doi:10.6048/j.issn.1001-4330.2024.05.027
摘" 要:【目的】驗(yàn)證雞環(huán)狀RNA(circMICAL2)的真實(shí)性,研究circMICAL2在雞肌肉生長(zhǎng)發(fā)育中的潛在功能及調(diào)控機(jī)制。
【方法】基于circMICAL2環(huán)狀序列設(shè)計(jì)特異性引物采用PCR擴(kuò)增完成其真實(shí)性驗(yàn)證,并測(cè)定RNase R和放線菌素D處理檢測(cè)circMICAL2的內(nèi)源穩(wěn)定性。采集16日齡三黃雞(雛雞)和180日齡三黃雞(成年雞)的心臟、肝臟、肺、腎臟、腸、皮膚、胸肌和腿肌等8個(gè)組織樣本,采用實(shí)時(shí)熒光定量PCR(qRT-PCR)分析circMICAL2在雞不同發(fā)育時(shí)期的組織表達(dá)圖譜;運(yùn)用生物信息學(xué)對(duì)circMICAL2靶向miRNA和mRNA進(jìn)行預(yù)測(cè),并開展GO功能和KEGG通路富集分析。
【結(jié)果】雞circMICAL2真實(shí)存在,其環(huán)化穩(wěn)定性強(qiáng);circMICAL2在成年雞和雛雞各組織中廣泛表達(dá),且circMICAL2均在成年雞和雛雞的胸肌和腿肌肌肉中表達(dá)量最高,circMICAL2在成年雞腿肌和胸肌中的表達(dá)量均顯著高于雛雞(Plt;0.05),circMICAL2與雞肌肉生長(zhǎng)發(fā)育調(diào)控密切相關(guān)。circMICAL2可靶向gga-miR-103-3p和gga-miR-130b-3p,調(diào)控下游225個(gè)潛在靶基因。circMICAL2的靶基因主要富集于TGF-β信號(hào)通路、MAPK信號(hào)通路、細(xì)胞周期等相關(guān)信號(hào)通路。
【結(jié)論】雞circMICAL2真實(shí)存在,circMICAL2的表達(dá)對(duì)雞不同生長(zhǎng)發(fā)育時(shí)期肌肉的生長(zhǎng)具有重要調(diào)控作用。
關(guān)鍵詞:環(huán)狀RNA;肌肉;雞;組織表達(dá);生長(zhǎng)發(fā)育
中圖分類號(hào):S831""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號(hào):1001-4330(2024)05-1284-08
收稿日期(Received):
2023-09-28
基金項(xiàng)目:
四川省科技計(jì)劃-重點(diǎn)研發(fā)項(xiàng)目(2022YFN0039);樂山師范學(xué)院科技計(jì)劃項(xiàng)目(DGZZ202002,22HX00051)
作者簡(jiǎn)介:
古麗帕日·艾克拜(1998-),女,新疆吐魯番人,碩士研究生,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,(E-mail)1310784945@qq.com
通訊作者:
劉武軍(1966- ),女,河南鹿邑人,教授,博士,碩士生/博士生導(dǎo)師,研究方向?yàn)閯?dòng)物遺傳育種與繁殖,(E-mail)lwj_ws@163.com
王鋼(1979-),男,重慶綦江人,教授,研究方向?yàn)閯?dòng)物疫病監(jiān)測(cè)與防控、養(yǎng)殖業(yè)廢棄物處理與利用,(E-mail)Lswanggang@163.com
0" 引 言
【研究意義】禽肉是我國(guó)第二大肉類消費(fèi)品[1]。環(huán)狀RNA(circular RNA,circRNA)是廣泛存于生物體的一類內(nèi)源性非編碼RNA(non-coding RNA,ncRNA)。circRNA可分為四類:外顯子環(huán)狀RNA、內(nèi)含子環(huán)狀RNA、外顯子-內(nèi)含子環(huán)狀RNA及基因間區(qū)環(huán)狀RNA[2-3]。circRNA廣泛存在于人、動(dòng)物以及植物體內(nèi)[4-5]。已證實(shí)circRNA在畜禽組織發(fā)育[6]、細(xì)胞分化[7]等具有重要的調(diào)控作用?!厩叭搜芯窟M(jìn)展】circRNA是動(dòng)物肌肉生長(zhǎng)發(fā)育過程中的關(guān)鍵調(diào)控因子,通過與miRNA結(jié)合調(diào)控肌細(xì)胞的增殖與凋亡[8]。circSVIL通過使miR-17-3pa海綿化促進(jìn)牛成肌細(xì)胞增殖和分化,抑制成肌細(xì)胞的凋亡[9]。circFgfr2、circQrich1、circMettl9和circCamta1在小鼠骨骼肌發(fā)育和肌母細(xì)胞分化過程中差異表達(dá),其中circFgfr2具有促進(jìn)小鼠肌肉生長(zhǎng)發(fā)育及肌肉再生的調(diào)控作用[10]。雞circRBFOX2.2-3和circRBFOX2.2-4可抑制miR-206活性,促進(jìn)雞成肌細(xì)胞的增殖和分化,調(diào)控雞肌肉發(fā)育[11]。Zhao等[12]研究發(fā)現(xiàn),雞circCCDC91可作為miRNA-3家族的海綿激活I(lǐng)GF15-PI1K/AKT信號(hào)通路,促進(jìn)雞肌細(xì)胞增殖和分化。【本研究切入點(diǎn)】以前期在高通量測(cè)序中篩選獲得在雞胸肌中顯著上調(diào)的circMICAL2為雞肌肉生長(zhǎng)發(fā)育調(diào)控候選環(huán)狀RNA,需驗(yàn)證和分析雞circMICAL2組織表達(dá)譜和circMICAL2靶向miRNA和mRNA預(yù)測(cè)及功能?!緮M解決的關(guān)鍵問題】采用PCR擴(kuò)增完成雞circMICAL2真實(shí)性鑒定,并運(yùn)用RNase R和放線菌素D處理檢測(cè)circMICAL2的內(nèi)源穩(wěn)定性。鑒定雞circMICAL2真實(shí)性,在雞不同發(fā)育時(shí)期分析circMICAL2組織表達(dá)譜,并運(yùn)用生物信息學(xué)分析雞circMICAL2潛在靶向miRNA與mRNA預(yù)測(cè)及功能,研究circMICAL2在雞肌肉生長(zhǎng)發(fā)育調(diào)控中的分子功能,為雞肌肉生長(zhǎng)發(fā)育的分子調(diào)控機(jī)制闡釋提供理論基礎(chǔ)。
1" 材料與方法
1.1" 材 料
1.1.1" 雞 只
試驗(yàn)分別選取3只16日齡三黃雞(雛雞)和180日齡三黃雞(成年雞)作為研究對(duì)象,統(tǒng)一飼養(yǎng)管理。戊巴比妥鈉麻醉后放血屠宰,分別采集心臟、肝臟、肺、腎臟、腸、皮膚、胸肌和腿肌8個(gè)組織,用錫紙包裹,液氮速凍后于-80℃保存?zhèn)溆谩?/p>
1.1.2" 主要試劑
Trizol,美國(guó)試劑賽默飛世爾科技公司;反轉(zhuǎn)錄試劑盒PrimeScriptTMRT reagent Kit(Takara),寶日醫(yī)生物技術(shù)(北京)有限公司;SuperReal PreMix Color(SYBR Green),天根生化科技(北京)有限公司;防線菌素D ,歐克生命科學(xué);RNase R、RNA純化試劑盒,默克科技公司;瓊脂糖,北京全式金生物技術(shù)有限公司;DMEM/F12培養(yǎng)基、胎牛血清,阿勒山(廣州)生物科技有限公司等。
1.1.3" 主要儀器
SimpliAmpTM Thermal Cycler PCR儀、細(xì)胞CO2培養(yǎng)箱,賽默飛世爾科技公司;qTOWER3實(shí)時(shí)熒光定量PCR儀,德國(guó)耶拿公司;凝膠成像系統(tǒng)及掃描儀,廣州佰圖生物科技有限公司;高速冷凍離心機(jī),上海盧湘儀離心機(jī)儀器有限公司;Nano-100微量分光光度計(jì),杭州奧盛儀器有限公司;水平電泳槽電泳儀,北京六一生物科技有限公司等。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
雞原代成肌細(xì)胞分離、培養(yǎng)及分化:取11日齡雞胚進(jìn)行原代肌細(xì)胞分離,在無菌條件下處死并采集腹部肌肉組織,用加入雙抗的PBS沖洗肌肉組織3次并剪碎。將肌肉組織碎片置于胰蛋白酶的離心管中,在37°C的搖床上消化90 min,用完全培養(yǎng)基(含有20%胎牛血清DMEM/F12培養(yǎng)基)終止消化。使用70 μm過濾網(wǎng)過濾,濾液1 000 r/min離心5 min,棄上清。底層細(xì)胞用完全培養(yǎng)基進(jìn)行重懸,最后將細(xì)胞鋪到無菌細(xì)胞培養(yǎng)皿中,置于37 °C、5% CO2培養(yǎng)箱中培養(yǎng)。培養(yǎng)1 h后用無菌PBS清洗,移去未貼壁細(xì)胞。每12 h用顯微鏡觀察細(xì)胞形態(tài),待細(xì)胞匯合度達(dá)到90%以上時(shí)傳代培養(yǎng)。
1.2.2" 總RNA提取與cDNA合成
取各組織樣品約100 mg,勻漿后用TRIzol法完成總RNA提取,用1.5%瓊脂糖凝膠電泳和Nano-100微量分光光度計(jì)分別驗(yàn)證總RNA的完整性、濃度及純度,質(zhì)檢合格的RNA,-80℃保存?zhèn)溆?。利用PrimeScriptTMRT reagent kit(Takara)反轉(zhuǎn)錄試劑盒進(jìn)行RNA的反轉(zhuǎn)錄,獲得cDNA模板。
1.2.3" 引物設(shè)計(jì)、合成與DNA測(cè)序
基于高通量測(cè)序獲得circMICAL2序列信息,采用NCBI數(shù)據(jù)庫(kù)Primer-BLAST 引物設(shè)計(jì)工具(https://www.ncbi.nlm.nih.gov/tools/primer-blast)完成雞circMICAL2驗(yàn)證特異性擴(kuò)增引物設(shè)計(jì),包括正向引物和反向引物,線性MICAL2基因采用正向引物進(jìn)行PCR擴(kuò)增。PCR擴(kuò)增產(chǎn)物經(jīng)1.5%瓊脂糖凝膠電泳檢測(cè),獲得PCR擴(kuò)增目的片段送成都擎科生物科技有限公司測(cè)序。表1,圖1
1.2.4" circMICAL2的RNase R處理
根據(jù)RNase R說明書要求,將3 U/μg的RNase R與5μg的總RNA混合,在37℃下孵育15分鐘,反應(yīng)產(chǎn)物使用微量RNA純化試劑盒純化,并反轉(zhuǎn)錄為cDNA,采用反向引物進(jìn)行qRT-PCR檢測(cè)circMICAL2和線性MICAL2基因豐度變化。
1.2.5" circMICAL2內(nèi)源穩(wěn)定性檢測(cè)(放線菌素D處理)
在原代肌細(xì)胞培養(yǎng)基中以2 μg/mL的濃度添加放線菌素D,分別在0、4、8、12 h培養(yǎng)后收取細(xì)胞提取總RNA,去除基因組DNA,反轉(zhuǎn)錄合成cDNA,采用qRT-PCR分別以反向引物對(duì)檢測(cè)circMICAL2和線性MICAL2基因表達(dá),對(duì)比分析circMICAL2和線性MICAL2基因的半衰期。
1.2.6" circMICAL2組織表達(dá)譜
采用qRT-PCR以反向引物對(duì)circMICAL2進(jìn)行組織表達(dá)譜分析,GAPDH為內(nèi)參。反應(yīng)體系:2×SuperReal Color PreMix 10 μL;上、下游引物各1 μL;cDNA模板1 μL;加dd H2O至7 μL。反應(yīng)條件:95℃預(yù)變性15 min,95℃變性10 s,56℃退火30 s,72℃延伸30 s,總40個(gè)循環(huán),每個(gè)循環(huán)檢測(cè)熒光強(qiáng)度,qRT-PCR結(jié)束后根據(jù)熔解曲線檢測(cè)PCR產(chǎn)物的特異性,基因表達(dá)結(jié)果采用比較Ct值法(2-△△Ct)進(jìn)行分析,每個(gè)樣本重復(fù)3次。
1.2.7" circMICAL2靶向miRNA與基因預(yù)測(cè)與功能富集
使用targetscan 8.0和miRanda(www.bioinformatics.com.cn)軟件對(duì)circMICAL2靶向miRNA及下游基因結(jié)合位點(diǎn)進(jìn)行預(yù)測(cè)分析,利用Cytoscape 3.9.1構(gòu)建circMICAL2-miRNA-mRNA網(wǎng)絡(luò)互作圖的制作,并采用DAVID(https://david.ncifcrf.gov)軟件對(duì)circMICAL2靶基進(jìn)行GO和KEGG富集分析。
1.3" 數(shù)據(jù)處理
運(yùn)用GraphPad軟件對(duì)兩組間circMICAL2表達(dá)差異進(jìn)行獨(dú)立樣本t檢驗(yàn)并繪圖,Plt;0.05表示統(tǒng)計(jì)意義上的差異顯著。
2" 結(jié)果與分析
2.1" 雞circMICAL2的鑒定
研究表明,以cDNA為模板時(shí),正向引物和反向引物分別擴(kuò)增出224 bp和348 bp目的條帶,且條帶清晰明亮;以基因組DNA(gDNA)為模板時(shí),僅正向引物可擴(kuò)增出目的條帶,且條帶明亮。結(jié)果證明雞circMICAL2反向成環(huán)真實(shí)存在。雞circMICAL2的閉合環(huán)狀結(jié)構(gòu)。圖2,圖3
2.2" circMICAL2的穩(wěn)定性檢測(cè)
研究表明,經(jīng)RNase R酶消化處理組circMICAL2基因豐度與對(duì)照組相比無顯著差異(Pgt;0.05),RNase R酶消化處理組線性MICAL2基因豐度極顯著低于對(duì)照組(Plt;0.01),雞circMICAL2環(huán)狀結(jié)構(gòu)對(duì)RNase R酶消化具有較強(qiáng)的抗性,雞circMICAL2真實(shí)存在。圖4
circMICAL2和線性MICAL2基因的表達(dá)隨著放線菌素D處理時(shí)間的增長(zhǎng),circMICAL2和線性MICAL2基因的表達(dá)豐度均逐漸降低,但每個(gè)檢測(cè)時(shí)間點(diǎn)circMICAL2表達(dá)豐度高于線性MICAL2基因,circMICAL2內(nèi)源穩(wěn)定較強(qiáng)。圖5
2.3" circMICAL2雞不同組織中的表達(dá)
研究表明,circMICAL2在成年雞和雛雞各組織中均有表達(dá),其中在成年雞和雛雞胸肌和腿肌肌肉中的表達(dá)量均高于其他組織。circMICAL2在成年雞胸肌中的表達(dá)量顯著高于雛雞(Plt;0.05),在成年雞腿肌中的表達(dá)量顯著高于雛雞(Plt;0.05),在成年雞心臟中的表達(dá)量顯著高于雛雞(Plt;0.05)。circMICAL2在雞肌肉生長(zhǎng)發(fā)育的過程中發(fā)揮著重要作用。圖6
2.4" circMICAL2功能預(yù)測(cè)
研究表明,circMICAL2與gga-miR-103-3p和gga-miR-130b-3p具有靶向作用,其中g(shù)ga-miR-103-3p具有178個(gè)潛在靶基因,gga-miR-130b-3p具有47個(gè)潛在靶基因。圖7
共鑒定了49個(gè)顯著富集GO條目,包括了13個(gè)細(xì)胞成分、18個(gè)生物學(xué)過程和18個(gè)分子功能生物進(jìn)程上,主要富集于調(diào)控RNA聚合酶Ⅱ基因啟動(dòng)子的轉(zhuǎn)錄(GO:0006357~regulation of transcription from RNA polymerase II promoter)、細(xì)胞內(nèi)訊息傳遞(GO:0035556~intracellular signal transduction)、細(xì)胞核(GO:0005634~nucleus)、細(xì)胞質(zhì)(GO:0005737~cytoplasm)、細(xì)胞溶質(zhì)(GO:0005829~cytosol)金屬離子結(jié)合(GO:0046872~metal ion binding)、蛋白質(zhì)絲氨酸/蘇氨酸激酶活性(GO:0004674~protein serine/threonine kinase activity)等。圖8
circMICAL2 的靶基因顯著富集于8條信號(hào)通路,包括MAPK信號(hào)通路(gga04010:MAPK signaling pathway)、TGF-β信號(hào)通路(gga04350:TGF-beta signaling pathway)、細(xì)胞周期(gga04110:Cell cycle)、卵母細(xì)胞成熟抑制因子(gga04114:Oocyte meiosis)等。圖9
3" 討 論
3.1
circRNA不僅與人類疾病密切相關(guān),circRNA還在牛、豬、雞等經(jīng)濟(jì)動(dòng)物生長(zhǎng)發(fā)育、機(jī)體代謝以及繁殖形狀等方面發(fā)揮著重要作用[13-15]。circRNA在動(dòng)物肌肉生長(zhǎng)發(fā)育過程中起著重要的調(diào)控作用,circRNA可通過與肌肉特異性miRNA相互作用,從而參與肌肉生長(zhǎng)發(fā)育的調(diào)控,影響肌肉代謝及細(xì)胞能量水平[16-17]。Wei等[18]研究指出circLMO7作為miR-378a-3p的競(jìng)爭(zhēng)性內(nèi)源RNA參與牛肌肉發(fā)育,circLMO7的過度表達(dá)會(huì)抑制牛原代成肌細(xì)胞的分化。Liu等[19]研究指出綿羊骨骼肌發(fā)育同樣與circRNA調(diào)控有關(guān),其中circCHRNG作為miR-133海綿上調(diào)血清應(yīng)答因子(SRF)和心肌細(xì)胞特異性增強(qiáng)因子2A(MEF2A)的表達(dá)水平,從而促進(jìn)羊成肌細(xì)胞增殖。circRNA同樣在雞肌肉生長(zhǎng)發(fā)育過程中發(fā)揮著重要調(diào)控作用。circRBFOX2s可以吸附miR-206來促進(jìn)雞成肌細(xì)胞增殖,具有調(diào)控雞肌肉生長(zhǎng)的作用[20]。circACLY消除gga-miR-6660-3p對(duì)靜原雞成肌細(xì)胞增殖和分化的抑制,從而促進(jìn)靜原雞成肌細(xì)胞的增殖和分化[21]。余嬌等[22]研究指出,circ-ZBTB10在肌肉組織中高表達(dá),是雞肌肉生長(zhǎng)發(fā)育過程中的重要調(diào)控因子。研究驗(yàn)證了circMICAL2的真實(shí)性,circMICAL2組織表達(dá)譜分析表明circMICAL2在在成年雞和雛雞的胸肌和腿肌肌肉中表達(dá)量較高,且circMICAL2在雞不同生長(zhǎng)發(fā)育時(shí)期肌肉中的表達(dá)量具有顯著差異,circMICAL2對(duì)雞肌肉生長(zhǎng)發(fā)育具有調(diào)控作用。
3.2
circRNA具有miRNA結(jié)合位點(diǎn),可以作為miRNA海綿競(jìng)爭(zhēng)性地結(jié)合miRNA調(diào)控下游靶基因的表達(dá),從而發(fā)揮生物學(xué)作用。試驗(yàn)研究了circMICAL2靶向miRNA以及靶基因預(yù)測(cè),分析circMICAL2可能存在的生物學(xué)功能。結(jié)果表明,circMICAL2靶向的miRNA分別為gga-miR-103-3p和gga-miR-130b-3p,并預(yù)測(cè)得到225個(gè)潛在靶基因。miR-103在動(dòng)物肌細(xì)胞的增殖方面具有重要的調(diào)控作用,miR-103在牛骨骼肌衛(wèi)星細(xì)胞分化的過程中表達(dá)量上調(diào),具有促進(jìn)牛骨骼肌衛(wèi)星細(xì)胞的作用[23]。miR-130b能夠通過靶向Sp1轉(zhuǎn)錄因子促進(jìn)小鼠肌源分化,在骨骼肌再生和肌病進(jìn)展中發(fā)揮作用[24]。miR-130b-3p負(fù)調(diào)控Rb1cc1在雞原代成肌細(xì)胞分化中的表達(dá),從而促進(jìn)雞肌肉生長(zhǎng)發(fā)育[25]。后續(xù)研究中應(yīng)進(jìn)一步探討circMICAL2與gga-miR-103-3p和gga-miR-130b-3p調(diào)控關(guān)系,基于miRNA下游調(diào)控靶基因闡釋circMICAL2在雞肌肉生長(zhǎng)發(fā)育中的調(diào)控作用。通過對(duì)circMICAL2下游225個(gè)潛在靶基因的KEGG富集分析得出,circMICAL2的下游靶基因主要富集于TGF-β信號(hào)通路(TGF-beta signaling pathway)、MAPK信號(hào)通路(MAPK signaling pathway)、細(xì)胞周期(Cell cycle)等通路。值得注意的是轉(zhuǎn)化生長(zhǎng)因子-β(TGF-β)信號(hào)通路對(duì)肌肉的生長(zhǎng)發(fā)育影響顯著,TGF-β信號(hào)通路在骨骼肌生長(zhǎng)發(fā)育調(diào)節(jié)中起著重要的作用[26]。TCEA3通過Annexin A1激活TGF-β信號(hào)通路從而促進(jìn)小鼠成肌細(xì)胞的分化[27]。TGF-β家族成員肌肉生長(zhǎng)抑制素(MSTN)在牛骨骼肌中高表達(dá),敲除MSTN時(shí)可以促進(jìn)牛肌肉衛(wèi)星細(xì)胞的增殖[28]。MAPK信號(hào)通路已被證實(shí)參與調(diào)節(jié)豬、大鼠成肌細(xì)胞的增殖和分化[29- 30]。另外,MAPK通路同樣被證實(shí)參與雞骨骼肌生長(zhǎng)發(fā)育調(diào)節(jié)[31]。
4" 結(jié) 論
雞circMICAL2真實(shí)存在,circMICAL2在雞的肌肉組織(胸肌和腿?。┲懈弑磉_(dá),成年雞胸肌和腿肌中circMICAL2表達(dá)水平均顯著高于雛雞(P<0.05)。circMICAL2靶向gga-miR-130b-3p和gga-miR-103-3p,且調(diào)控下游225個(gè)潛在靶基因。KEGG富集分析發(fā)現(xiàn)circMICAL2可能通過TGF-β和MAPK信號(hào)通路調(diào)控雞肌肉生長(zhǎng)發(fā)育。circMICAL2在雞肌肉生長(zhǎng)發(fā)育過程中發(fā)揮著重要的調(diào)控作用。
參考文獻(xiàn)(References)
[1]
李向陽(yáng), 張莉. 2021年中國(guó)禽肉市場(chǎng)回顧及 “十四五” 時(shí)期展望[J]. 農(nóng)業(yè)展望, 2022, 18(1): 33-39.
LI Xiangyang, ZHANG Li. Review on China’s poultry market in 2021 and its outlook for the 14th five-year plan period[J]. Agricultural Outlook, 2022, 18(1): 33-39.
[2] 鄧小英, 劉圣林, 胡浩, 等. CircRNA翻譯功能的研究進(jìn)展及問題[J]. 生理科學(xué)進(jìn)展, 2022, 53(3): 234-238.
DENG Xiaoying, LIU Shenglin, HU Hao, et al. Research advances and problems on the translation functions of CircRNA[J]. Progress in Physiological Sciences, 2022, 53(3): 234-238.
[3] Bahn J H, Zhang Q, Li F, et al. The landscape of microRNA, Piwi-interacting RNA, and circular RNA in human saliva[J]. Clinical Chemistry, 2015, 61(1): 221-230.
[4] Rochow H, Franz A, Jung M, et al. Instability of circular RNAs in clinical tissue samples impairs their reliable expression analysis using RT-qPCR: from the myth of their advantage as biomarkers to reality[J]. Theranostics, 2020, 10(20): 9268-9279.
[5] Xie M Y, Yu T, Jing X M, et al. Exosomal circSHKBP1 promotes gastric cancer progression via regulating the miR-582-3p/HUR/VEGF axis and suppressing HSP90 degradation[J]. Molecular Cancer, 2020, 19(1): 112.
[6] Rybak-Wolf A, Stottmeister C, Gla?ar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed[J]. Molecular Cell, 2015, 58(5): 870-885.
[7] Peng W, Zhu S X, Chen J L, et al. Hsa_circRNA_33287 promotes the osteogenic differentiation of maxillary sinus membrane stem cells via miR-214-3p/Runx3[J]. Biomedicine amp; Pharmacotherapy = Biomedecine amp; Pharmacotherapie, 2019, 109: 1709-1717.
[8] Cai B L, Ma M T, Zhou Z, et al. circPTPN4 regulates myogenesis via the miR-499-3p/NAMPT axis[J]. Journal of Animal Science and Biotechnology," 2022, 13(1): 2.
[9] Yue B L, Yang H Y, Wu J Y, et al. circSVIL regulates bovine myoblast development by inhibiting STAT1 phosphorylation[J]. Science China Life Sciences, 2022, 65(2): 376-386.
[10] Yan J Y, Yang Y L, Fan X H, et al. circRNAome profiling reveals circFgfr2 regulates myogenesis and muscle regeneration via a feedback loop[J]. Journal of Cachexia, Sarcopenia and Muscle, 2022, 13(1): 696-712.
[11] 歐陽(yáng)宏佳. 環(huán)狀RNA對(duì)雞胚胎骨骼肌發(fā)育的影響[D]. 廣州: 華南農(nóng)業(yè)大學(xué), 2017.
OUYANG Hongjia. Effect of circular RNA on skeletal muscle development of chicken embryos[D].Guangzhou: South China Agricultural University, 2017.
[12] Zhao J, Zhao X Y, Shen X X, et al. CircCCDC91 regulates chicken skeletal muscle development by sponging miR-15 family via activating IGF1-PI3K/AKT signaling pathway[J]. Poultry Science," 2022, 101(5): 101803.
[13] 徐海冬, 冷奇穎, PATRICIA Adu-Asiama, 等. 環(huán)狀RNA的特征及其在畜禽中的研究進(jìn)展[J]. 生物技術(shù)通報(bào), 2018, 34(11): 56-69.
XU Haidong, LENG Qiying, ADUASIAMA PATRICIA, et al. Circular RNAs: research progress and its significance in birds and livestock[J]. Biotechnology Bulletin, 2018, 34(11): 56-69.
[14] 劉洪飛. 牛肌肉組織中品種特異性circQTL的鑒定和功能分析[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2022.
LIU Hongfei. Identification and functional analysis of breed-specific circQTL in bovine muscle tissue[D].Yangling: Northwest A amp; F University, 2022.
[15] 付曉偉, 歐陽(yáng)永灝, 洪樂, 等. 基于高通量測(cè)序技術(shù)的胰腺癌環(huán)狀RNA差異表達(dá)譜分析[J]. 安徽醫(yī)科大學(xué)學(xué)報(bào), 2023, 58(1): 101-108.
FU Xiaowei, OUYANG Yonghao, HONG Le, et al. Analysis of differential expression profile of circRNA in pancreatic cancer based on high-throughput sequencing technology[J]. Acta Universitatis Medicinalis Anhui, 2023, 58(1): 101-108.
[16] 賀花, 徐倩穎, 黃永震, 等. 環(huán)狀RNA概述及其在動(dòng)物肌肉發(fā)育中的研究進(jìn)展[J]. 黑龍江畜牧獸醫(yī), 2020(3): 32-35.
HE Hua, XU Qianying, HUANG Yongzhen, et al. Overview of circRNAs and its research progress in animal muscle development[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(3): 32-35.
[17] Liu R L, Liu X X, Bai X J, et al. Identification and characterization of circRNA in longissimus dorsi of different breeds of cattle[J]. Frontiers in Genetics, 2020, 11: 565085.
[18] Wei X F, Li H, Yang J M, et al. Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p[J]. Cell Death amp; Disease, 2017, 8(10): e3153.
[19] Liu Y, Chen Q, Bao J J, et al. Genome-wide analysis of circular RNAs reveals circCHRNG regulates sheep myoblast proliferation via miR-133/SRF and MEF2A axis[J]. International Journal of Molecular Sciences, 2022, 23(24): 16065.
[20] Ouyang H J, Chen X L, Wang Z J, et al. Circular RNAs are abundant and dynamically expressed during embryonic muscle development in chickens[J]. DNA Research: an International Journal for Rapid Publication of Reports on Genes and Genomes, 2018, 25(1): 71-86.
[21] 王衛(wèi)振. 靜原雞circACLY調(diào)控成肌細(xì)胞增殖、分化和凋亡的機(jī)制研究[D]. 銀川: 寧夏大學(xué), 2022.
WANG Weizhen. Study on the Mechanism of circACLY Regulating the Proliferation, Differentiation and Apoptosis of Myoblasts in Jingyuan Chicken[D].Yinchuan: Ningxia University, 2022.
[22] 余嬌, 黎鎮(zhèn)暉, 聶慶華, 等. 環(huán)狀RNA circZBTB10的鑒定及其對(duì)雞骨骼肌細(xì)胞增殖的影響[J]. 中國(guó)家禽, 2018, 40(24): 7-11.
YU Jiao, LI Zhenhui, NIE Qinghua, et al. Identification of circZBTB10 and its function on chicken myoblast proliferation[J]. China Poultry, 2018, 40(24): 7-11.
[23] 孫曉峰, 張偉偉, 王陽(yáng), 等. MiR-103在牛骨骼肌衛(wèi)星細(xì)胞中的分化調(diào)節(jié)作用[J]. 黑龍江畜牧獸醫(yī), 2015(15): 39-43, 294.
SUN Xiaofeng, ZHANG Weiwei, WANG Yang, et al. The role of miR-103 in the differentiation and regulation on bovine skeletal muscle satellite cells[J]. Heilongjiang Animal Science and Veterinary Medicine, 2015(15): 39-43, 294.
[24] Wang Y C, Yao X H, Ma M, et al. MiR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1[J]. Journal of Molecular Cell Biology, 2021, 13(6): 422-432.
[25] Xue J, Xue J W, Zhang J, et al. MiR-130b-3p/301b-3p negatively regulated Rb1cc1 expression on myogenic differentiation of chicken primary myoblasts[J]. Biotechnology Letters, 2017, 39(11): 1611-1619.
[26] 張菊香, 張鵬, 陳曉萍. TGF-β/肌肉生長(zhǎng)抑制素信號(hào)通路對(duì)骨骼肌作用的研究進(jìn)展[J]. 航天醫(yī)學(xué)與醫(yī)學(xué)工程, 2011, 24(3): 224-228.
ZHANG Juxiang, ZHANG Peng, CHEN Xiaoping. Research progress on roles of TGF-β/myostatin signaling pathway in skeletal muscle[J]. Space Medicine amp; Medical Engineering, 2011, 24(3): 224-228.
[27] 葛瑤. TCEA3通過ANXA1介導(dǎo)TGF-β通路進(jìn)而影響小鼠成肌細(xì)胞分化[D]. 哈爾濱: 東北農(nóng)業(yè)大學(xué), 2019.
GE Yao. TCEA3 Promotes Differentiation of C2C12 Cells Via An Annexin A1-mediated TGF-β Signaling Pathway[D]. Harbin: Northeast Agricultural University, 2019.
[28] 胡思敏. 牛肌肉衛(wèi)星細(xì)胞中抑制MSTN表達(dá)后對(duì)脂肪代謝相關(guān)基因的影響[D]. 呼和浩特: 內(nèi)蒙古大學(xué), 2015.
HU Simin. Effect of inhibiting MSTN expression in bovine muscle satellite cells on genes related to fat metabolism[D].Hohhot: Inner Mongolia University, 2015.
[29]""" 馮陽(yáng). MIR-133b,miR-214和miR-495通過MAPK信號(hào)通路調(diào)節(jié)成肌細(xì)胞增殖和分化的研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2011.
FENG Yang. The study of MIR-133b, miR-214 and miR-495 regulating myoblast proliferation and differentiation through MAPK signaling pathway[D]. Wuhan: Huazhong Agricultural University, 2011.
[30] Zou L X, Zhong Y Q, Li X, et al. 3D-printed porous tantalum scaffold improves muscle attachment via integrin-β1-activated AKT/MAPK signaling pathway[J]. ACS Biomaterials Science amp; Engineering," 2023, 9(2): 889-899.
[31]""" Wen L, Shumao L, Guihuan L ,et al. Integrative Analyses of miRNA-mRNA Interactions Reveal let-7b, miR-128 and MAPK Pathway Involvement in Muscle Mass Loss in Sex-Linked Dwarf Chickens[J]. International Journal of Molecular Sciences," 2016, 17(3): 276.
Identification of chicken circMICAL2, tissue expression profile analysis and its functional prediction
Gulipari Aikebai1, SHEN Xuemei2, YU Shigang1,2, WANG Gang2, YANG Yaling1, LIU Wujun2
(1. College of Animal Science/Xinjiang Agricultural University, Urumqi 830052, China 2. Engineering Research Center of Sichuan Province Higher School of Local Chicken Breeds Industrialization in Southern Sichuan/Leshan Normal University, Leshan Sichuan 614000,China )
Abstract:【Objective】 The purpose of this study is to verify the authenticity of chicken circular RNA (circMICAL2) and explore the function and regulation mechanism of circMICAL2 in chicken muscle growth and development.
【Methods】 Specific primers based on circMICAL2 circular sequences were designed by PCR amplification, and RNase R and actinomycin D treatments were performed to detect the endogenous stability of circMICAL2.Eight tissue samples from heart, liver, lung, kidney, intestine, skin, chest muscle and leg muscles of 16-day-old and 180-day-old chickens (adult chickens) were collected, and the tissue expression profile of circMICAL2 in different development periods was completed by real-time PCR (qRT-PCR); Bioinformatics was used to predict circMICAL2-targeted miRNA and mRNA, and to carry out GO function and KEGG pathway enrichment analysis.
【Results】 Chicken circMICAL2 really existed,and its cyclization stability was strong; circMICAL2 was widely expressed in all tissues of adults and chicks, and circMICAL2 was most highly expressed in their chest and leg muscles of adults and chicks, and the expression of circMICAL2 in both adult leg and thorax muscles was significantly higher than that in chicks (Plt;0.05), indicating that circMICAL2 was closely related to the regulation of chicken muscle growth and development. circMICAL2 targets gga-miR-103-3p and gga-miR-130b-3p regulated 225 downstream potential target genes. The target genes of circMICAL2 were mainly enriched in TGF-β signaling pathway, MAPK signaling pathway, cell cycle and other related signaling pathways.
【Conclusion】 Chicken circMICAL2 really exists, and the expression of circMICAL2 plays an important role in regulating the growth of muscle during different growth and development periods.
Key words:circRNA; muscle; chicken; tissue expression; growth and development
Fund projects:Sichuan Science and Technology Program (2022YFN0039); Leshan Normal University Science and Technology Program (DGZZ202002,22HX00051)
Correspondence author:LIU Wujun(1966-),female,from Luyi, Henan,professor,research direction:Animal genetics and breeding and reproduction,(E-mail)lwj_ws@163.com
WANG Gang(1979-),male,from Qijiang, Chongqing,professor,research direction:Monitoring and prevention and control of animal diseases,Treatment and utilization of aquaculture waste,(E-mail)Lswanggang@163.com