• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals

    2024-01-25 07:29:52ZhaoNianJin金兆年XuanLinHe何宣霖ChaoYu于超HenanFang方賀男LinChen陳琳andZhiKuoTao陶志闊
    Chinese Physics B 2024年1期
    關(guān)鍵詞:陳琳

    Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超),Henan Fang(方賀男), Lin Chen(陳琳), and Zhi-Kuo Tao(陶志闊),?

    1Bell Honors School,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: skyrmion,magnonic crystal,spin wave,dispersion relation

    1.Introduction

    Spin waves or corresponding quasiparticle magnons, as advanced information carriers, have attracted much attention in recent years.[1,2]Like semiconductors or photonic crystals, periodically modulated magnetic properties are realized in magnonic crystals,which can hold spin waves or magnons.By employing these periodically arranged structures, the dispersion relations of magnonic crystals can be customized to specific requirements.As a new emerging topologically magnetic texture,skyrmion has also shown the potential in realizing magnonic crystals.[3,4]

    In 2009, magnetic skyrmion was experimentally observed in chiral magnet MnSi through neutron scattering by Mühlbaueret al.[5]Owing to the novel properties, skyrmion has shown strong potential applications in next-generation spintronic devices such as magnetic memory units with ultra-high density and logic gates with ultra-low power consumption.[6–9]Therefore, lots of researches of the dynamic properties driven by the electric current[10,11]or alternating microwave magnetic field have been conducted.[12,13]In 2012, spin-wave modes excited by microwave magnetic field in skyrmion crystal were predicted through numerical simulation.[12]Then, the magnetic excitations were observed experimentally in the helimagnetic insulator Cu2OSeO3.[13]The resonant modes are related to the external static magnetic field and material parameters such as Dzyaloshinskii–Moriya interaction (DMI) constant, and perpendicular magnetic anisotropy(PMA)constant.[14–16]

    Recently,the skyrmion manipulated by using electrically generated mechanical strain has received much attention.[17,18]By considering the magnetoelastic coupling interaction,strain can be utilized to create skyrmions and annihilate skyrmions,and also modulate the configuration of stripe domains and skyrmions.[19–21]Additionally, from the applications of strain-induced surface acoustic waves(SAWs)another efficient method of generating and manipulating skyrmions has been found.[22–24]

    Particularly, the periodical skyrmion arrangement can form magnon bands and bandgaps.Furthermore,the magnon band structure can be modulated by external effects such as magnetic fields and electric fields which will change the magnetic configuration of the skyrmion.[25–27]This dynamically modulated magnon band structure provides an advanced platform for studying tunable spintronics devices.In this work,we theoretically investigate the tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals.To start with, we analyze the phase diagram by changing strains and external static magnetic fields.Next,we calculate the dispersion relation curves under different strains and analyze the propagation properties of spin waves with specific frequencies.

    2.Model and method

    The dynamic behaviors of spin waves propagating in skyrmion-based magnonic crystals are simulated by the object oriented micromagnetic framework(OOMMF).[28]For a magnetic system, to obtain the dynamic response of its magnetic moment to time(the dynamic process),the Landau–Lifshitz–Gilbert(LLG)equation needs solving.The LLG equation can be given as follows:

    whereαis the Gilbert damping parameter,γis the gyromagnetic ratio,μ0is the vacuum permeability,m(r,t) is the unit magnetization vector, andHeffis the effective magnetic field and can be expressed as

    whereMsdenotes the saturation magnetization andEtotis the total energy of a magnetic system.With magneto-elastic energy considered,theEtotcan be given by

    whereEexis the exchange coupling energy,EPMAis the perpendicular magnetic anisotropy(PMA)energy,EZeis the Zeeman energy,Edemagis the demagnetizing field energy,EDMIis the DMI energy, andEmeis the magneto-elastic energy.Through the competition among these types of energy,different magnetic structures can be formed, and the ground state can be obtained by calculating the minimum value of the total energy.

    In this work, the most important energy components are DMI energy and magneto-elastic energy.There are two types of DMI energy, namely, the interface DMI energy and bulk DMI energy.Here, the interface DMI energy is considered,which is given by

    whereDdescribes the strength of interfacial DMI.Magnetoelastic energy can be expressed as

    Here,εijis the strain tensor, andB1andB2are the magnetoelastic coupling constants.[29]In this work, biaxial in-plane strains are applied to a skyrmion-based magnonic crystal, so the strain tensor can be reduced to

    The typical material parameters for Co are used in the simulation, specifically, they being saturation magnetizationMs= 5.8× 105A/m, exchange stiffness constantAex= 1.5× 10?11J/m, perpendicular anisotropy constantK= 8×105J/m3, gyromagnetic ratioγ= 2.211×105m/(A·s), Gilbert damping coefficientα= 0.005,magneto–elastic coupling constantsB1=?1.617×107N/m2andB2= 2.31×106N/m2.[30,31]The Co nano-layer is 2000 nm×100 nm×1 nm.The 2 nm×2 nm×1 nm mesh cell size is used to discretize the model and all simulations are performed at zero temperature.

    3.Results and discussion

    Firstly, our research focuses on examining the stability of a skyrmion-based magnonic crystal.Figure 1(a)illustrates the schematic diagram of our proposed device structure.In this structure, a biased voltage is applied to the piezoelectric layer in order to manipulate the strain in both of the piezoelectric layer and the skyrmion-based magnonic crystal layer.The simulated structure consists of a ferromagnetic (FM) ultrathin nano layer, a heavy metal layer (HM), and a bottom piezoelectric (PE) substrate.The Dzyaloshinskii–Moriya interaction generated by the FM/HM interface mainly results in the generation of skyrmions on the FM layer.Specifically,our proposed structure allows for the achievement of Neeltype skyrmions.In order to investigate the manipulation of skyrmions through strain,a voltage is applied to the PE layer,and the strain is generated owing to the converse piezoelectric effect.The length of the magnonic crystal is 2000 nm,the width is 100 nm, and the thickness of the magnonic crystal layer is 1 nm.

    Fig.1.(a) Schematic diagram of the proposed device structure.(b)Magnonic crystals with 20 and 60 skyrmions respectively,and nonperiodic magnetic textures without strain.(c)Phase diagram of strain ε versus magnetic field Hz (D=4 mJ/m2).

    By considering the interplay of various types of energy,including the magneto-elastic energy induced by the strain,different magnetic configurations can be achieved.Figure 1(b)shows the typical magnetic distributions.Skrymion-based magnonic crystals with 20 and 60 skyrmions are presented with a periodic arrangement and controlled skyrmion size.Meantime, complex non-periodic magnetic textures can also be obtained by adjusting parameters such as DMI constantD,external static magnetic fieldHz, and strainε.In Fig.1(c),we present the phase diagram of strainεversus magnetic fieldHzwithDfixed at 4 mJ/m2.It can be seen that ferromagnetic states are formed under higher magnetic fieldHzand compressive strain(ε<0).With the decrease of the compressive strain and the increase of the tensile strain (ε>0), skyrmion states(or skyrmion-based magnonic crystals) can be formed.Also,non-periodic magnetic texture states are formed under higher tensile strain and lower magnetic fieldHz.It is suggested that the voltage-induced strain can modulate the magnetic total energy via magneto-elastic coupling.On the other hand,the induced strain can also affect the magnetic anisotropy of the FM layer, which will be introduced to re-distribute the magnetic moments.

    To excite spin wave in the magnonic crystal,a sine cardinal field,

    with amplitudeH'z0= 100 A/m and cutoff frequencyf= 100 GHz, is applied to a central area of 200 nm×100 nm×1 nm as depicted in Fig.2(a).The excited spin waves with frequencies ranging from 0 GHz to 100 GHz travel to both sides of thexdirection,i.e., positive and negativexdirections respectively.Then the fluctuations of magnetization (δmz(x,t) =mz(x,t)?mz(x,0)) along the line from(0 nm,50 nm,1 nm)to(2000 nm,50 nm,1 nm)are collected during 10 ns as shown in Fig.2(b).The color bar denotes the value ofδmz(x,t).To determine the dispersion relation, a two-dimensional double fast Fourier transform is applied to the evolution ofδmz(x,t).

    Fig.2.(a) Schematic diagram for obtaining dispersion relations.(b) Fluctuations of magnetization δmz(x,t) without strain (N =60, D=3.5 mJ/m2,H =5×104 A/m).(c) Dispersion relations in skyrmion-based magnonic crystals with strain ε =0.25%, ε =0, and ε =?0.25%, respectively, (N =60,D=3.5 mJ/m2,H=5×104 A/m).

    Figure 2(c) displays the dispersion relations observed in the skyrmion-based magnonic crystals under different strains:ε=0.25%,ε=0, andε=?0.25%, which are represented by frequency versus wavenumber.It is known that different branches(modes)are presented in the dispersion relations due to the quantization of the wave vector across the strip width because a standing-wave pattern should form along the width direction of the strip.[25–27]Form Fig.2(c), a periodic nature with folded branches can be seen, suggesting that the branch with the lowest frequencies corresponds to the uniform magnetization dynamics across the width of the strip (mode 1) while the upper one corresponds to the half-wavelength quantization (mode 2).[32]In the meantime, several allowed bands can be observed where spin waves can travel through the magnonic crystals at specific frequencies and wavenumbers.Conversely,frequency ranges falling within the bandgaps(also referred to as forbidden bands, as indicated in Fig.3(c)) prevent the spin waves from propagating through the magnonic crystal.Like the transport of electrons in solid crystals or photons in photonic crystals,the periodic modulation of magnetic properties introduced by the skyrmion lattice contributes to the tailoring of the dispersion relations.

    An important finding in this study is that the dispersion relations can be manipulated by strain.As shown in Fig.2(c),the dispersion relations shift toward higher frequencies when strainεchanges from?0.25%to 0.25%.Moreover,the ranges of frequencies within the allowed bands also vary with strain.This indicates that the strain has the ability to manipulate the distribution of magnetic texture through magneto-elastic coupling.In our proposed device, the configuration of periodically arranged skyrmions can be modulated by strain.Thus,the travelling characteristics of spin waves can be manipulated.Consequently, the strain-induced manipulation results in tunable dispersion relation,showcasing the potential for strain as a tool for manipulating and controlling the properties of spin waves.

    Furthermore,we summarize the strain-dependent dispersion relations.Figures 3(a) and 3(c) illustrate the straindependent band characteristics inferred from dispersion relations for specific parameter values:K= 8×105J/m3,H=5×104A/m,D=3.5 mJ/m2; andK=2×105J/m3,H=1×106A/m,andD=4 mJ/m2respectively.Correspondingly, figures 3(b) and 3(d) show the variations of frequency variation range(Δf)with strainεof the allowed and forbidden bands.It is evident that the allowed bands shift toward higher frequencies as the strainεchanges from?0.75%to 0.5%.In addition,the skyrmions are annihilated with strainε=0.75%,as also depicted in Fig.1(c).Furthermore, for different values ofD, as shown in Figs.3(a) and 3(c), the allowed bands exhibit the same strain-dependent characteristics.

    In the meantime,it is worth noting that the strain not only causes the bands to shift toward higher frequencies,but also allows for manipulation of the frequency variation range within each band.As shown in Fig.3(b), Δfof allowed band II decreases from about 9.8 GHz to 2.5 GHz with strainεchanging from?0.75%to 0.5%.Similarly,Δfof allowed band III decreases from about 4.8 GHz to 2.3 GHz.On the other hand,Δfof forbidden band I increases from about 5 GHz to 16 GHz withεchanging from?0.75% to 0.5%, whereas Δfof forbidden I decreases from about 2.6 GHz to 1.5 GHz withεchanging from?0.75% to?0.25% and keeps stable withεincreasing to 0.5%.Figure 3(d) presents similar characteristics for a different configuration of magnonic crystal.

    Fig.3.Strain-dependent band characteristics inferred from dispersion relations for(a)K=8×105 J/m3,H =5×104 A/m,D=3.5 mJ/m2,and (c) K =2×105 J/m3, H =1×106 A/m, D=4 mJ/m2.Panels (b) and (c) display the corresponding frequency ranges of allowed and forbidden bands.

    Next,we investigate the traveling behaviors of spin waves manipulated by strain.Figure 4(a) shows a schematic diagram for illustrating the process of exciting spin waves and capturing traveling behaviors.The spin wave is excited by a sinusoidal magnetic field along thezaxis at frequencyf=67 GHz, confined into the region 0 nm<x <100 nm, and then the evolution of average magnetization fluctuationδmzatx=2000 nm is collected for different strains:ε=?0.25%,0%, and 0.25%.In Fig.4, it can be observed that fluctuation of magnetizationδmzatx=2000 nm begins to exhibit significant variations,respectively,at about 1.5 ns withε=?0.25%and at about 1.7 ns withε=0.25%.The corresponding velocities of spin waves are calculated to be 1267 m/s and 1117 m/s,respectively.This indicates that the strain can also manipulate the velocity of the spin wave.Additionally,very tiny magnetization fluctuations are observed in the absence of strain.This is consistent with the characteristics described in Fig.3(a),where the frequency of 67 GHz falls within allowed band I forε=?0.25%and allowed band III forε=?0.25%,while it falls within forbidden band II in the absence of strain.

    Fig.4.(a)Schematic diagram for obtaining the traveling behaviors of spin waves.The fluctuations of magnetization δmz at H=5×104 A/m,D=3.5 mJ/m2,x=2000 nm,and ε =?0.25%(b),0%(c),and 0.25%(d).

    4.Conclusions

    In summary, we investigated the tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals.Firstly,we calculated the phase diagrams of ground states under strains and external static magnetic fields, which show that the strain can induce different configurations such as FM state,skyrmion state,and complex non-periodic magnetic textures.Then, we studied the propagation properties of spin waves and calculated dispersion relation curves under different strains.It is found that the strain can manipulate the dispersion relations of skyrmion-based magnonic crystals through magneto-elastic coupling.Finally,we confirm that spin waves with specific frequencies can pass through the magnonic crystal or be blocked and that the on-off characteristics can be manipulated by strain.The results may provide a new idea for designing tunable spin wave devices based on skyrmion.

    猜你喜歡
    陳琳
    小巫見(jiàn)大巫
    “小巫見(jiàn)大巫”的由來(lái)
    The Effects of θ on Stability in the θ-Milstein Method for Stochastic Differential Equations
    陳琳作品《一口清茶,板栗飄香》
    大眾文藝(2022年16期)2022-09-07 03:07:44
    Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
    Disney World Helped Heal Her Family—Now She Works There
    小巫見(jiàn)大巫
    小巫見(jiàn)六巫
    沒(méi)有絕對(duì)的天分,也沒(méi)有絕對(duì)的天才——指揮家陳琳專訪
    喜鵲 “驚魂”
    王馨瑶露胸无遮挡在线观看| 国产精品偷伦视频观看了| 1024视频免费在线观看| 日韩三级伦理在线观看| av国产久精品久网站免费入址| 超碰97精品在线观看| 欧美精品高潮呻吟av久久| 九草在线视频观看| 免费在线观看黄色视频的| 制服人妻中文乱码| 最近的中文字幕免费完整| 国产精品麻豆人妻色哟哟久久| 精品少妇黑人巨大在线播放| 制服诱惑二区| 亚洲 欧美一区二区三区| 亚洲欧美日韩另类电影网站| 青春草视频在线免费观看| 岛国毛片在线播放| 老司机影院毛片| 如日韩欧美国产精品一区二区三区| 爱豆传媒免费全集在线观看| 人妻人人澡人人爽人人| 飞空精品影院首页| 亚洲成av片中文字幕在线观看 | 精品少妇黑人巨大在线播放| freevideosex欧美| 日韩中字成人| 国产一区二区在线观看av| 十分钟在线观看高清视频www| 人人妻人人澡人人看| 午夜激情久久久久久久| 老司机亚洲免费影院| 久久久久久人妻| 宅男免费午夜| 日产精品乱码卡一卡2卡三| 国产一区亚洲一区在线观看| 一本久久精品| 观看av在线不卡| 一本—道久久a久久精品蜜桃钙片| 欧美日韩视频高清一区二区三区二| 色婷婷久久久亚洲欧美| 亚洲欧美色中文字幕在线| 亚洲在久久综合| 一级,二级,三级黄色视频| 黑人高潮一二区| 91精品伊人久久大香线蕉| 啦啦啦啦在线视频资源| 伦精品一区二区三区| 亚洲精品乱码久久久久久按摩| 18禁裸乳无遮挡动漫免费视频| 亚洲成人手机| av在线app专区| 在线天堂中文资源库| 亚洲av国产av综合av卡| av天堂久久9| 黄色视频在线播放观看不卡| 男人添女人高潮全过程视频| 国产成人精品无人区| 国产精品秋霞免费鲁丝片| 人人妻人人添人人爽欧美一区卜| 欧美亚洲日本最大视频资源| 捣出白浆h1v1| 免费在线观看黄色视频的| 国产精品女同一区二区软件| 国产成人欧美| 黄色配什么色好看| 日韩中字成人| 精品国产国语对白av| 欧美成人精品欧美一级黄| 久久毛片免费看一区二区三区| 精品福利永久在线观看| 日本猛色少妇xxxxx猛交久久| 99久国产av精品国产电影| 十八禁高潮呻吟视频| 国产一区二区激情短视频 | 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 精品人妻熟女毛片av久久网站| 国产黄色免费在线视频| 男女高潮啪啪啪动态图| 麻豆精品久久久久久蜜桃| 午夜免费观看性视频| 寂寞人妻少妇视频99o| av播播在线观看一区| 日本wwww免费看| 啦啦啦中文免费视频观看日本| a级毛色黄片| videos熟女内射| 亚洲第一av免费看| 日韩电影二区| 欧美国产精品va在线观看不卡| 蜜桃国产av成人99| 美女视频免费永久观看网站| 国产精品一二三区在线看| 成年人午夜在线观看视频| 午夜激情av网站| 成人黄色视频免费在线看| 国产精品久久久久久久电影| 美女脱内裤让男人舔精品视频| 男的添女的下面高潮视频| 国产精品无大码| 精品一区二区三区四区五区乱码 | 美女大奶头黄色视频| 国产熟女午夜一区二区三区| 九色成人免费人妻av| 国产av国产精品国产| 老司机影院成人| 丝袜在线中文字幕| 国产免费又黄又爽又色| 成年美女黄网站色视频大全免费| 欧美少妇被猛烈插入视频| 狂野欧美激情性bbbbbb| 不卡视频在线观看欧美| 七月丁香在线播放| 9热在线视频观看99| 秋霞伦理黄片| 哪个播放器可以免费观看大片| 看免费av毛片| 国产亚洲av片在线观看秒播厂| av.在线天堂| 少妇的逼好多水| 97精品久久久久久久久久精品| 久久久精品免费免费高清| 2022亚洲国产成人精品| 久久久久久久精品精品| 精品99又大又爽又粗少妇毛片| 成人亚洲精品一区在线观看| 国产国拍精品亚洲av在线观看| 最近2019中文字幕mv第一页| 久久亚洲国产成人精品v| 中文欧美无线码| 亚洲 欧美一区二区三区| 黑人巨大精品欧美一区二区蜜桃 | 日本欧美国产在线视频| 日本欧美视频一区| 久久99蜜桃精品久久| 久久人人爽av亚洲精品天堂| 亚洲精品一区蜜桃| 亚洲精品视频女| 黄色怎么调成土黄色| 国产69精品久久久久777片| 亚洲精品国产av成人精品| 国产永久视频网站| 中文天堂在线官网| 又大又黄又爽视频免费| 欧美少妇被猛烈插入视频| 成人无遮挡网站| 蜜桃国产av成人99| 国产成人午夜福利电影在线观看| 99视频精品全部免费 在线| 午夜av观看不卡| 一级毛片电影观看| 婷婷色综合www| 欧美日韩亚洲高清精品| 日韩一区二区视频免费看| 女性生殖器流出的白浆| 国产精品欧美亚洲77777| a级毛色黄片| 女人久久www免费人成看片| 亚洲综合色惰| 欧美精品亚洲一区二区| 女性生殖器流出的白浆| 国产片内射在线| 欧美成人精品欧美一级黄| 国产av精品麻豆| 欧美精品国产亚洲| 国产成人欧美| 交换朋友夫妻互换小说| 精品少妇久久久久久888优播| 久久精品国产亚洲av天美| 免费女性裸体啪啪无遮挡网站| 成人国产av品久久久| 多毛熟女@视频| 久久久久网色| 国产xxxxx性猛交| 男女免费视频国产| 各种免费的搞黄视频| 亚洲欧美清纯卡通| 夜夜爽夜夜爽视频| 边亲边吃奶的免费视频| 爱豆传媒免费全集在线观看| 国产免费一区二区三区四区乱码| 如何舔出高潮| 在线观看人妻少妇| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日爽夜夜爽网站| 国产精品99久久99久久久不卡 | 黑人猛操日本美女一级片| 欧美 亚洲 国产 日韩一| av线在线观看网站| 十八禁网站网址无遮挡| 一级,二级,三级黄色视频| 777米奇影视久久| 午夜91福利影院| 在线亚洲精品国产二区图片欧美| 日韩成人伦理影院| 欧美精品人与动牲交sv欧美| 最近最新中文字幕免费大全7| 欧美 亚洲 国产 日韩一| 久久亚洲国产成人精品v| 国产精品秋霞免费鲁丝片| 曰老女人黄片| 亚洲av电影在线进入| 国产亚洲午夜精品一区二区久久| 十八禁高潮呻吟视频| 黄片无遮挡物在线观看| 黄色毛片三级朝国网站| 涩涩av久久男人的天堂| 亚洲成色77777| 成人国产av品久久久| 亚洲成av片中文字幕在线观看 | 黑人高潮一二区| 天堂8中文在线网| 一二三四在线观看免费中文在 | 欧美日本中文国产一区发布| 91aial.com中文字幕在线观看| 黄片播放在线免费| 国产亚洲精品久久久com| 18禁动态无遮挡网站| 国产免费又黄又爽又色| 女人被躁到高潮嗷嗷叫费观| 国产精品嫩草影院av在线观看| 三上悠亚av全集在线观看| 久久久久久久久久成人| 亚洲精品自拍成人| 黑人欧美特级aaaaaa片| 韩国精品一区二区三区 | 777米奇影视久久| 欧美日韩av久久| 秋霞伦理黄片| 日本与韩国留学比较| 在线观看三级黄色| 人妻人人澡人人爽人人| videos熟女内射| 人体艺术视频欧美日本| 欧美 日韩 精品 国产| a级毛片黄视频| 丁香六月天网| 亚洲第一av免费看| 人成视频在线观看免费观看| 一本色道久久久久久精品综合| 久久99热这里只频精品6学生| 欧美 日韩 精品 国产| 亚洲欧美成人精品一区二区| 久久99精品国语久久久| 欧美国产精品一级二级三级| 曰老女人黄片| 亚洲欧美日韩卡通动漫| 亚洲精品中文字幕在线视频| 亚洲丝袜综合中文字幕| 亚洲国产精品一区二区三区在线| 日韩av免费高清视频| 男人爽女人下面视频在线观看| 午夜福利乱码中文字幕| 22中文网久久字幕| 伦理电影免费视频| 婷婷成人精品国产| 欧美精品一区二区大全| 日韩欧美精品免费久久| 久久鲁丝午夜福利片| 免费av中文字幕在线| 极品少妇高潮喷水抽搐| 一区在线观看完整版| 曰老女人黄片| 永久网站在线| 国产在视频线精品| 免费av不卡在线播放| av天堂久久9| 国产日韩欧美在线精品| 亚洲美女视频黄频| 三上悠亚av全集在线观看| 这个男人来自地球电影免费观看 | 黑人高潮一二区| 久久久久久久大尺度免费视频| 精品福利永久在线观看| 国产精品熟女久久久久浪| 国产一区二区三区综合在线观看 | 国产一区二区三区综合在线观看 | 性高湖久久久久久久久免费观看| 日本爱情动作片www.在线观看| 久久精品aⅴ一区二区三区四区 | 成人漫画全彩无遮挡| 国产精品麻豆人妻色哟哟久久| 26uuu在线亚洲综合色| 最近2019中文字幕mv第一页| 人成视频在线观看免费观看| 国产精品嫩草影院av在线观看| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 亚洲第一av免费看| 久久久久视频综合| 一个人免费看片子| www.色视频.com| 国产无遮挡羞羞视频在线观看| 母亲3免费完整高清在线观看 | 黄色怎么调成土黄色| 在线观看一区二区三区激情| av免费在线看不卡| 最近的中文字幕免费完整| 不卡视频在线观看欧美| 综合色丁香网| 99国产精品免费福利视频| 丰满乱子伦码专区| 午夜视频国产福利| 国产男女内射视频| 国产xxxxx性猛交| 国产成人免费观看mmmm| 国产爽快片一区二区三区| 日产精品乱码卡一卡2卡三| a级毛片黄视频| 国产av码专区亚洲av| 日日爽夜夜爽网站| 国产成人精品福利久久| 日韩成人av中文字幕在线观看| 热99久久久久精品小说推荐| 一级a做视频免费观看| 欧美精品高潮呻吟av久久| 精品久久久久久电影网| 亚洲国产精品国产精品| 免费观看a级毛片全部| 三级国产精品片| 成人毛片60女人毛片免费| 午夜91福利影院| 国产白丝娇喘喷水9色精品| 久久综合国产亚洲精品| 中国美白少妇内射xxxbb| 男女边吃奶边做爰视频| 免费人成在线观看视频色| 黑人高潮一二区| 新久久久久国产一级毛片| 国产一区二区在线观看日韩| 美女视频免费永久观看网站| 哪个播放器可以免费观看大片| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| a级毛片黄视频| 永久网站在线| 日本wwww免费看| 久久久久久久国产电影| 亚洲欧美成人综合另类久久久| 婷婷色av中文字幕| 香蕉国产在线看| 国产精品国产三级国产专区5o| 国产永久视频网站| 欧美xxxx性猛交bbbb| 在线看a的网站| 一区二区三区乱码不卡18| 伦理电影大哥的女人| 综合色丁香网| 黄色配什么色好看| 国精品久久久久久国模美| 亚洲性久久影院| 亚洲av电影在线观看一区二区三区| h视频一区二区三区| 又粗又硬又长又爽又黄的视频| 男女午夜视频在线观看 | 日韩欧美一区视频在线观看| 国产精品免费大片| 精品一品国产午夜福利视频| 精品久久国产蜜桃| 国产午夜精品一二区理论片| 激情五月婷婷亚洲| 免费看不卡的av| 亚洲欧洲日产国产| 国产av一区二区精品久久| 又粗又硬又长又爽又黄的视频| 一级爰片在线观看| 亚洲国产欧美在线一区| 成人综合一区亚洲| 日韩av免费高清视频| 男人添女人高潮全过程视频| √禁漫天堂资源中文www| 久久婷婷青草| 在线观看三级黄色| 精品亚洲成国产av| 欧美日韩成人在线一区二区| videossex国产| 欧美精品高潮呻吟av久久| 日韩一本色道免费dvd| 黄色怎么调成土黄色| 丝袜喷水一区| 国产高清不卡午夜福利| 有码 亚洲区| 美女视频免费永久观看网站| 国产福利在线免费观看视频| 免费观看性生交大片5| 又黄又爽又刺激的免费视频.| 国产一区二区三区av在线| 日本欧美国产在线视频| 欧美日本中文国产一区发布| 国产亚洲午夜精品一区二区久久| 欧美成人午夜免费资源| freevideosex欧美| 免费日韩欧美在线观看| 久久久久久久久久久免费av| 黑人欧美特级aaaaaa片| 亚洲精品美女久久av网站| 亚洲欧美日韩卡通动漫| videosex国产| 日韩免费高清中文字幕av| 精品国产露脸久久av麻豆| 咕卡用的链子| 永久网站在线| 最近的中文字幕免费完整| 国产精品国产三级专区第一集| 亚洲欧美日韩另类电影网站| 欧美日韩视频精品一区| 国产深夜福利视频在线观看| 久久久久视频综合| 久久久精品免费免费高清| 久久ye,这里只有精品| 亚洲国产精品999| 天美传媒精品一区二区| 国产成人精品在线电影| 亚洲欧美清纯卡通| 天天躁夜夜躁狠狠久久av| 欧美成人午夜精品| 少妇被粗大猛烈的视频| 国产亚洲av片在线观看秒播厂| 精品久久蜜臀av无| 久久久欧美国产精品| 搡老乐熟女国产| 国产伦理片在线播放av一区| 亚洲 欧美一区二区三区| 色94色欧美一区二区| 精品久久久精品久久久| 中文天堂在线官网| 啦啦啦啦在线视频资源| 精品国产一区二区久久| 十八禁高潮呻吟视频| 日韩中文字幕视频在线看片| 亚洲人成网站在线观看播放| 欧美日韩视频高清一区二区三区二| www.av在线官网国产| videossex国产| 免费高清在线观看日韩| 精品第一国产精品| videossex国产| 亚洲精品成人av观看孕妇| 热99久久久久精品小说推荐| 亚洲一级一片aⅴ在线观看| 国产欧美日韩一区二区三区在线| 交换朋友夫妻互换小说| 一级毛片我不卡| 国产成人精品在线电影| 亚洲欧美日韩卡通动漫| 亚洲精品美女久久久久99蜜臀 | 久久韩国三级中文字幕| 美女xxoo啪啪120秒动态图| 老女人水多毛片| 人人妻人人澡人人看| 狠狠精品人妻久久久久久综合| 欧美xxⅹ黑人| 亚洲色图综合在线观看| 久久久久久久亚洲中文字幕| 边亲边吃奶的免费视频| 久久影院123| 自线自在国产av| 男女下面插进去视频免费观看 | 岛国毛片在线播放| 亚洲情色 制服丝袜| 午夜免费男女啪啪视频观看| 日韩三级伦理在线观看| 老司机亚洲免费影院| tube8黄色片| 免费看不卡的av| 国产永久视频网站| 国国产精品蜜臀av免费| 九色亚洲精品在线播放| 赤兔流量卡办理| 美女大奶头黄色视频| 有码 亚洲区| 国产精品99久久99久久久不卡 | 一区二区三区精品91| 91久久精品国产一区二区三区| a 毛片基地| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 亚洲内射少妇av| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院 | 日韩伦理黄色片| 国产精品久久久久久av不卡| 韩国精品一区二区三区 | 伦理电影免费视频| 国产日韩欧美视频二区| 久久av网站| 少妇的逼水好多| 午夜久久久在线观看| 青春草国产在线视频| 欧美老熟妇乱子伦牲交| 欧美精品一区二区免费开放| 黄片播放在线免费| 18禁动态无遮挡网站| 久久久久久久久久久免费av| 国产一区二区在线观看av| 成年美女黄网站色视频大全免费| 亚洲综合色网址| 亚洲欧美一区二区三区国产| 久久久欧美国产精品| 两性夫妻黄色片 | 2021少妇久久久久久久久久久| 国产免费又黄又爽又色| 母亲3免费完整高清在线观看 | 欧美日本中文国产一区发布| 又大又黄又爽视频免费| av电影中文网址| 日韩精品免费视频一区二区三区 | 成人18禁高潮啪啪吃奶动态图| 丝袜在线中文字幕| 亚洲人成77777在线视频| 亚洲精品乱久久久久久| 国产 精品1| 久久久久久久久久成人| 亚洲欧美成人综合另类久久久| 人妻人人澡人人爽人人| 在线观看免费视频网站a站| 日产精品乱码卡一卡2卡三| 最近中文字幕高清免费大全6| 伊人久久国产一区二区| 亚洲精品aⅴ在线观看| 成人漫画全彩无遮挡| 免费黄网站久久成人精品| 日本-黄色视频高清免费观看| 免费久久久久久久精品成人欧美视频 | 成人午夜精彩视频在线观看| 亚洲精品久久久久久婷婷小说| 久久人人爽av亚洲精品天堂| 在线亚洲精品国产二区图片欧美| 香蕉丝袜av| 国产亚洲最大av| 男人舔女人的私密视频| 香蕉丝袜av| 搡老乐熟女国产| 国产深夜福利视频在线观看| 国产免费一级a男人的天堂| 亚洲av电影在线观看一区二区三区| 天天躁夜夜躁狠狠躁躁| 国产成人精品无人区| 视频中文字幕在线观看| av在线app专区| 丝袜人妻中文字幕| 卡戴珊不雅视频在线播放| 久久国产精品男人的天堂亚洲 | av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 免费人妻精品一区二区三区视频| 美女xxoo啪啪120秒动态图| 国产 一区精品| 精品久久久精品久久久| kizo精华| 亚洲av.av天堂| 亚洲五月色婷婷综合| 成人免费观看视频高清| 久久人人爽人人爽人人片va| 超碰97精品在线观看| 国产有黄有色有爽视频| 亚洲情色 制服丝袜| 国产色爽女视频免费观看| 最新的欧美精品一区二区| 久久精品国产综合久久久 | 久久99精品国语久久久| 美国免费a级毛片| 亚洲,欧美,日韩| 亚洲综合色网址| 中文字幕亚洲精品专区| 久久久久久久久久久久大奶| 国产成人免费无遮挡视频| 午夜福利乱码中文字幕| 日韩制服骚丝袜av| 国产精品一区www在线观看| 高清视频免费观看一区二区| 一本—道久久a久久精品蜜桃钙片| 日韩一区二区三区影片| av.在线天堂| 黄色毛片三级朝国网站| 免费看不卡的av| 国产欧美另类精品又又久久亚洲欧美| 天堂俺去俺来也www色官网| 你懂的网址亚洲精品在线观看| 成人漫画全彩无遮挡| 国产免费又黄又爽又色| 草草在线视频免费看| 99热全是精品| 最近最新中文字幕大全免费视频 | 欧美人与性动交α欧美精品济南到 | 国产一区有黄有色的免费视频| 99香蕉大伊视频| 99热6这里只有精品| 亚洲欧美一区二区三区黑人 | 爱豆传媒免费全集在线观看| 亚洲国产成人一精品久久久| 亚洲av中文av极速乱| 老司机亚洲免费影院| 夫妻性生交免费视频一级片| 9色porny在线观看| 80岁老熟妇乱子伦牲交| 一本色道久久久久久精品综合| 久久久久久人妻| 亚洲色图 男人天堂 中文字幕 | 精品人妻一区二区三区麻豆| 有码 亚洲区| 久久久欧美国产精品| 亚洲色图综合在线观看| 性高湖久久久久久久久免费观看| 午夜福利视频精品| 波野结衣二区三区在线| 好男人视频免费观看在线| 欧美最新免费一区二区三区| 亚洲国产最新在线播放| 人体艺术视频欧美日本| av电影中文网址| 永久免费av网站大全| 麻豆乱淫一区二区| 街头女战士在线观看网站|