国产淫片久久久久久久久| 久久99精品国语久久久| 国产在线一区二区三区精 | 亚洲美女搞黄在线观看| 成人国产麻豆网| 最近最新中文字幕大全电影3| 久久久久久国产a免费观看| 一个人看视频在线观看www免费| 亚洲aⅴ乱码一区二区在线播放| 欧美最新免费一区二区三区| 麻豆成人午夜福利视频| 亚洲成人精品中文字幕电影| 老师上课跳d突然被开到最大视频| 国国产精品蜜臀av免费| 岛国毛片在线播放| 99在线视频只有这里精品首页| 中文欧美无线码| 久久精品国产亚洲av天美| 国产精品一区二区三区四区久久| 国产伦在线观看视频一区| 亚洲五月天丁香| 久久久久久久久久久免费av| 2021少妇久久久久久久久久久| 日产精品乱码卡一卡2卡三| 亚洲av电影不卡..在线观看| 久久精品影院6| 亚洲无线观看免费| 插阴视频在线观看视频| 成年女人看的毛片在线观看| 日韩高清综合在线| 亚洲av日韩在线播放| 成人鲁丝片一二三区免费| 男人舔女人下体高潮全视频| 国产成人精品一,二区| 一级二级三级毛片免费看| 特级一级黄色大片| 国产成年人精品一区二区| 女的被弄到高潮叫床怎么办| 日韩中字成人| 精品久久久久久久久av| 日本av手机在线免费观看| 岛国毛片在线播放| 最后的刺客免费高清国语| 国产精品永久免费网站| 亚洲怡红院男人天堂| 丝袜喷水一区| 国产国拍精品亚洲av在线观看| 中文字幕人妻熟人妻熟丝袜美| 日韩制服骚丝袜av| 欧美成人午夜免费资源| 成人国产麻豆网| 直男gayav资源| 久久久久久伊人网av| 国产综合懂色| 国产成人免费观看mmmm| 午夜久久久久精精品| 久久久成人免费电影| 中文字幕免费在线视频6| 国产一区二区三区av在线| 男人狂女人下面高潮的视频| 日本午夜av视频| 中文字幕免费在线视频6| 亚洲av成人精品一二三区| 国产在线一区二区三区精 | 一级毛片电影观看 | 国产极品天堂在线| 久久久久性生活片| av在线观看视频网站免费| 国产69精品久久久久777片| 国产精品国产三级专区第一集| 免费在线观看成人毛片| 国产精品无大码| 成人亚洲精品av一区二区| 婷婷六月久久综合丁香| 国产一区有黄有色的免费视频 | 黄片无遮挡物在线观看| 99久国产av精品| av国产免费在线观看| 亚洲久久久久久中文字幕| 亚洲怡红院男人天堂| 亚洲丝袜综合中文字幕| 毛片一级片免费看久久久久| 久久久亚洲精品成人影院| 成年av动漫网址| 男女国产视频网站| 插逼视频在线观看| 婷婷色av中文字幕| 国产国拍精品亚洲av在线观看| 大香蕉久久网| 非洲黑人性xxxx精品又粗又长| 久久婷婷人人爽人人干人人爱| 麻豆一二三区av精品| 性插视频无遮挡在线免费观看| 波多野结衣高清无吗| 老师上课跳d突然被开到最大视频| 欧美一区二区亚洲| 永久网站在线| 欧美成人精品欧美一级黄| 一边亲一边摸免费视频| 久久久久国产网址| 熟女人妻精品中文字幕| 国产精品av视频在线免费观看| 秋霞伦理黄片| 国产精品久久视频播放| 只有这里有精品99| 老女人水多毛片| 美女xxoo啪啪120秒动态图| 插逼视频在线观看| 免费看av在线观看网站| 亚洲18禁久久av| 岛国毛片在线播放| 最近的中文字幕免费完整| 亚洲综合色惰| 欧美人与善性xxx| 好男人在线观看高清免费视频| 日韩中字成人| 久久久欧美国产精品| 日本一二三区视频观看| 日韩中字成人| 国产午夜精品一二区理论片| 最近手机中文字幕大全| www日本黄色视频网| 秋霞伦理黄片| 午夜老司机福利剧场| 亚洲精品日韩av片在线观看| 国产淫语在线视频| 性插视频无遮挡在线免费观看| 国产三级在线视频| 欧美一级a爱片免费观看看| 99国产精品一区二区蜜桃av| 日本-黄色视频高清免费观看| 中文字幕精品亚洲无线码一区| 久久精品久久久久久噜噜老黄 | av卡一久久| 久久99蜜桃精品久久| 久久精品熟女亚洲av麻豆精品 | 亚洲最大成人av| 国产精品国产高清国产av| 午夜精品在线福利| 国产精品国产三级专区第一集| 九九爱精品视频在线观看| 国产国拍精品亚洲av在线观看| 搞女人的毛片| 丰满少妇做爰视频| 亚洲精品自拍成人|