• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals

    2024-01-25 07:29:52ZhaoNianJin金兆年XuanLinHe何宣霖ChaoYu于超HenanFang方賀男LinChen陳琳andZhiKuoTao陶志闊
    Chinese Physics B 2024年1期
    關(guān)鍵詞:陳琳

    Zhao-Nian Jin(金兆年), Xuan-Lin He(何宣霖), Chao Yu(于超),Henan Fang(方賀男), Lin Chen(陳琳), and Zhi-Kuo Tao(陶志闊),?

    1Bell Honors School,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    2College of Electronic and Optical Engineering&College of Flexible Electronics,Nanjing University of Posts and Telecommunications,Nanjing 210003,China

    Keywords: skyrmion,magnonic crystal,spin wave,dispersion relation

    1.Introduction

    Spin waves or corresponding quasiparticle magnons, as advanced information carriers, have attracted much attention in recent years.[1,2]Like semiconductors or photonic crystals, periodically modulated magnetic properties are realized in magnonic crystals,which can hold spin waves or magnons.By employing these periodically arranged structures, the dispersion relations of magnonic crystals can be customized to specific requirements.As a new emerging topologically magnetic texture,skyrmion has also shown the potential in realizing magnonic crystals.[3,4]

    In 2009, magnetic skyrmion was experimentally observed in chiral magnet MnSi through neutron scattering by Mühlbaueret al.[5]Owing to the novel properties, skyrmion has shown strong potential applications in next-generation spintronic devices such as magnetic memory units with ultra-high density and logic gates with ultra-low power consumption.[6–9]Therefore, lots of researches of the dynamic properties driven by the electric current[10,11]or alternating microwave magnetic field have been conducted.[12,13]In 2012, spin-wave modes excited by microwave magnetic field in skyrmion crystal were predicted through numerical simulation.[12]Then, the magnetic excitations were observed experimentally in the helimagnetic insulator Cu2OSeO3.[13]The resonant modes are related to the external static magnetic field and material parameters such as Dzyaloshinskii–Moriya interaction (DMI) constant, and perpendicular magnetic anisotropy(PMA)constant.[14–16]

    Recently,the skyrmion manipulated by using electrically generated mechanical strain has received much attention.[17,18]By considering the magnetoelastic coupling interaction,strain can be utilized to create skyrmions and annihilate skyrmions,and also modulate the configuration of stripe domains and skyrmions.[19–21]Additionally, from the applications of strain-induced surface acoustic waves(SAWs)another efficient method of generating and manipulating skyrmions has been found.[22–24]

    Particularly, the periodical skyrmion arrangement can form magnon bands and bandgaps.Furthermore,the magnon band structure can be modulated by external effects such as magnetic fields and electric fields which will change the magnetic configuration of the skyrmion.[25–27]This dynamically modulated magnon band structure provides an advanced platform for studying tunable spintronics devices.In this work,we theoretically investigate the tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals.To start with, we analyze the phase diagram by changing strains and external static magnetic fields.Next,we calculate the dispersion relation curves under different strains and analyze the propagation properties of spin waves with specific frequencies.

    2.Model and method

    The dynamic behaviors of spin waves propagating in skyrmion-based magnonic crystals are simulated by the object oriented micromagnetic framework(OOMMF).[28]For a magnetic system, to obtain the dynamic response of its magnetic moment to time(the dynamic process),the Landau–Lifshitz–Gilbert(LLG)equation needs solving.The LLG equation can be given as follows:

    whereαis the Gilbert damping parameter,γis the gyromagnetic ratio,μ0is the vacuum permeability,m(r,t) is the unit magnetization vector, andHeffis the effective magnetic field and can be expressed as

    whereMsdenotes the saturation magnetization andEtotis the total energy of a magnetic system.With magneto-elastic energy considered,theEtotcan be given by

    whereEexis the exchange coupling energy,EPMAis the perpendicular magnetic anisotropy(PMA)energy,EZeis the Zeeman energy,Edemagis the demagnetizing field energy,EDMIis the DMI energy, andEmeis the magneto-elastic energy.Through the competition among these types of energy,different magnetic structures can be formed, and the ground state can be obtained by calculating the minimum value of the total energy.

    In this work, the most important energy components are DMI energy and magneto-elastic energy.There are two types of DMI energy, namely, the interface DMI energy and bulk DMI energy.Here, the interface DMI energy is considered,which is given by

    whereDdescribes the strength of interfacial DMI.Magnetoelastic energy can be expressed as

    Here,εijis the strain tensor, andB1andB2are the magnetoelastic coupling constants.[29]In this work, biaxial in-plane strains are applied to a skyrmion-based magnonic crystal, so the strain tensor can be reduced to

    The typical material parameters for Co are used in the simulation, specifically, they being saturation magnetizationMs= 5.8× 105A/m, exchange stiffness constantAex= 1.5× 10?11J/m, perpendicular anisotropy constantK= 8×105J/m3, gyromagnetic ratioγ= 2.211×105m/(A·s), Gilbert damping coefficientα= 0.005,magneto–elastic coupling constantsB1=?1.617×107N/m2andB2= 2.31×106N/m2.[30,31]The Co nano-layer is 2000 nm×100 nm×1 nm.The 2 nm×2 nm×1 nm mesh cell size is used to discretize the model and all simulations are performed at zero temperature.

    3.Results and discussion

    Firstly, our research focuses on examining the stability of a skyrmion-based magnonic crystal.Figure 1(a)illustrates the schematic diagram of our proposed device structure.In this structure, a biased voltage is applied to the piezoelectric layer in order to manipulate the strain in both of the piezoelectric layer and the skyrmion-based magnonic crystal layer.The simulated structure consists of a ferromagnetic (FM) ultrathin nano layer, a heavy metal layer (HM), and a bottom piezoelectric (PE) substrate.The Dzyaloshinskii–Moriya interaction generated by the FM/HM interface mainly results in the generation of skyrmions on the FM layer.Specifically,our proposed structure allows for the achievement of Neeltype skyrmions.In order to investigate the manipulation of skyrmions through strain,a voltage is applied to the PE layer,and the strain is generated owing to the converse piezoelectric effect.The length of the magnonic crystal is 2000 nm,the width is 100 nm, and the thickness of the magnonic crystal layer is 1 nm.

    Fig.1.(a) Schematic diagram of the proposed device structure.(b)Magnonic crystals with 20 and 60 skyrmions respectively,and nonperiodic magnetic textures without strain.(c)Phase diagram of strain ε versus magnetic field Hz (D=4 mJ/m2).

    By considering the interplay of various types of energy,including the magneto-elastic energy induced by the strain,different magnetic configurations can be achieved.Figure 1(b)shows the typical magnetic distributions.Skrymion-based magnonic crystals with 20 and 60 skyrmions are presented with a periodic arrangement and controlled skyrmion size.Meantime, complex non-periodic magnetic textures can also be obtained by adjusting parameters such as DMI constantD,external static magnetic fieldHz, and strainε.In Fig.1(c),we present the phase diagram of strainεversus magnetic fieldHzwithDfixed at 4 mJ/m2.It can be seen that ferromagnetic states are formed under higher magnetic fieldHzand compressive strain(ε<0).With the decrease of the compressive strain and the increase of the tensile strain (ε>0), skyrmion states(or skyrmion-based magnonic crystals) can be formed.Also,non-periodic magnetic texture states are formed under higher tensile strain and lower magnetic fieldHz.It is suggested that the voltage-induced strain can modulate the magnetic total energy via magneto-elastic coupling.On the other hand,the induced strain can also affect the magnetic anisotropy of the FM layer, which will be introduced to re-distribute the magnetic moments.

    To excite spin wave in the magnonic crystal,a sine cardinal field,

    with amplitudeH'z0= 100 A/m and cutoff frequencyf= 100 GHz, is applied to a central area of 200 nm×100 nm×1 nm as depicted in Fig.2(a).The excited spin waves with frequencies ranging from 0 GHz to 100 GHz travel to both sides of thexdirection,i.e., positive and negativexdirections respectively.Then the fluctuations of magnetization (δmz(x,t) =mz(x,t)?mz(x,0)) along the line from(0 nm,50 nm,1 nm)to(2000 nm,50 nm,1 nm)are collected during 10 ns as shown in Fig.2(b).The color bar denotes the value ofδmz(x,t).To determine the dispersion relation, a two-dimensional double fast Fourier transform is applied to the evolution ofδmz(x,t).

    Fig.2.(a) Schematic diagram for obtaining dispersion relations.(b) Fluctuations of magnetization δmz(x,t) without strain (N =60, D=3.5 mJ/m2,H =5×104 A/m).(c) Dispersion relations in skyrmion-based magnonic crystals with strain ε =0.25%, ε =0, and ε =?0.25%, respectively, (N =60,D=3.5 mJ/m2,H=5×104 A/m).

    Figure 2(c) displays the dispersion relations observed in the skyrmion-based magnonic crystals under different strains:ε=0.25%,ε=0, andε=?0.25%, which are represented by frequency versus wavenumber.It is known that different branches(modes)are presented in the dispersion relations due to the quantization of the wave vector across the strip width because a standing-wave pattern should form along the width direction of the strip.[25–27]Form Fig.2(c), a periodic nature with folded branches can be seen, suggesting that the branch with the lowest frequencies corresponds to the uniform magnetization dynamics across the width of the strip (mode 1) while the upper one corresponds to the half-wavelength quantization (mode 2).[32]In the meantime, several allowed bands can be observed where spin waves can travel through the magnonic crystals at specific frequencies and wavenumbers.Conversely,frequency ranges falling within the bandgaps(also referred to as forbidden bands, as indicated in Fig.3(c)) prevent the spin waves from propagating through the magnonic crystal.Like the transport of electrons in solid crystals or photons in photonic crystals,the periodic modulation of magnetic properties introduced by the skyrmion lattice contributes to the tailoring of the dispersion relations.

    An important finding in this study is that the dispersion relations can be manipulated by strain.As shown in Fig.2(c),the dispersion relations shift toward higher frequencies when strainεchanges from?0.25%to 0.25%.Moreover,the ranges of frequencies within the allowed bands also vary with strain.This indicates that the strain has the ability to manipulate the distribution of magnetic texture through magneto-elastic coupling.In our proposed device, the configuration of periodically arranged skyrmions can be modulated by strain.Thus,the travelling characteristics of spin waves can be manipulated.Consequently, the strain-induced manipulation results in tunable dispersion relation,showcasing the potential for strain as a tool for manipulating and controlling the properties of spin waves.

    Furthermore,we summarize the strain-dependent dispersion relations.Figures 3(a) and 3(c) illustrate the straindependent band characteristics inferred from dispersion relations for specific parameter values:K= 8×105J/m3,H=5×104A/m,D=3.5 mJ/m2; andK=2×105J/m3,H=1×106A/m,andD=4 mJ/m2respectively.Correspondingly, figures 3(b) and 3(d) show the variations of frequency variation range(Δf)with strainεof the allowed and forbidden bands.It is evident that the allowed bands shift toward higher frequencies as the strainεchanges from?0.75%to 0.5%.In addition,the skyrmions are annihilated with strainε=0.75%,as also depicted in Fig.1(c).Furthermore, for different values ofD, as shown in Figs.3(a) and 3(c), the allowed bands exhibit the same strain-dependent characteristics.

    In the meantime,it is worth noting that the strain not only causes the bands to shift toward higher frequencies,but also allows for manipulation of the frequency variation range within each band.As shown in Fig.3(b), Δfof allowed band II decreases from about 9.8 GHz to 2.5 GHz with strainεchanging from?0.75%to 0.5%.Similarly,Δfof allowed band III decreases from about 4.8 GHz to 2.3 GHz.On the other hand,Δfof forbidden band I increases from about 5 GHz to 16 GHz withεchanging from?0.75% to 0.5%, whereas Δfof forbidden I decreases from about 2.6 GHz to 1.5 GHz withεchanging from?0.75% to?0.25% and keeps stable withεincreasing to 0.5%.Figure 3(d) presents similar characteristics for a different configuration of magnonic crystal.

    Fig.3.Strain-dependent band characteristics inferred from dispersion relations for(a)K=8×105 J/m3,H =5×104 A/m,D=3.5 mJ/m2,and (c) K =2×105 J/m3, H =1×106 A/m, D=4 mJ/m2.Panels (b) and (c) display the corresponding frequency ranges of allowed and forbidden bands.

    Next,we investigate the traveling behaviors of spin waves manipulated by strain.Figure 4(a) shows a schematic diagram for illustrating the process of exciting spin waves and capturing traveling behaviors.The spin wave is excited by a sinusoidal magnetic field along thezaxis at frequencyf=67 GHz, confined into the region 0 nm<x <100 nm, and then the evolution of average magnetization fluctuationδmzatx=2000 nm is collected for different strains:ε=?0.25%,0%, and 0.25%.In Fig.4, it can be observed that fluctuation of magnetizationδmzatx=2000 nm begins to exhibit significant variations,respectively,at about 1.5 ns withε=?0.25%and at about 1.7 ns withε=0.25%.The corresponding velocities of spin waves are calculated to be 1267 m/s and 1117 m/s,respectively.This indicates that the strain can also manipulate the velocity of the spin wave.Additionally,very tiny magnetization fluctuations are observed in the absence of strain.This is consistent with the characteristics described in Fig.3(a),where the frequency of 67 GHz falls within allowed band I forε=?0.25%and allowed band III forε=?0.25%,while it falls within forbidden band II in the absence of strain.

    Fig.4.(a)Schematic diagram for obtaining the traveling behaviors of spin waves.The fluctuations of magnetization δmz at H=5×104 A/m,D=3.5 mJ/m2,x=2000 nm,and ε =?0.25%(b),0%(c),and 0.25%(d).

    4.Conclusions

    In summary, we investigated the tunable dispersion relations manipulated by strain in skyrmion-based magnonic crystals.Firstly,we calculated the phase diagrams of ground states under strains and external static magnetic fields, which show that the strain can induce different configurations such as FM state,skyrmion state,and complex non-periodic magnetic textures.Then, we studied the propagation properties of spin waves and calculated dispersion relation curves under different strains.It is found that the strain can manipulate the dispersion relations of skyrmion-based magnonic crystals through magneto-elastic coupling.Finally,we confirm that spin waves with specific frequencies can pass through the magnonic crystal or be blocked and that the on-off characteristics can be manipulated by strain.The results may provide a new idea for designing tunable spin wave devices based on skyrmion.

    猜你喜歡
    陳琳
    小巫見(jiàn)大巫
    “小巫見(jiàn)大巫”的由來(lái)
    The Effects of θ on Stability in the θ-Milstein Method for Stochastic Differential Equations
    陳琳作品《一口清茶,板栗飄香》
    大眾文藝(2022年16期)2022-09-07 03:07:44
    Numerical analysis on the effect of process parameters on deposition geometry in wire arc additive manufacturing
    Disney World Helped Heal Her Family—Now She Works There
    小巫見(jiàn)大巫
    小巫見(jiàn)六巫
    沒(méi)有絕對(duì)的天分,也沒(méi)有絕對(duì)的天才——指揮家陳琳專訪
    喜鵲 “驚魂”
    亚洲美女搞黄在线观看 | 校园春色视频在线观看| 99精品在免费线老司机午夜| 黄色日韩在线| 免费看a级黄色片| 美女黄网站色视频| 日日干狠狠操夜夜爽| 精品人妻熟女av久视频| 国产精品av视频在线免费观看| 国产亚洲91精品色在线| 禁无遮挡网站| 极品教师在线视频| 国产伦一二天堂av在线观看| 午夜福利在线在线| 哪里可以看免费的av片| 美女cb高潮喷水在线观看| 欧美成人精品欧美一级黄| 日日摸夜夜添夜夜添小说| 三级男女做爰猛烈吃奶摸视频| 自拍偷自拍亚洲精品老妇| 国产亚洲91精品色在线| 99久国产av精品国产电影| 人妻久久中文字幕网| 18+在线观看网站| 国产精品亚洲一级av第二区| 久久国产乱子免费精品| 人人妻,人人澡人人爽秒播| 免费在线观看成人毛片| 国模一区二区三区四区视频| 亚洲最大成人手机在线| 国产精品久久久久久av不卡| 少妇熟女欧美另类| 成人性生交大片免费视频hd| 秋霞在线观看毛片| 老女人水多毛片| 人妻丰满熟妇av一区二区三区| 国产精品一区二区免费欧美| 免费av观看视频| 欧美日韩一区二区视频在线观看视频在线 | 3wmmmm亚洲av在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产一区二区在线观看日韩| 国产黄a三级三级三级人| 女人十人毛片免费观看3o分钟| 亚洲av免费高清在线观看| 99热全是精品| 中文字幕免费在线视频6| 一级毛片aaaaaa免费看小| 国内精品一区二区在线观看| 亚洲成人av在线免费| 日本与韩国留学比较| 在线免费观看的www视频| 日韩欧美免费精品| 麻豆国产av国片精品| 成人二区视频| 美女被艹到高潮喷水动态| 亚洲欧美成人精品一区二区| 全区人妻精品视频| 久久国产乱子免费精品| 天堂动漫精品| 免费搜索国产男女视频| 丝袜美腿在线中文| 观看美女的网站| 亚洲性夜色夜夜综合| 国产精品三级大全| 国产av不卡久久| 日本与韩国留学比较| 伊人久久精品亚洲午夜| 老司机福利观看| 色尼玛亚洲综合影院| or卡值多少钱| 日韩人妻高清精品专区| 国产探花在线观看一区二区| 国模一区二区三区四区视频| 男插女下体视频免费在线播放| 男人狂女人下面高潮的视频| 国产av麻豆久久久久久久| 内射极品少妇av片p| 亚洲成av人片在线播放无| 国产精品亚洲美女久久久| 欧美不卡视频在线免费观看| 不卡一级毛片| 最好的美女福利视频网| 最好的美女福利视频网| 国产一级毛片七仙女欲春2| 国产av在哪里看| 九九久久精品国产亚洲av麻豆| 国产欧美日韩精品亚洲av| 免费观看人在逋| 免费人成视频x8x8入口观看| 18禁裸乳无遮挡免费网站照片| 好男人在线观看高清免费视频| 一级黄片播放器| 国产在线精品亚洲第一网站| 搞女人的毛片| 中文亚洲av片在线观看爽| 三级国产精品欧美在线观看| 成年女人看的毛片在线观看| 婷婷色综合大香蕉| 少妇丰满av| 亚洲18禁久久av| 亚洲国产精品sss在线观看| 十八禁网站免费在线| 嫩草影院入口| 国产黄色视频一区二区在线观看 | 日本黄色视频三级网站网址| 亚洲欧美日韩无卡精品| 草草在线视频免费看| 99久久中文字幕三级久久日本| 黄色一级大片看看| 国产单亲对白刺激| 国产精品日韩av在线免费观看| 网址你懂的国产日韩在线| 久久精品国产亚洲网站| АⅤ资源中文在线天堂| 在线观看66精品国产| 老司机午夜福利在线观看视频| 九色成人免费人妻av| 女同久久另类99精品国产91| 中出人妻视频一区二区| 淫秽高清视频在线观看| 国产成人精品久久久久久| 精品99又大又爽又粗少妇毛片| 噜噜噜噜噜久久久久久91| 99久久久亚洲精品蜜臀av| 成年av动漫网址| 99在线人妻在线中文字幕| 99久久九九国产精品国产免费| 一区二区三区免费毛片| 一进一出抽搐gif免费好疼| 亚洲性夜色夜夜综合| av福利片在线观看| 精品人妻熟女av久视频| 亚洲精品成人久久久久久| 国产精品一区二区免费欧美| 有码 亚洲区| 看免费成人av毛片| 国内揄拍国产精品人妻在线| 18禁黄网站禁片免费观看直播| 欧美日韩国产亚洲二区| 69av精品久久久久久| 国产乱人视频| 99久国产av精品| 我的女老师完整版在线观看| 99精品在免费线老司机午夜| 免费观看人在逋| 寂寞人妻少妇视频99o| 免费看av在线观看网站| 日韩欧美三级三区| 国产一区二区激情短视频| 六月丁香七月| 国产午夜福利久久久久久| 麻豆一二三区av精品| 欧美人与善性xxx| 免费无遮挡裸体视频| 欧美日韩在线观看h| 婷婷六月久久综合丁香| 亚洲精品粉嫩美女一区| 国产成人a∨麻豆精品| 国内精品宾馆在线| 狂野欧美激情性xxxx在线观看| 国产精品女同一区二区软件| 国产麻豆成人av免费视频| 国产av一区在线观看免费| 免费看光身美女| 国产高清不卡午夜福利| 亚洲中文日韩欧美视频| 国产精品国产高清国产av| 成人毛片a级毛片在线播放| 国产乱人视频| 精品久久久久久久久亚洲| 黑人高潮一二区| 国产成人a∨麻豆精品| 国产人妻一区二区三区在| 午夜精品国产一区二区电影 | 国产av不卡久久| 久久久久久久久中文| 看黄色毛片网站| 亚洲无线观看免费| 看十八女毛片水多多多| 伊人久久精品亚洲午夜| 国产精品乱码一区二三区的特点| 国产色婷婷99| 黑人高潮一二区| 高清午夜精品一区二区三区 | 中文亚洲av片在线观看爽| 亚洲美女搞黄在线观看 | 色视频www国产| 九色成人免费人妻av| 欧美日韩一区二区视频在线观看视频在线 | 免费看av在线观看网站| 国产精品精品国产色婷婷| 99国产极品粉嫩在线观看| 看黄色毛片网站| 国产成人aa在线观看| 欧美一区二区国产精品久久精品| 天天躁夜夜躁狠狠久久av| 看片在线看免费视频| 久久精品夜色国产| 成年女人永久免费观看视频| 精品一区二区三区人妻视频| 一本精品99久久精品77| 久久久久九九精品影院| 国产精品一区二区三区四区久久| 你懂的网址亚洲精品在线观看 | av天堂中文字幕网| 三级国产精品欧美在线观看| 99精品在免费线老司机午夜| 简卡轻食公司| 99riav亚洲国产免费| 色av中文字幕| 人人妻人人看人人澡| 精品福利观看| 国产精品亚洲一级av第二区| 99国产极品粉嫩在线观看| 在线观看一区二区三区| 成人特级av手机在线观看| 亚洲av一区综合| 午夜激情欧美在线| 欧美一区二区国产精品久久精品| 久久久久久大精品| 男人的好看免费观看在线视频| 在线免费十八禁| 日本在线视频免费播放| 白带黄色成豆腐渣| 国产免费男女视频| 男人舔奶头视频| 亚洲av成人av| 午夜福利视频1000在线观看| 一级黄片播放器| 黄色欧美视频在线观看| 亚洲人成网站在线播| 亚洲欧美成人精品一区二区| 搡老熟女国产l中国老女人| 亚洲精品一卡2卡三卡4卡5卡| 一进一出抽搐gif免费好疼| 无遮挡黄片免费观看| 久久久久久久久大av| 国产高清有码在线观看视频| 99在线视频只有这里精品首页| 91精品国产九色| 91精品国产九色| 精品人妻一区二区三区麻豆 | 白带黄色成豆腐渣| 成人特级黄色片久久久久久久| 寂寞人妻少妇视频99o| 成人三级黄色视频| 男女边吃奶边做爰视频| 91在线精品国自产拍蜜月| 日韩 亚洲 欧美在线| 国产色婷婷99| 大香蕉久久网| 2021天堂中文幕一二区在线观| 99热只有精品国产| 免费观看精品视频网站| 国产单亲对白刺激| 精品久久久久久成人av| 欧美最黄视频在线播放免费| 国产三级中文精品| 美女大奶头视频| 国产成人福利小说| 在现免费观看毛片| 久久精品国产鲁丝片午夜精品| 内地一区二区视频在线| 久久亚洲国产成人精品v| 在线天堂最新版资源| 精品一区二区三区视频在线观看免费| 日韩一本色道免费dvd| 免费不卡的大黄色大毛片视频在线观看 | 在线免费十八禁| 在线免费十八禁| 久久久色成人| 久久九九热精品免费| 又爽又黄a免费视频| 真人做人爱边吃奶动态| 黄色一级大片看看| 午夜福利高清视频| 国产精品av视频在线免费观看| 舔av片在线| 国产真实乱freesex| 欧美高清性xxxxhd video| 国产乱人偷精品视频| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 久久久久久九九精品二区国产| 看非洲黑人一级黄片| 日本a在线网址| 中国美女看黄片| 色尼玛亚洲综合影院| 成人高潮视频无遮挡免费网站| 1000部很黄的大片| 99久久精品热视频| av在线天堂中文字幕| 男人和女人高潮做爰伦理| 成年av动漫网址| 长腿黑丝高跟| 久久久精品94久久精品| 亚洲国产色片| 亚洲av成人精品一区久久| 日日摸夜夜添夜夜添av毛片| 国内精品一区二区在线观看| .国产精品久久| 最好的美女福利视频网| 久久久久久伊人网av| 国产私拍福利视频在线观看| 国产伦在线观看视频一区| 91在线观看av| 久久久久国产精品人妻aⅴ院| 精品久久久久久久久亚洲| 色哟哟·www| 天美传媒精品一区二区| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 一区二区三区免费毛片| 欧洲精品卡2卡3卡4卡5卡区| 一个人看视频在线观看www免费| 人人妻,人人澡人人爽秒播| 搡老妇女老女人老熟妇| 久久人人爽人人片av| 可以在线观看毛片的网站| 精品一区二区三区人妻视频| 国产男人的电影天堂91| 99热6这里只有精品| 日韩大尺度精品在线看网址| 麻豆久久精品国产亚洲av| 国产一区二区三区在线臀色熟女| 91精品国产九色| 国产极品精品免费视频能看的| 一级毛片电影观看 | 亚洲av成人精品一区久久| 韩国av在线不卡| 少妇的逼好多水| 国内揄拍国产精品人妻在线| 久久精品国产亚洲av香蕉五月| 亚洲美女视频黄频| 露出奶头的视频| 免费人成视频x8x8入口观看| 久久久久九九精品影院| 久久久久精品国产欧美久久久| 人妻制服诱惑在线中文字幕| 亚洲久久久久久中文字幕| 又爽又黄无遮挡网站| 看片在线看免费视频| 国产亚洲精品综合一区在线观看| 夜夜爽天天搞| 哪里可以看免费的av片| 插阴视频在线观看视频| 久久精品夜色国产| 成年免费大片在线观看| 亚洲第一电影网av| 日韩精品中文字幕看吧| 91久久精品电影网| 色综合亚洲欧美另类图片| 中国国产av一级| 国产一级毛片七仙女欲春2| 亚洲精品成人久久久久久| 一区二区三区四区激情视频 | 最新中文字幕久久久久| 欧美在线一区亚洲| 一卡2卡三卡四卡精品乱码亚洲| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 听说在线观看完整版免费高清| 春色校园在线视频观看| 直男gayav资源| 97超碰精品成人国产| 又粗又爽又猛毛片免费看| 日韩精品有码人妻一区| 女人十人毛片免费观看3o分钟| 欧美另类亚洲清纯唯美| 看免费成人av毛片| 免费看a级黄色片| 久久综合国产亚洲精品| 成年女人毛片免费观看观看9| 亚洲成av人片在线播放无| 最好的美女福利视频网| 免费看美女性在线毛片视频| 又爽又黄无遮挡网站| 亚洲欧美日韩东京热| 欧美日韩精品成人综合77777| av视频在线观看入口| 免费在线观看成人毛片| 国产精品不卡视频一区二区| 久久久久久伊人网av| 给我免费播放毛片高清在线观看| 搡老妇女老女人老熟妇| 女的被弄到高潮叫床怎么办| 三级经典国产精品| 久久这里只有精品中国| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线| 亚洲四区av| 日本在线视频免费播放| 观看免费一级毛片| 又黄又爽又刺激的免费视频.| 国产高清不卡午夜福利| 国产 一区精品| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 欧美不卡视频在线免费观看| 又黄又爽又免费观看的视频| 亚洲精品日韩av片在线观看| 欧美zozozo另类| 精品久久久久久久久久久久久| 亚洲国产高清在线一区二区三| 亚洲自偷自拍三级| 成人性生交大片免费视频hd| 99久久精品一区二区三区| 99久久久亚洲精品蜜臀av| 18禁黄网站禁片免费观看直播| 国产一级毛片七仙女欲春2| 国产伦精品一区二区三区视频9| 黄色视频,在线免费观看| av卡一久久| а√天堂www在线а√下载| 国产日本99.免费观看| 久久鲁丝午夜福利片| 久久亚洲精品不卡| 久久6这里有精品| 国产麻豆成人av免费视频| 国产伦一二天堂av在线观看| 18禁黄网站禁片免费观看直播| 日日干狠狠操夜夜爽| 欧美国产日韩亚洲一区| 国产精品亚洲一级av第二区| 我的女老师完整版在线观看| 久久精品国产清高在天天线| 国内精品美女久久久久久| www.色视频.com| 精品免费久久久久久久清纯| 99久久精品国产国产毛片| 欧美另类亚洲清纯唯美| 中文亚洲av片在线观看爽| 少妇丰满av| 一夜夜www| 免费看日本二区| 亚洲三级黄色毛片| 久久热精品热| 中国国产av一级| 中出人妻视频一区二区| 中国美白少妇内射xxxbb| av天堂在线播放| 露出奶头的视频| 美女高潮的动态| 久久久久九九精品影院| 国产亚洲欧美98| 国产精品不卡视频一区二区| 色哟哟哟哟哟哟| 久久99热6这里只有精品| 搞女人的毛片| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 乱码一卡2卡4卡精品| 男女啪啪激烈高潮av片| 一级毛片久久久久久久久女| 老司机午夜福利在线观看视频| 三级男女做爰猛烈吃奶摸视频| 久久精品影院6| 别揉我奶头~嗯~啊~动态视频| 午夜视频国产福利| 亚洲精品一区av在线观看| 男女边吃奶边做爰视频| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久| 麻豆国产97在线/欧美| 国产淫片久久久久久久久| 在线播放无遮挡| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 国产高清三级在线| 亚洲精品日韩在线中文字幕 | 99久久中文字幕三级久久日本| 精品日产1卡2卡| av天堂在线播放| 99在线视频只有这里精品首页| av福利片在线观看| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 丰满人妻一区二区三区视频av| 蜜桃亚洲精品一区二区三区| 国产精品无大码| 老司机影院成人| 亚洲第一区二区三区不卡| 亚洲五月天丁香| 国产黄片美女视频| 日日摸夜夜添夜夜爱| 人妻制服诱惑在线中文字幕| 日韩成人av中文字幕在线观看 | 中国国产av一级| 亚洲精华国产精华液的使用体验 | 国产一区二区亚洲精品在线观看| 日韩欧美国产在线观看| 精华霜和精华液先用哪个| 少妇人妻精品综合一区二区 | 国产日本99.免费观看| 1000部很黄的大片| 日韩成人av中文字幕在线观看 | 国产精品永久免费网站| 国产免费一级a男人的天堂| 村上凉子中文字幕在线| 色综合亚洲欧美另类图片| 国产成人影院久久av| 小蜜桃在线观看免费完整版高清| 国产精品一及| 老司机影院成人| av在线亚洲专区| 色综合亚洲欧美另类图片| 一个人观看的视频www高清免费观看| 免费黄网站久久成人精品| 欧美最新免费一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩一区二区视频在线观看视频在线 | 免费一级毛片在线播放高清视频| 国产高清视频在线播放一区| 噜噜噜噜噜久久久久久91| 内地一区二区视频在线| 亚洲成人久久性| 美女xxoo啪啪120秒动态图| 亚洲图色成人| 国产女主播在线喷水免费视频网站 | 久久国产乱子免费精品| 亚洲精品国产av成人精品 | 亚洲欧美精品自产自拍| 亚洲国产欧美人成| 欧美另类亚洲清纯唯美| 午夜福利高清视频| 久久6这里有精品| 国产av麻豆久久久久久久| 日日啪夜夜撸| 成人无遮挡网站| 国产精品电影一区二区三区| 亚洲精品色激情综合| 日韩 亚洲 欧美在线| 白带黄色成豆腐渣| 欧美精品国产亚洲| 色视频www国产| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲国产精品sss在线观看| 亚洲熟妇中文字幕五十中出| 日韩强制内射视频| 性欧美人与动物交配| 国产精品1区2区在线观看.| 国产精品免费一区二区三区在线| 国模一区二区三区四区视频| 真人做人爱边吃奶动态| 搡老岳熟女国产| 男人的好看免费观看在线视频| 国产 一区 欧美 日韩| 亚洲成人精品中文字幕电影| 精品久久久久久久末码| 少妇的逼水好多| 人人妻人人澡欧美一区二区| 国产精品,欧美在线| 亚洲美女视频黄频| 男插女下体视频免费在线播放| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 亚洲av.av天堂| a级毛色黄片| 欧美三级亚洲精品| 一夜夜www| 国产高清三级在线| 97碰自拍视频| 日韩欧美精品免费久久| 99精品在免费线老司机午夜| 99国产极品粉嫩在线观看| 可以在线观看的亚洲视频| 熟女电影av网| 日韩av在线大香蕉| 欧美激情国产日韩精品一区| 久久久精品欧美日韩精品| 日本一本二区三区精品| 免费av毛片视频| 黄色欧美视频在线观看| 日本精品一区二区三区蜜桃| 婷婷亚洲欧美| 男人的好看免费观看在线视频| 99久久久亚洲精品蜜臀av| 精品午夜福利视频在线观看一区| 久久久久久久久大av| 中文字幕久久专区| 久久人人爽人人爽人人片va| 国产黄片美女视频| 免费搜索国产男女视频| 欧美+日韩+精品| 男人和女人高潮做爰伦理| 97碰自拍视频| 中出人妻视频一区二区| 亚洲av中文av极速乱| 国产大屁股一区二区在线视频| 国产欧美日韩精品亚洲av| 精品久久久久久久人妻蜜臀av| 性色avwww在线观看| 国产高潮美女av| 日本撒尿小便嘘嘘汇集6| 深夜a级毛片| 国产激情偷乱视频一区二区| 深爱激情五月婷婷| 黄色配什么色好看| 狂野欧美白嫩少妇大欣赏| 最好的美女福利视频网| 性欧美人与动物交配| 成人国产麻豆网| 搡老熟女国产l中国老女人| 亚洲最大成人手机在线| 少妇丰满av| 亚洲国产日韩欧美精品在线观看| 禁无遮挡网站| 国产男靠女视频免费网站| 欧美成人免费av一区二区三区| АⅤ资源中文在线天堂|