doi:10.6048/j.issn.1001-4330.2024.05.022
摘" 要:【目的】研究季節(jié)性凍融期土壤細菌和真菌數(shù)量的影響因素。
【方法】采集中國知網(wǎng)、Web of science等數(shù)據(jù)庫相關(guān)土壤季節(jié)性凍融期的數(shù)據(jù),根據(jù)排除和納入標準,采用Newcastle-Ottawa Scale (NOS)評價標準對文獻進行質(zhì)量評價,將得分≥6分且高質(zhì)量的文獻納入研究,運用RevMan5.4對其進行Meta分析。
【結(jié)果】42篇文獻符合納入標準,其中,SCI文章7篇,CSCD文章27篇。季節(jié)性凍融期土壤含水量對土壤細菌的影響顯著性最大;土壤pH值對土壤真菌的影響顯著性最大,土壤有機質(zhì)對土壤細菌和真菌影響顯著性最小。季節(jié)性凍融期,土壤有機氮對土壤細菌影響的優(yōu)勢程度最大,土壤含水量對土壤真菌影響的優(yōu)勢程度最大。
【結(jié)論】季節(jié)性凍融期土壤pH值和土壤含水量對土壤細菌和真菌起到?jīng)Q定性作用。
關(guān)鍵詞:Meta分析;土壤細菌;土壤真菌;季節(jié)性凍融期
中圖分類號:S188""" 文獻標志碼:A""" 文章編號:1001-4330(2024)05-1236-14
收稿日期(Received):
2023-10-09
基金項目:
南疆重點產(chǎn)業(yè)創(chuàng)新發(fā)展支撐計劃項目(2021DB012,2022DB020);國家自然科學(xué)基金項目(U1803244)
作者簡介:
楊躍發(fā)(1995-),男,山西臨汾人,碩士研究生,研究方向為節(jié)水灌溉, (E-mail)1131183413@qq.com
通訊作者:
王春霞(1979-),女,山東鄆城人,教授,博士,碩士生導(dǎo)師,研究方向為節(jié)水灌溉,(E-mail)410443356@qq.com
0" 引 言
【研究意義】土壤微生物在生態(tài)系統(tǒng)生物化學(xué)循環(huán)過程中起著關(guān)鍵作用[1]。土壤微生物多樣性有助于維持土壤的生態(tài)系統(tǒng)和提高土壤生態(tài)環(huán)境惡化的緩沖能力[2-6]。目前對于季節(jié)性凍融期土壤微生物數(shù)量的變化還持有不同觀點,尚有待深入分析和總結(jié)。【前人研究進展】季節(jié)性凍融是冰凍圈冷生環(huán)境(土壤溫度≤0℃)的一種自然現(xiàn)象[7],盡管如此,部分土壤微生物仍能存活。季節(jié)性凍融過程改變了土壤理化性質(zhì),進而對土壤微生物產(chǎn)生影響,目前有文獻主要從土壤微生物區(qū)系、數(shù)量等方面研究凍融作用對土壤微生物的影響[8]。Finegold等[9]通過室內(nèi)試驗發(fā)現(xiàn),凍融期溫度下降導(dǎo)致土壤微生物細胞壁受損,土壤凍結(jié)使得土壤中溶質(zhì)濃縮,土和水的勢能發(fā)生改變,導(dǎo)致土壤微生物細胞壁內(nèi)外滲透壓發(fā)生變化。馬曉飛等[10]研究表明,隨著季節(jié)性凍融期土壤溫度降低,導(dǎo)致土壤中部分微生物死亡,土壤微生物數(shù)量下降,隨著土壤溫度的升高,土壤中微生物殘體被幸存的微生物所利用,土壤微生物數(shù)量再次增加。此外,凍融作用還影響著土壤微生物的群落結(jié)構(gòu),劉利等[11]研究發(fā)現(xiàn),在季節(jié)性凍融期,土壤凍結(jié)使得細菌類微生物群落和多樣性明顯下降。但是Sulkava等[12]發(fā)現(xiàn)土壤微生物在凍結(jié)期,仍有較高的活性?!颈狙芯壳腥朦c】雖然有研究表明季節(jié)性凍融對土壤微生物影響顯著,但是研究程度和結(jié)論尚不相同。土壤微生物作為調(diào)控土壤肥力和營養(yǎng)物質(zhì)循環(huán)的重要參與者,尤其是季節(jié)性凍融期土壤微生物的變化直接影響來年春播農(nóng)田土壤微環(huán)境,所以有必要研究季節(jié)性凍融期土壤微生物數(shù)量的影響因素?!緮M解決的關(guān)鍵問題】采集中國知網(wǎng)、Web of science等數(shù)據(jù)庫相關(guān)土壤季節(jié)性凍融期的數(shù)據(jù),文獻采用meta綜合分析,探討季節(jié)性凍融期土壤微生物細菌與真菌數(shù)量的影響因素,并為開展相關(guān)研究提供參考。
1" 材料與方法
1.1" 材 料
1.1.1" 數(shù)據(jù)庫選擇
2022年采集中國知網(wǎng)(http://www.cnki.net)、Web of science 等數(shù)據(jù)庫進行以下關(guān)鍵詞的檢索:“季節(jié)性凍融and土壤微生物”、“凍土and土壤微生物”和“seasonal freeze-thaw and soil microbe”,文獻篩選:①試驗選地符合季節(jié)性凍融條件;②季節(jié)性凍融的3個重要時期(凍結(jié)初期、穩(wěn)定凍結(jié)期、融化期);③季節(jié)性凍融期土壤理化性質(zhì)和微生物變化的描述;④土壤各因素對土壤微生物的影響;⑤數(shù)據(jù)及圖表分析。
選擇土壤理化性質(zhì):土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮(有機氮和無機氮)分析對土壤微生物數(shù)量的影響,將篩選的文獻根據(jù)影響因素進行歸類。
1.1.2" 文獻檢索數(shù)據(jù)篩選與獲取
研究表明,在知網(wǎng)等數(shù)據(jù)庫輸入關(guān)鍵詞共檢索出252篇文獻,通過閱讀題目、摘要、試驗方法等,排除題目與研究明顯不相關(guān)的文獻,初次納入69篇文獻,其中10篇英文文獻,59篇中文文獻,根據(jù)(NOS)文獻質(zhì)量評價表得分和文獻內(nèi)容最后確定納入42篇[13-14]文獻進行土壤微生物數(shù)量影響因素研究。圖1
1.2" 方 法
Meta分析方法[15]:
OR表示優(yōu)勢比、RR表示風(fēng)險比、RD表示風(fēng)險差、SE(logOR)SE(logRR)SE(RR)表示標準錯誤、95%CI表示置信區(qū)間,P表示顯著性。
對于logRR=0,logOR=0,RD=0的z檢驗計算公式為:
z=log(OR)SE(logOR)z=log(RR)SE(logRR)z=log(RD)SE(RD).(1)
如果已知P值,
z=Q(1-P2).(2)
對于95%CI,
logOR±Q(1+952)SE(logOR).(3)
logRR±Q(1+952)SE(logRR).(4)
RD±Q(1+952)SE(RD). (5)
式中,OR和RR的95%CI通過前兩個區(qū)間的上、下界的指數(shù)計算。
1.3" 數(shù)據(jù)整理
根據(jù)納入的每一篇文獻分別來提取材料與方法中的試驗組和對照組的數(shù)量以及樣本數(shù)量,使用Review Manager 5.4進行Meta分析。采用Cochrane Q檢驗來分析各研究間的異質(zhì)性,采用I2來評價納入研究間的異質(zhì)性的大小。當(dāng)Pgt;0.1且I2lt;50%時,采用FE模型;當(dāng)Plt;0.1且I2gt;50%時采用RE模型[16]。用漏斗圖判斷是否存在發(fā)表偏倚。
2" 結(jié)果與分析
2.1" 土壤類型文獻及集中年限
研究表明,在入選的42篇文獻中,研究地區(qū)主要集中在新疆、甘肅、黑龍江等地,研究土壤類型主要是農(nóng)田、林地、草地和高原區(qū)的土壤,發(fā)表年限主要集中在2011~2022年。對于季節(jié)性凍融期土壤微生物的影響因素研究,均涉及到土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮。表1
2.2" 高質(zhì)量文獻篩選與評價
研究表明,依據(jù)Newcastle-Ottawa Scale (NOS)文獻質(zhì)量評價表納入42篇文獻中SCI論文7篇,CSCD文章27篇,研究生論文7篇,這些期刊多年刊登關(guān)于凍土和土壤微生物的文獻,每篇文獻得分都≥6分,屬于高質(zhì)量文獻。圖2,圖3
2.3" Meta統(tǒng)計
2.3.1 季節(jié)性凍融期土壤細菌、真菌數(shù)量影響因素Meta統(tǒng)計
研究表明,6種影響因素的Pgt;0.1且I2lt;50%,均不具有異質(zhì)性,采用固定分析模式。季節(jié)性凍融期土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮對細菌和真菌均有一定的影響。季節(jié)性凍融期影響土壤細菌最主要的因素是土壤溫度、土壤pH值、土壤含水量、土壤有機氮,而土壤含水量和土壤pH值對土壤細菌的影響最為顯著(P<0.00001),土壤含水量是最主要的影響因素(Z=5.31);季節(jié)性凍融期影響土壤真菌的主要因素是土壤溫度、土壤含水量和土壤pH值,而土壤pH值對土壤真菌的影響最為顯著(P=0.000 2)。季節(jié)性凍融期土壤理化性質(zhì)的變化對土壤細菌的影響最為突出,有機質(zhì)對土壤細菌和真菌的影響顯著相相當(dāng)。圖4~9,表2
2.3.2" 對土壤細菌和真菌的影響綜合分析
研究表明,發(fā)現(xiàn)季節(jié)性凍融期,土壤中細菌和真菌的數(shù)量顯著降低,凍融作用對土壤真菌的變化影響最為顯著,土壤細菌和真菌與土壤pH值呈顯著負相關(guān),與總氮和有機氮呈顯著正相關(guān)。季節(jié)性凍融初期,土壤細菌和真菌的數(shù)量隨著土壤有機質(zhì)的增多而增多,土壤真菌的數(shù)量隨土壤含水量的增加明顯增加。穩(wěn)定凍結(jié)期,土壤細菌和真菌的數(shù)量明顯下降,主要受到低溫脅迫,其他因素對其幾乎無影響。融化期,土壤真菌主要受到土壤含水量的影響,呈極顯著相關(guān)性,而各影響因素對土壤細菌的影響較不明顯,呈現(xiàn)弱正相關(guān)或弱負相關(guān)。Z值越大,影響因素的顯著性越大,土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮對土壤細菌的影響顯著性大小為土壤含水量gt;土壤pH值gt;土壤有機氮gt;土壤溫度gt;土壤全氮gt;土壤有機質(zhì),對于土壤真菌的影響顯著大小為土壤pH值gt;土壤含水量gt;土壤溫度gt;土壤全氮=土壤有機氮gt;土壤有機質(zhì)。土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮對土壤細菌的影響相比土壤真菌更為顯著,土壤有機質(zhì)對土壤細菌和真菌的影響顯著性相對較弱,土壤有機氮和土壤全氮對土壤真菌的影響顯著性幾乎相同,季節(jié)性凍融期,對于土壤細菌和真菌起決定性因素的是土壤pH值和土壤含水量。土壤溫度、pH值、含水量、有機質(zhì)、有機氮、全氮對土壤細菌的影響優(yōu)勢比大小為土壤有機氮gt;土壤含水量gt;土壤pH值gt;土壤溫度gt;土壤全氮gt;土壤有機質(zhì);對于土壤真菌的影響優(yōu)勢比大小為土壤含水量gt;土壤pH值gt;土壤有機氮gt;土壤溫度gt;土壤有機質(zhì)gt;土壤全氮。圖10~11
2.3.3" 各影響因素Meta分析的偏倚性統(tǒng)計
研究表明,各因素漏斗圖基本對稱,均分布在95%CI周圍,分析結(jié)果相對穩(wěn)定。圖12
3" 討 論
3.1" 土壤微生物數(shù)量影響因素土壤pH值
研究通過輸入關(guān)鍵詞和精讀篩選,共納入42篇季節(jié)性凍融期不同時期對照的文獻,同時應(yīng)用Meta分析中固定模型和隨機模型進行敏感性分析[15],目前,更多的研究是通過試驗分析季節(jié)性凍融期土壤微生物數(shù)量影響因素。每年頻繁發(fā)生的土壤凍融都會導(dǎo)致土壤pH值的季節(jié)性振蕩[57],土壤pH值的不同對土壤微生物的影響不同[58]。土壤pH值過高會改變土壤微生物細胞膜所帶電荷,改變土壤微生物對影響物質(zhì)的吸收狀況,不利于土壤微生物的生存[59],季節(jié)性凍融前期土壤pH值與土壤細菌和真菌數(shù)量呈弱的顯著正相關(guān)(R=0.242),后期呈弱的顯著負相關(guān)(R=-0.261),季節(jié)性凍融期土壤pH值對土壤細菌和真菌數(shù)量有影響[16],土壤中微生物的數(shù)量與土壤pH值無顯著相關(guān)性[40]。關(guān)于土壤pH值是否對土壤微生物有影響還存在爭議。通過Meta分析表明季節(jié)性凍融期土壤pH值對土壤細菌和真菌具有極顯著的影響,并且土壤pH值對土壤細菌和真菌的影響具有決定性因素。
3.2" 土壤微生物數(shù)量影響因素—土壤含水量
全球氣候變化導(dǎo)致季節(jié)性凍融期土壤凍融格局發(fā)生了很多變化[60],這些變化直接影響到土壤濕度,導(dǎo)致土壤微生物結(jié)構(gòu)發(fā)生改變[25]。土壤濕度的降低會對土壤微生物產(chǎn)生劇烈的影響[25],土壤細菌和真菌與外界的交流和活動離不開水分,凍結(jié)期,土壤自上而下凍結(jié),土壤水分向上遷移,形成厭氧環(huán)境,對土壤細菌和真菌造成不利的影響,使得土壤細菌和真菌數(shù)量下降,一直到穩(wěn)定凍結(jié)期,部分厭氧微生物存活穩(wěn)定[61],土壤微生物總數(shù)量穩(wěn)定,融化期,由于積雪的覆蓋,土壤含水量增加,導(dǎo)致土壤孔隙度相對變大,有利于土壤細菌和真菌的生存繁殖,土壤微生物總數(shù)量再次上升。研究通過Meta分析表明在季節(jié)性凍融期,土壤含水量對土壤細菌和真菌具有極顯著的影響,與前人[62]的研究觀點一致。
3.3" 土壤微生物數(shù)量影響因素—土壤溫度
季節(jié)性凍融期,雖然土壤溫度長期處于低溫,低營養(yǎng)的狀態(tài)下,但是還是有很多土壤微生物頑強的生存著。低溫的脅迫導(dǎo)致土壤微生物細胞內(nèi)的水分轉(zhuǎn)到細胞外以防止自身凍結(jié),但是超過臨界點后,土壤微生物會將所有的水分全部析出[63]。在低溫條件下,土壤微生物濃縮,維持著原有的生理生存條件,使得土壤微生物數(shù)量有所下降,低溫可以直接殺死土壤微生物[64],溫度升高后,由于土壤可利用水分和土壤孔隙度的增加,土壤微生物修復(fù)損傷的細胞開始分散[65],土壤微生物數(shù)量再次增加,所以在穩(wěn)定凍結(jié)期,土壤微生物數(shù)量降低,到了融化期,土壤微生物數(shù)量再次上升。多年凍融循環(huán)只會導(dǎo)致土壤微生物的數(shù)量急劇下降。試驗通過Meta分析表明,季節(jié)性凍融期,土壤溫度的變化對土壤細菌和真菌具有顯著的影響。
3.4" 土壤微生物數(shù)量影響因素—土壤有機質(zhì)
馬曉飛等[15]研究發(fā)現(xiàn)季節(jié)性凍融期,土壤有機質(zhì)呈先降低再升高最后又顯著降低的趨勢。土壤微生物的活動有利于土壤有機質(zhì)的分解,土壤有機質(zhì)的含量也直接影響到土壤細菌和真菌的數(shù)量。土壤有機質(zhì)可以刺激土壤微生物的活動來增加土壤酶的活性[66],土壤有機質(zhì)是土壤微生物生存和活動的主要營養(yǎng)和能量來源,所以土壤有機質(zhì)是影響土壤微生物的重要因素之一,研究通過Meta分析表明,季節(jié)性凍融期土壤有機質(zhì)對土壤細菌和真菌具有顯著的影響。
3.5" 土壤微生物數(shù)量影響因素—土壤氮
季節(jié)性凍融期是土壤最重要的物理過程變化時期,是全球高緯度地區(qū)普遍存在的自然變化現(xiàn)象[38]。季節(jié)性凍融期改變了土壤結(jié)構(gòu)、破壞了土壤表層的微生物及凋亡的植物、落葉和動物殘體,促進了土壤養(yǎng)分的釋放[67],是影響土壤氮素等最重要的化學(xué)過程,土壤氮素的變化影響土壤細菌和真菌的生存,是反應(yīng)土壤微生物量的重要指標[68]。季節(jié)性凍融期。死去的土壤微生物可以為土壤提供一部分氮素,有利于來年作物的生長,另一部分則被幸存的土壤微生物所利用。季節(jié)性凍融期土壤氮素和土壤微生物是相互影響的。研究通過Meta分析表明,季節(jié)性凍融期土壤有機氮和全氮對土壤細菌和真菌具有顯著的影響。
3.6" 土壤微生物數(shù)量影響因素—其他因素
菜園土研究發(fā)現(xiàn),鹽堿地土壤過氧化氫酶活性的升高,會導(dǎo)致脲酶活性下降[69],而Sudipta T A等[70]研究發(fā)現(xiàn)土壤含鹽量會降低土壤微生物的數(shù)量,間接影響到土壤酶的活性和數(shù)量。王飛[71]研究表明隨著土壤鹽分濃度的增加土壤微生物的數(shù)量減少。鹽分的影響微生物的群落,但是微生物中存在嗜鹽微生物,所以鹽分對微生物的影響不明確。目前關(guān)于不同梯度下鹽分對土壤微生物活性的影響以及土壤鹽分濃度對土壤微生物影響的臨界點的研究報道過少,季節(jié)性凍融期關(guān)于土壤鹽分對土壤微生物數(shù)量的鮮有研究報道,土壤微生物對鹽堿化土壤的理化性質(zhì)有著高度的響應(yīng)特征。
4" 結(jié) 論
4.1
季節(jié)性凍融期對土壤細菌的影響顯著性大小為土壤含水量gt;土壤pH值gt;土壤土壤有機氮gt;土壤溫度gt;土壤全氮gt;土壤有機質(zhì);對土壤真菌的影響顯著性大小為土壤pH值gt;土壤含水量gt;土壤溫度gt;土壤全氮=土壤有機氮gt;土壤有機質(zhì)。
4.2" 在季節(jié)性凍融期,對土壤細菌影響的優(yōu)勢程度為土壤有機氮gt;土壤含水量gt;土壤pH值gt;土壤溫度gt;土壤全氮gt;土壤有機質(zhì),對土壤真菌影響的優(yōu)勢程度為土壤含水量gt;土壤pH值gt;土壤有機氮gt;土壤溫度gt;土壤有機質(zhì)gt;土壤全氮。
參考文獻(References)
[1]
Ji X M, Liu M H, Yang J L, et al. Meta-analysis of the impact of freeze–thaw cycles on soil microbial diversity and C and N dynamics[J]. Soil Biology and Biochemistry,2022.
[2] Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86.
[3] 方圓, 王娓, 姚曉東, 等. 我國北方溫帶草地土壤微生物群落組成及其環(huán)境影響因素[J]. 北京大學(xué)學(xué)報(自然科學(xué)版), 2017, 53(1): 142-150.
FANG Yuan, WANG Wei, YAO Xiaodong, et al. Soil microbial community composition and environmental controls in northern temperate steppe of China[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(1): 142-150.
[4] 蔣雙龍, 胡玉福, 蒲琴, 等. 川西北高寒草地沙化過程中土壤氮素變化特征[J]. 生態(tài)學(xué)報, 2016, 36(15): 4644-4653.
JIANG Shuanglong, HU Yufu, PU Qin, et al. Changes in soil nitrogen characteristics during grassland desertification in Northwest Sichuan[J]. Acta Ecologica Sinica, 2016, 36(15): 4644-4653.
[5] Brooks P D, Grogan P, Templer P H, et al. Carbon and nitrogen cycling in snow-covered environments[J]. Geography Compass, 2011, 5(9): 682-699.
[6] Campbell J L, Ollinger S V, Flerchinger G N, et al. Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA[J]. Hydrological Processes, 2010, 24(17): 2465-2480.
[7] Muller S W. Permafrost; or, Permanently frozen ground and related engineering problems" [M]. Ann Arbor: J. W. Edwards, 1947
[8] 韓露, 萬忠梅, 孫赫陽. 凍融作用對土壤物理、化學(xué)和生物學(xué)性質(zhì)影響的研究進展[J]. 土壤通報, 2018, 49(3): 736-742.
HAN Lu, WAN Zhongmei, SUN Heyang. Research progress on the effects of freezing and thawing on soil physical, chemical and biological properties[J]. Chinese Journal of Soil Science, 2018, 49(3): 736-742.
[9] Finegold L. Molecular and biophysical aspects of adaptation of life to temperatures below the freezing point[J]. Advances in Space Research, 1996, 18(12): 87-95.
[10] 馬曉飛, 楚新正, 馬倩. 艾比湖地區(qū)融雪期梭梭和檉柳林地土壤酶活性研究[J]. 中國農(nóng)學(xué)通報, 2016, 32(14): 138-145.
MA Xiaofei, CHU Xinzheng, MA Qian. Soil enzyme activity of Haloxylon ammondendron and Tamarix chinensis forest land in ebinur lake region during snow melting period[J]. Chinese Agricultural Science Bulletin, 2016, 32(14): 138-145.
[11] 劉利. 季節(jié)性凍融對亞高山/高山森林土壤微生物多樣性的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2010.
LIU Li. Soil Bacterial Diversity in the Subalpine/Alpine Forests of Western Sichuan Affected by Seasonal Freeze-thaw Cycles[D]. Yaan: Sichuan Agricultural University, 2010.
[12]""" Sulkava P, Huhta V. Effects of hard frost and freeze-thaw cycles on decomposer communities and N mineralisation in boreal forest soil [J]. Applied Soil Ecology, 2003, 22(3): 225-239
[13] Hedges L V, Gurevitch J, Curtis P S. The meta-analysis of response ratios in experimental ecology[J]. Ecology," 1999, 80(4): 1150.
[14] 秦璐, 呂光輝, 何學(xué)敏. 艾比湖地區(qū)凍融作用對土壤微生物數(shù)量和群落結(jié)構(gòu)的影響[J]. 冰川凍土, 2013, 35(6): 1590-1599.
QIN Lu, LYU Guanghui, HE Xuemin. Effects of freezing-thawing on soil microbial quantity and community structure around the ebinur lake[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1590-1599.
[15] Greenland S. Quantitative methods in the review of epidemiologic literature[J]. Epidemiologic Reviews, 1987, 9: 1-30.
[16] 馬曉飛, 楚新正, 馬倩. 艾比湖地區(qū)凍融作用對梭梭群落土壤酶活性及微生物數(shù)量的影響[J]. 干旱區(qū)地理, 2015, 38(6): 1190-1201.
MA Xiaofei, CHU Xinzheng, MA Qian. Soil enzyme activity and microbial biomass of Haloxylon ammodendron community under freeze-thaw action[J]. Arid Land Geography, 2015, 38(6): 1190-1201.
[17] 楊曉. 北極新奧爾松地區(qū)土壤微生物多樣性初步分析[D]. 青島: 青島大學(xué), 2016.
YANG Xiao. Preliminary Analysis of Soil Microbial Diversity in Ny-Alesund, Arctic[D]. Qingdao: Qingdao University, 2016.
[18] 王鷺, 董小培, 張威, 等. 不同深度凍土微生物數(shù)量特征及其與土壤理化性質(zhì)的關(guān)系[J]. 冰川凍土, 2011, 33(2): 436-441.
WANG Lu, DONG Xiaopei, ZHANG Wei, et al. Quantitative characters of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology," 2011, 33(2): 436-441.
[19] 伍文憲, 張蕾, 黃小琴, 等. 川西北高寒牧區(qū)不同人工草地對土壤微生物多樣性影響[J]. 草業(yè)學(xué)報, 2019, 28(3): 29-41.
WU Wenxian, ZHANG Lei, HUANG Xiaoqin, et al. Difference in soil microbial diversity in artificial grasslands of the Northwest Plateau of Sichuan Province[J]. Acta Prataculturae Sinica, 2019, 28(3): 29-41.
[20] 王楠, 王傳寬, 邸雪穎, 等. 春季凍融期興安落葉松林土壤微生物的時間動態(tài)及其影響因子[J]. 應(yīng)用生態(tài)學(xué)報, 2019, 30(8): 2757-2766.
WANG Nan, WANG Chuankuan, DI Xueying, et al. Temporal dynamics and influencing factors of soil microbes in Larix gmelinii forest soil during spring freezing-thawing period[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2757-2766.
[21] 余炎炎, 李夢莎, 劉嘯林, 等. 大興安嶺典型永久凍土土壤細菌群落組成和多樣性[J]. 微生物學(xué)通報, 2020, 47(9): 2759-2770.
YU Yanyan, LI Mengsha, LIU Xiaolin, et al. Soil bacterial community composition and diversity of typical permafrost in Greater Khingan Mountains[J]. Microbiology China, 2020, 47(9): 2759-2770.
[22] 孫弘哲, 馬大龍, 臧淑英, 等. 大興安嶺多年凍土區(qū)不同林型土壤微生物群落特征[J]. 冰川凍土, 2018, 40(5): 1028-1036.
SUN Hongzhe, MA Dalong, ZANG Shuying, et al. Characteristics of soil microbial community structure under different forest types of permafrost regions in the Greater Khingan Mountains[J]. Journal of Glaciology and Geocryology, 2018, 40(5): 1028-1036.
[23] 車子涵, 陳克龍, 杜巖功, 等. 凍融凹陷對瓦顏山河源濕地土壤微生物群落結(jié)構(gòu)的影響[J]. 基因組學(xué)與應(yīng)用生物學(xué), 2023, 42(2): 204-216.
CHE Zihan, CHEN Kelong, DU Yangong, et al. Effect of freeze-thaw depression on soil microbial community structure in wayanshan Heyuan wetland[J]. Genomics and Applied Biology, 2023, 42(2): 204-216.
[24] 段亞楠, 劉恩太, 陳學(xué)森, 等. 凍融對老齡蘋果園土壤微生物數(shù)量及酶活性的影響[J]. 土壤, 2021, 53(1): 125-132.
DUAN Yanan, LIU Entai, CHEN Xuesen, et al. Effects of freezing-thawing on soil microbial quantities and enzymatic activities of old apple orchards[J]. Soils, 2021, 53(1): 125-132.
[25] 陳末, 朱新萍, 蔣靖佰倫, 等. 凍融期巴音布魯克高寒濕地土壤細菌群落變化及其響應(yīng)機制[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2020, 39(1): 134-142.
CHEN Mo, ZHU Xinping, JIANG Jingbailun, et al. Shifts in soil bacterial community and their response mechanism during freeze-thaw period in Bayinbuluk alpine wetland[J]. Journal of Agro-Environment Science, 2020, 39(1): 134-142.
[26] 林尤偉, 金光澤. 凍融期去根處理對小興安嶺6種林型土壤微生物量的影響[J]. 生態(tài)學(xué)報, 2016, 36(19): 6159-6169.
LIN Youwei, JIN Guangze. Effects of root resectioning on soil microbial biomass in six forest types in the Xiaoxing’an Mountains during freezing-thawing cycles[J]. Acta Ecologica Sinica, 2016, 36(19): 6159-6169.
[27] 張寶貴, 張威, 劉光琇, 等. 凍融循環(huán)對青藏高原腹地不同生態(tài)系統(tǒng)土壤細菌群落結(jié)構(gòu)的影響[J]. 冰川凍土, 2012, 34(6): 1499-1507.
ZHANG Baogui, ZHANG Wei, LIU Guangxiu, et al. Effect of freeze-thaw cycles on the soil bacterial communities in different ecosystem soils in the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(6): 1499-1507.
[28] 李君鋒, 楊建文, 楊婷婷, 等. 甘肅瑪曲高寒草甸土壤微生物季節(jié)變化特性的研究[J]. 草業(yè)科學(xué), 2012, 29(2): 189-197.
LI Junfeng, YANG Jianwen, YANG Tingting, et al. Seasonal dynamics of soil microbes and their relationship with soil physicochemical factors in alpine meadow in Maqu of Gansu[J]. Pratacultural Science, 2012, 29(2): 189-197.
[29] 關(guān)健飛, 曹陽. 黑龍江省表層凍土細菌群落結(jié)構(gòu)組成和功能特征[J]. 生態(tài)學(xué)報, 2020, 40(14): 4929-4941.
GUAN Jianfei, CAO Yang. Bacterial community structure analysis of surface frozen soil in Heilongjiang Province[J]. Acta Ecologica Sinica, 2020, 40(14): 4929-4941.
[30] 馬大龍, 劉夢洋, 陳泓碩, 等. 積雪覆蓋變化對大興安嶺多年凍土區(qū)土壤微生物群落結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報, 2020, 40(3): 789-799.
MA Dalong, LIU Mengyang, CHEN Hongshuo, et al. Effects of snow cover change on soil microbial community structure in permafrost region of Great Hing’an Mountains[J]. Acta Ecologica Sinica, 2020, 40(3): 789-799.
[31] 陳泓碩, 馬大龍, 姜雪薇, 等. 季節(jié)性凍融對扎龍濕地土壤微生物群落結(jié)構(gòu)和胞外酶活性的影響[J]. 環(huán)境科學(xué)學(xué)報, 2020, 40(4): 1443-1451.
CHEN Hongshuo, MA Dalong, JIANG Xuewei, et al. Effects of seasonal freeze-thaw on soil microbial community structures and extracellular enzyme activities in Zhalong wetland[J]. Acta Scientiae Circumstantiae, 2020, 40(4): 1443-1451.
[32] 李昌明, 張新芳, 趙林, 等. 青藏高原多年凍土區(qū)土壤需氧可培養(yǎng)細菌多樣性及群落功能研究[J]. 冰川凍土, 2012, 34(3): 713-725.
LI Changming, ZHANG Xinfang, ZHAO Lin, et al. Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 713-725.
[33] 張寶貴, 劉曉嬌, 吳青柏, 等. 青藏高原昆侖山埡口不同深度土壤可培養(yǎng)細菌群落特征研究[J]. 冰川凍土, 2016, 38(3): 776-784.
ZHANG Baogui, LIU Xiaojiao, WU Qingbai, et al. Research of the soil bacteria community characteristics at different depths in Kunlun Mountains Pass, Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2016, 38(3): 776-784.
[34] 董康, 李師翁, 康文龍, 等. 青藏公路沿線土壤微生物數(shù)量變化及其影響因素研究[J]. 冰川凍土, 2013, 35(2): 457-464.
DONG Kang, LI Shiweng, KANG Wenlong, et al. Study of the changes in microbe amount and its affect factors in the soils along the qinghai-tibet highway[J]. Journal of Glaciology and Geocryology, 2013, 35(2): 457-464.
[35] 張寶貴, 劉曉嬌, 劉敏, 等. 疏勒河上游不同退化類型凍土可培養(yǎng)細菌數(shù)量變化[J]. 生態(tài)學(xué)雜志, 2017, 36(10): 2886-2893.
ZHANG Baogui, LIU Xiaojiao, LIU Min, et al. Change of culturable bacterial quantity in different types of degraded permafrost in the upstream region of Shule River Basin[J]. Chinese Journal of Ecology, 2017, 36(10): 2886-2893.
[36] Song D D, Cui Y Q, Ma D L, et al. Spatial variation of microbial community structure and its driving environmental factors in two forest types in permafrost region of greater Xing’an Mountains[J]. Sustainability, 2022, 14(15): 9284.
[37] 胡霞, 尹鵬, 彭言劼, 等. 凍融交替下高山土壤微生物和礦質(zhì)氮庫對外源氮輸入的響應(yīng)[J]. 重慶師范大學(xué)學(xué)報(自然科學(xué)版), 2021, 38(4): 121-128.
HU Xia, YIN Peng, PENG Yanjie, et al. Response of mineral nitrogen pool and microorganism to external nitrogen input in alpine soil under freeze-thaw alternation[J]. Journal of Chongqing Normal University (Natural Science), 2021, 38(4): 121-128.
[38] 孫嘉鴻, 郭彤, 董彥民, 等. 凍融循環(huán)對金川泥炭沼澤土壤微生物量及群落結(jié)構(gòu)的影響[J]. 生態(tài)學(xué)報, 2022, 42(7): 2763-2773.
SUN Jiahong, GUO Tong, DONG Yanmin, et al. Effect of freezing and thawing on soil microbial biomass and community structure in Jinchuan peatlands[J]. Acta Ecologica Sinica," 2022, 42(7): 2763-2773.
[39] 張超凡, 盛連喜, 宮超, 等. 凍融作用對我國東北濕地土壤碳排放與土壤微生物的影響[J]. 生態(tài)學(xué)雜志, 2018, 37(2): 304-311.
ZHANG Chaofan, SHENG Lianxi, GONG Chao, et al. Effects of freeze-thaw cycles on soil microbial biomass carbon and carbon emissions from wetland soils, Northeast China[J]. Chinese Journal of Ecology, 2018, 37(2): 304-311.
[40] 薛燁飛. 季節(jié)性凍融對農(nóng)業(yè)排水渠濕地植物根系周圍底泥環(huán)境及微生物的影響[D]. 長春: 東北師范大學(xué), 2021.
XUE Yefei. Effects of seasonal freeze-thaw on the sediment environment and microbial communities around the roots of wetland plants in an agricultural drainage ditch[D]. Changchun: Northeast Normal University, 2021.
[41] 王奧. 季節(jié)性凍融對高山森林土壤微生物與生化特性的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2012.
WANG Ao. Effect of Seasonal Freeze-thaw on Soil Microbial and Biochemical Property in Alpine Forest Soil[D]. Yaan: Sichuan Agricultural University, 2012.
[42] 李淼, 馮海艷, 楊忠芳, 等. 中國典型凍土區(qū)土壤可培養(yǎng)細菌多樣性[J]. 微生物學(xué)報, 2011, 51(12): 1595-1604.
LI Miao, FENG Haiyan, YANG Zhongfang, et al. Diversity of culturable bacteria in the typical frozen soil areas in China[J]. Acta Microbiologica Sinica, 2011, 51(12): 1595-1604.
[43] 姜霽珊. 長白山土壤微生物對土壤基本理化性質(zhì)的響應(yīng)研究——凍融期不同林型[D]. 延吉: 延邊大學(xué), 2019.
JIANG Jishan. Response Study of Soil Microorganisms to Soil Basic Physical and Chemical Properties in Changbai Mountain[D]. Yanji: Yanbian University, 2019.
[44] 劉超, 王憲偉, 宋艷宇, 等. 增溫對凍土區(qū)泥炭沼澤土壤孔隙水甲烷關(guān)聯(lián)微生物和溶解性有機碳的影響[J]. 生態(tài)學(xué)報, 2021, 41(1): 184-193.
LIU Chao, WANG Xianwei, SONG Yanyu, et al. Effects of warming on abundances of methane-related microorganisms and concentration of dissolved organic carbon in soil pore water of permafrost peat swamp in Daxing’anling[J]." Acta Ecologica Sinica," 2021, 41(1): 184-193.
[45] 王艷發(fā), 魏士平, 崔鴻鵬, 等. 祁連山凍土區(qū)土壤活動層與凍土層中甲烷代謝微生物群落結(jié)構(gòu)特征[J]. 應(yīng)用與環(huán)境生物學(xué)報, 2016, 22(4): 592-598.
WANG Yanfa, WEI Shiping, CUI Hongpeng, et al. Methane metabolic microbial community structure in the active layer and the permafrost layer of the Qilian permafrost, China[J]. Chinese Journal of Applied and Environmental Biology, 2016, 22(4): 592-598.
[46] 孫秦川. 青藏高原凍土區(qū)石油污染對土壤微生物多樣性的影響研究[D]. 蘭州: 蘭州交通大學(xué), 2017.
SUN Qinchuan. Effects of Oil Pollution on Soil Microbial Diversity in the Qinghai-tibet Plateau Permafrost Regions[D]. Lanzhou: Lanzhou Jiatong University, 2017.
[47] 吳明輝, 瞿德業(yè), 李婷, 等. 祁連山疏勒河源區(qū)凍土退化對土壤微生物生物量碳氮的影響[J]. 地理科學(xué), 2021, 41(1): 177-186.
WU Minghui, QU Deye, LI Ting, et al. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains[J]. Scientia Geographica Sinica," 2021, 41(1): 177-186.
[48] 胡維剛. 昆侖山埡口深層多年凍土微生物多樣性及構(gòu)建機制研究[D]. 蘭州: 蘭州大學(xué), 2016.
HU Weigang. Microbial Diversity And Community Assembly in Permafrost Soils from The Kunlun Mountain Pass[D]. Lanzhou: Lanzhou University, 2016.
[49] 譚波, 吳福忠, 秦嘉勵, 等. 川西亞高山、高山森林土壤微生物生物量和酶活性動態(tài)特征[J]. 生態(tài)環(huán)境學(xué)報, 2014, 23(8): 1265-1271.
TAN Bo, WU Fuzhong, QIN Jiali, et al. Dynamics of soil microbial biomass and enzyme activity in the subalpine/alpine forests of western Sichuan[J]. Ecology and Environmental Sciences, 2014, 23(8): 1265-1271.
[50] 譚波. 長江上游不同海拔代表性森林土壤動物對凋落葉分解的影響[D]. 雅安: 四川農(nóng)業(yè)大學(xué), 2013.
TAN Bo. Effects of Soil Fauna on Forest Litter Decomposition in the Upper Reaches of the Yangtze River[D]. Yaan: Sichuan Agricultural University, 2013.
[51] Sorensen P O, Finzi A C, Giasson M A, et al. Winter soil freeze-thaw cycles lead to reductions in soil microbial biomass and activity not compensated for by soil warming[J]. Soil Biology and Biochemistry," 2018, 116: 39-47.
[52] Grant J, Konrad K, Fereidoun R, et al. Microbial community compositional stability in agricultural soils during freeze-thaw and fertilizer stress[J]. Frontiers in Environmental Science, 2022, 10.
[53] Meisner Annelein, Basten L, Snoek, et al. Soil microbial legacies differ following drying rewetting and freezing-thawing cycles[J]. The ISME Journal, 2021, 15(4): 1207-1221.
[54] Tsunehiro Watanabe, Ryunosuke Tateno, Shogo Imada, et al. The effect of a freeze-thaw cycle on dissolved nitrogen dynamics and its relation to dissolved organic matter and soil microbial biomass in the soil of a northern hardwood forest[J]. Biogeochemistry, 2019, 142(3): 319-338.
[55] Hu X, Yin P, Nong X, et al. Effect of exogenous carbon addition and the freeze-thaw cycle on soil microbes and mineral nitrogen pools1[J]. IOP Conference Series: Earth and Environmental Science, 2018, 108: 032046.
[56] Wu H, Dannenmann M, Wolf B, et al. Seasonality of soil microbial nitrogen turnover in continental steppe soils of Inner Mongolia[J]. Ecosphere, 2012, 3(4): 1-18.
[57] Gilichinsky D A. Permafrost model of extraterrestrial habitat[M]. Horneck G, Baumstark-Khan C. Astrobiology. Berlin, Heidelberg: Springer, 2002: 125-142.
[58] 周璟, 盛紅梅, 安黎哲. 極端微生物的多樣性及應(yīng)用[J]. 冰川凍土, 2007, 29(2): 286-291.
ZHOU Jing, SHENG Hongmei, AN Lizhe. Diversity of extremophilic miroorganisms and their applications[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 286-291.
[59] 楊思忠, 金會軍, 魏智, 等. 微生物對凍土生境的適應(yīng)以及對全球變化和寒區(qū)工程擾動的響應(yīng): 進展與展望[J]. 冰川凍土, 2007, 29(2): 279-285.
YANG Sizhong, JIN Huijun, WEI Zhi, et al. Microbial adaptation to the habitat of permafrost and their responses to global change and engineering disturbance in cold regions: advances and prospects[J]. Journal of Glaciology and Geocryology, 2007, 29(2): 279-285.
[60] Chu H Y, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environmental Microbiology, 2010, 12(11): 2998-3006.
[61] Larsen K S, Jonasson S, Michelsen A. Repeated freeze–thaw cycles and their effects on biological processes in two Arctic ecosystem types[J]. Applied Soil Ecology, 2002, 21(3): 187-195.
[62] 張立新, 韓文玉, 顧同欣. 凍融過程對景電灌區(qū)草窩灘盆地土壤水鹽動態(tài)的影響[J]. 冰川凍土, 2003, 25(3): 297-302.
ZHANG Lixin, HAN Wenyu, GU Tongxin. The influence of freezing and thawing on the moisture-salt activity of soil in caowotan basin of jingdian irrigated area[J]. Journal of Glaciology and Geocryology," 2003, 25(3): 297-302.
[63] 楊思忠, 金會軍. 凍融作用對凍土區(qū)微生物生理和生態(tài)的影響[J]. 生態(tài)學(xué)報, 2008, 28(10): 5065-5074.
YANG Sizhong, JIN Huijun. Physiological and ecological effects of freezing and thawing processes on microorganisms in seasonally-froze ground and in permafrost[J]. Acta Ecologica Sinica," 2008, 28(10): 5065-5074.
[64] Mazur P. Cryobiology: the freezing of biological systems[J]. Science, 1970, 168(3934): 939-949.
[65] 楊玉蓮, 吳福忠, 何振華, 等. 雪被去除對川西高山冷杉林冬季土壤微生物生物量碳氮和可培養(yǎng)微生物數(shù)量的影響[J]. 應(yīng)用生態(tài)學(xué)報, 2012, 23(7): 1809-1816.
YANG Yulian, WU Fuzhong, HE Zhenhua, et al. Effects of snow pack removal on soil microbial biomass carbon and nitrogen and the number of soil culturable microorganisms during wintertime in alpine Abies faxoniana forest of western Sichuan, Southwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1809-1816.
[66] Jiang L, Yue K, Yang Y. l.Leaching and freeze-thaw events contribute to litter decomposition a review[J]. Sains Malaysiana, 2016, 45(7): 1041-1047.
[67] Groffman P M, Drisoll C T. Effects of mild winter freezing on soil nitrmgen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 191-213.
[68] 吳金水, 林啟美, 黃巧云. 土壤微生物生物量測定方法及其應(yīng)用[M]. 北京: 氣象出版社, 2006.
WU Jinshui, LIN Qimei, HUANG Qiaoyun.. Determination method of soil microbial biomass and its application[M]. Beijing: China Meteorological Press, 2006.
[69] 康貽軍, 胡健, 董必慧, 等. 灘涂鹽堿土壤微生物生態(tài)特征的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2007, 26(S1): 181-183.
KANG Yijun, HU Jian, DONG Bihui, et al. Microbial characters of a Salina-alkali soil in coastal wetland[J]. Journal of Agro-Environment Science, 2007, 26(S1): 181-183.
[70] Tripathi S, Chakraborty A, Chakrabarti K, et al. Enzyme activities and microbial biomass in coastal soils of India[J]. Soil Biology and Biochemistry, 2007, 39(11): 2840-2848.
[71] 王飛. 鹽分對土壤微生物多樣性及土壤有機物轉(zhuǎn)化的影響[D]. 石河子: 石河子大學(xué), 2011.
WANG Fei. Study on Soil Microbial Molecular Diversity and Organic Matter Transformation under Soil Salinization Condition[D]. Shihezi: Shihezi University, 2011.
Meta-analysis of influencing factors on soil microbial population in seasonal freeze-thaw period
YANG Yuefa1, 2,WANG Chunxia1, 2,LIANG Fei3,LAN Mingju1
(1. College of Water Conservancy amp; Architectural Engineering, Shihezi University, Shihezi Xinjiang 832000, China; 2. Key Laboratory of Modern Water-Saving Irrigation of XPCC, Shihezi" Xinjiang 832000, China;3.ILi Normal University, Yining Xinjiang 835012, China )
Abstract:【Objective】 To investigate the factors influencing soil bacterial and fungal populations during the seasonal freeze-thaw period.
【Methods】" The experimental data of relevant soil seasonal freeze-thaw periods were collected through the databases of China Knowledge Network and Web of Science, and the quality of the extracted literature was evaluated according to the exclusion and inclusion criteria and using the Newcastle-Ottawa Scale (NOS) evaluation criteria, and those with scores ≥6 and high quality were included in the study, and RevMan 5.4 was used for Meta-analysis.
【Results】" The final 42 papers met the inclusion criteria, among which, 7 were SCI articles and 27 were CSCD articles.The analysis showed that soil water content had the most significant effect on soil bacteria during the seasonal freeze-thaw period; soil pH had the most significant effect on soil fungi, and soil organic matter had the least significant effect on soil bacteria and fungi.During the seasonal freeze-thaw period, soil organic nitrogen had the most dominant effect on soil bacteria soil water content had the most dominant effect on soil fungi.
【Conclusion】" Soil pH and soil water content play a decisive role in soil bacteria and fungi during the seasonal freeze-thaw period.
Key words:Meta-analysis; soil bacteria; soil fungus; seasonal freeze-thaw
Fund projects:Southern Xinjiang Key Industries Innovation Development Support Program(2021DB012,2022DB020); The National Natural Science Foundation of China Project (U1803244)
Correspondence author: WANG Chunxia(1979-), female, from Yuncheng, Shandong, professor, research direction: water-saving irrigation theory and technology,(E-mail)410443356@qq.com