doi:10.6048/j.issn.1001-4330.2024.05.028
摘" 要:【目的】研究海南豬繁殖與呼吸綜合征病毒PRRSV的流行病學(xué)特征和遺傳變異規(guī)律。
【方法】采集海南省??谑屑爸苓叺貐^(qū)樣品,分離出PRRSV HNHK3-2021 毒株,并測定NSP2基因以及 ORF5 和ORF7基因序列,采用Lasergene 7.1進行序列比對分析,用MEGA-X進行遺傳演化分析。
【結(jié)果】分離出的PRRSV HNHK3-2021株為美洲型毒株,PRRSV HNHK3-2021株和EF112447 HEB1、EU109503 GD、EU624117 XH-GD的ORF5和ORF7的核苷酸相似性較高,分別為99.2%~99.3%和99.5%~100%,推導(dǎo)氨基酸相似性為99%~99.5%和100%;PRRSV HNHK3-2021株和EU864232 SHB、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R的ORF5和ORF7的核苷酸相似性為87.1%~96.4%和91.4%~97.3%,推導(dǎo)氨基酸的相似性為86.6%~93%和91.9%~97.6%;PRRSV HNHK3-2021株和JN654459 NADC30、KP860909 FJZ03、MH068878 SD17-38、AY881994 FJ-1的ORF5和ORF7的核苷酸相似性為85.4%~87.1%和89%~91.4%。氨基酸的相似性為86.1%~87.1%和89.5%~91.9%。
【結(jié)論】RRSV HNHK3-2021 毒株和EU624117 XH-GD具有最近的遺傳距離。
關(guān)鍵詞:
豬繁殖與呼吸綜合征;遺傳進化;ORF5;ORF7
中圖分類號:S85""" 文獻標(biāo)志碼:A""" 文章編號:1001-4330(2024)05-1292-09
收稿日期(Received):
2023-10-12
基金項目:
海南省省屬科研院所技術(shù)創(chuàng)新專項(jscx202001);國家自然科學(xué)基金項目(32060796);家畜疫病病原生物學(xué)國家重點實驗室開放基金(SKLVEB2020KFKT021);海南省農(nóng)業(yè)科學(xué)院院本級科研項目(HAAS2022PT0205);國家重點研發(fā)計劃(2023YFC3404302)
作者簡介:
范悅軒(1997-),男,新疆奇臺人,碩士研究生,研究方向為家畜傳染病學(xué),(E-mial)1245219231@qq.com
通訊作者:
曹宗喜(1982-) ,男,河南新鄉(xiāng)人,研究員,博士,碩士生/博士生導(dǎo)師,研究方向為家畜傳染病學(xué),(E-mial)caozongxi@163.com
劉光亮(1975-),男,四川資中人,研究員,博士,碩士生/博士生導(dǎo)師,研究方向為動物疫苗研制及分子免疫學(xué),(E-mial)liuguangliang01@caas.cn
0" 引 言
【研究意義】 豬繁殖與呼吸綜合征(Porcine reproductive and respiratory syndrome,PRRS)是由豬繁殖與呼吸綜合征病毒(PRRS virus,PRRSV)所引起的一種高度接觸性傳染病,引起母豬流產(chǎn)和仔豬呼吸道疾病。通過對海南省海口市及周邊地區(qū)樣品的分離鑒定后,分析典型毒株P(guān)RRSV HNHK3-2021的基因,了解PRRSV在海南的流行情況,進而對海南PRRS防控提供支持?!厩叭搜芯窟M展】豬繁殖與呼吸綜合征病毒PRRSV危害豬養(yǎng)殖業(yè)[1]。PRRSV為單股正鏈RNA病毒,長度大約為15 kb,至少包含1個開放閱讀框(ORF1a、ORF1b、ORF2a、ORF2b、ORF3、ORF4、ORF5、ORF5a、ORF6、ORF7),NSP2作為PRRSV最大的復(fù)制酶蛋白[2],基于各種亞型的PRRSV在該區(qū)域差異極為明顯[3]。NSP2能夠順式或反式切割 Nsp2/3結(jié)合處[4],在PRRSV的復(fù)制中 至關(guān)重要的作用[5]。ORF5編碼的囊膜蛋白是 GP5,GP5含有與病毒中和、病毒保護相關(guān)的表位[6]。ORF5基因是 PRRSV 基因組中變化最大的區(qū)域之一,各個亞型的PRRSV在此處同樣差異明顯,基于ORF5的PRRSV的分型是公認的PRRSV分型[7]。ORF7編碼的N蛋白是病毒的核衣殼蛋白[8],該蛋白在血清學(xué)反應(yīng)中較為保守[9]。【本研究切入點】有關(guān)海南豬繁殖與呼吸綜合征和PRRSV的研究數(shù)據(jù)較少,
需對毒株P(guān)RRSV HNHK3-2021的 ORF5 和ORF7基因進行測序分析?!緮M解決的關(guān)鍵問題】
對海南省海口市及周邊地區(qū)采樣,進行病毒分離,并對分離獲得的毒株P(guān)RRSV HNHK3-2021進行NSP2的基因以及 ORF5 和ORF7基因序列測定分析,了解海南PRRS分子流行情況。
1" 材料與方法
1.1" 材 料
Marc-145細胞由海南省熱帶動物繁育與疫病研究重點實驗室保存;Trizol 試劑、胎牛血清、DMEM培養(yǎng)基、購自賽默飛世爾科技(中國)有限公司Ex Taq DNA 聚合酶、pMD18 -T購自寶生物工程(大連)有限公司,Plasmid Mini Kit、Gel DNA Exteration Mini Kit、反轉(zhuǎn)錄酶購自南京諾唯贊生物科技有限公司。NSP2、ORF5、ORF7的擴增引物參照賀冬梅等[10]。表1
1.2" 方 法
1.2.1" 樣品中基因提取
用研缽將組織樣研磨碎,使用Trizol法提取RNA,使用反轉(zhuǎn)錄試劑盒對樣品反轉(zhuǎn)錄,反轉(zhuǎn)錄體系為5× H:SCRIPT Ⅱ qFT Super Mix Ⅱ 4 μL, RNA 100 ng ,dd水補齊至20 μL。反應(yīng)條件為50℃ 15 min;85℃ 5 s。反轉(zhuǎn)錄產(chǎn)物進行cDNA的PCR,將PCR產(chǎn)物進行瓊脂糖凝膠電泳,條件為恒壓90 V,電泳結(jié)束后使用紫外凝膠成像系統(tǒng)觀察試驗結(jié)果,篩選出陽性樣品。
1.2.2" 病原分離
將篩選出的陽性樣品接種到Marc-145細胞上,放入溫箱每天觀察細胞病變情況,細胞病變達60%~70%,將細胞反復(fù)凍融3次,4℃" 6 000 r/min離心10 min,取上清。如此反復(fù),盲傳3~5代。
將已經(jīng)盲傳3~5代,有明顯病變的Marc-145放入-80℃冰箱,直至完全凍結(jié)后在室溫完全溶解,如此反復(fù)3次后,提取RNA,反轉(zhuǎn)錄,進行PCR檢測。
1.2.3" 擴增目的基因
病毒RNA采用Trizol法提取,反轉(zhuǎn)錄體系為5× H:SCRIPT Ⅱ qFT Srper Mix Ⅱ 4 μL, RNA 100 ng ,dd水補齊至20 μL。反應(yīng)條件為50℃ 15 min;85℃ 5 s。PRC反應(yīng)體系:。Ex Taq DNA 聚合酶預(yù)混劑25 μL,底物2 μL,水23 μL。反應(yīng)條件:94℃ 3 min;94℃ 10 s,55℃ 30 s,72℃ 2 min,共30個循環(huán)[11]。
1.2.4" 目的基因的連接轉(zhuǎn)化
將PCR產(chǎn)物進行瓊脂糖凝膠電泳,對目的條帶進行膠回收,回收產(chǎn)物和pMD18 -T連接,連接產(chǎn)物轉(zhuǎn)化于DH5α感受態(tài)細胞。37℃溫箱培養(yǎng)16 h后挑取陽性菌落送測序。
1.2.5" 測序
從NCBI選取AY032626 CH-1a等14株P(guān)RRSV序列運用Lasergene 7.1進行序列比對和相似性分析,用MEGA-X進行遺傳演化分析對測序結(jié)果進行序列比對。
2" 結(jié)果與分析
2.1" 病原分離結(jié)果
研究表明,檢測為PRRSV陽性的樣品接種到Mrac-145細胞上,培養(yǎng)7 d,盲傳3代后,出現(xiàn)細胞圓縮、空泡化、折光性增強、聚集、脫落的細胞病變。2021年度成功分離出6株P(guān)RRSV毒株。盲傳3代后,將出現(xiàn)病變的細胞通過反復(fù)凍融的方法收集病毒,提取RNA后反轉(zhuǎn)錄為得到cDNA,使用PCR方法對得到的cDNA進行復(fù)檢驗證結(jié)果一致。圖1
2.2" NSP2分析
研究表明,對比PRRSV HNHK3-2021株核酸序NSP2與其他毒株,其相較于經(jīng)典株AY032626 CH-1a在2 780~2 712和2 887~2 992發(fā)生了不連續(xù)缺失,與高致病毒株EU624117 XH-GD變異株的缺失位置一致,PRRSV HNHK3-2021屬于美洲型高致病型毒株。圖1
2.3" ORF5基因序列分析
研究表明,ORF5基因片段的序列為603 bp,PRRSV HNHK3-2021株的ORF5和EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、FJ548855 JXA1 P15、EU200962、 Henan-1、EU624117 XH-GDDE等高致性PRRSV的等位基因的核苷酸相似性為98.72%~99.3% ;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的等位基因的核苷酸相似性為89.1%~95.8%;和JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的等位基因的核苷酸相似性為85.2%~87%。
ORF5的推導(dǎo)氨基酸有200個,堿性氨基酸18個,酸性氨基酸12個,疏水性氨基酸87個,極性氨基酸60個,等電點8.474。RRSV HN株的ORF5和EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、FJ548855 JXA1 P15、EU200962 Henan-1、EU624117 XH-GDDE等高致性PRRSV的等位基因的推導(dǎo)氨基酸相似性為98.4%~99.0% ;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的等位基因的推導(dǎo)氨基酸相似性為86.8%~94.9%;與JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的等位基因的推導(dǎo)氨基酸相似性為84%~85.5%。表2,圖2
PRRSV HNHK3-2021和EU624117 XH-GD的遺傳距離最近,其與疫苗毒FJ548855 JXA1 P15在同一分支,在對該毒株的防控中可以對FJ548855 JXA1 P15對應(yīng)的疫苗優(yōu)先考慮,并且PRRSV HNHK3-2021與EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、EU200962 Henan-1等高致性PRRSV屬于同一分支;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的遺傳距離較近與JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的遺傳距離較遠。
ORF7片段長度為372 bp,PRRSV HNHK3-2021株的ORF7與EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、FJ548855 JXA1 P15、EU200962 Henan-1、EU624117 XH-GDDE等高致性PRRSV的等位基因的核苷酸相似性為99.5%~100% ;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的等位基因的核苷酸相似性為91.9%~96%;與JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的等位基因的核苷酸相似性為88.4%~89.2%。表3,圖3
ORF7的推導(dǎo)氨基酸有123個,堿性氨基酸19個酸性氨基酸7個,疏水性氨基酸29個,極性氨基酸43個,等電點10.208。PRRSV HNHK3-2021株的ORF7與EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、FJ548855 JXA1 P15、EU200962 Henan-1、EU624117 XH-GDDE等高致性PRRSV的等位基因的推導(dǎo)氨基酸相似性為100% ;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的等位基因的推導(dǎo)氨基酸相似性為92.7%~96%;與JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的等位基因的推導(dǎo)氨基酸相似性為88.7%~90.3%。
PRRSV HNHK3-2021和EU624117 XH-GD的遺傳距離最近,其與疫苗毒FJ548855 JXA1 P15在同一分支,在對該毒株的防控中選取滅活疫苗JXA1,并且PRRSV HNHK3-2021與EF112447 HEB1、MF370557 FZ06A、EF075945 HUB1、EU200962 Henan-1、等高致性PRRSV屬于同一分支;與KC445138 HZ-31、JN654458 SDSU73、DQ988080 Ingelvac ATP、AY262352_HB-2(sh)2002、AY656990 Abst-1、AY032626 CH-1a、EU807840 CH-1R等經(jīng)典株P(guān)RRSV的遺傳距離較近與JN654459 NADC30、KP860909 FJZ03、MH651746 SDQZ-1609、MH651747 SDZC-1609、KT945017 HNjz15、MH651748 TJZH-1607、KP861625 CHsx1401等NADC30類PRRSV的遺傳距離較遠。圖4
3" 討 論
3.1
將PRRSV HNHK3-2021與數(shù)據(jù)庫中的不同毒株進行對比,其ORF5和ORF7片段都相較于EU624117 XH-GD、EF112447 HEB1、EU109503 GD更加接近。該病毒作為高致病性毒株,其NSP2缺失位點同結(jié)果與文獻等[12-14]的研究結(jié)果一致。
我國在1995年出現(xiàn)PRRS病例,1996年報道分離出以 CH-1a為代表的經(jīng)典型毒株[15]。2006年發(fā)現(xiàn)以高熱、高發(fā)病、高死亡的高致病性毒株[16],其在NSP2中具有30個氨基酸的缺失[17],該毒株造成豬死亡[18]。在2013年我國又出現(xiàn)了PRRSV的流行,是由新的NADC30-like毒株所引起的。
3.2
GP5對于病毒復(fù)制具有重要意義[19]。ORF5基因是不同亞型的PRRSV存在差異最大的區(qū)域之一,歐洲型PRRSV毒株和美洲型PRRSV毒株在此區(qū)域只有51%~55%的序列相同,因此在大多數(shù)情況下ORF5可以起到病毒分型的作用。N蛋白由ORF7基因編碼,為核衣殼蛋白,為病毒粒子的主要結(jié)構(gòu)蛋白之一,N蛋白可以形成由二硫鍵所連接的同源二聚體,功能是包裝病毒基因組RNA,并且N蛋白是唯一已知的不編碼跨膜結(jié)構(gòu)域或在PRRSV病毒粒子上無外結(jié)構(gòu)域的結(jié)構(gòu)蛋白。滅活疫苗不能保護豬免受高致病性PRRSV的攻擊[20]。PRRSV HN在進化樹上和疫苗毒FJ548855 JXA1 P15在同一分支,因此在今后對PRRSV HN的防治中可以優(yōu)先使用疫苗 JXA1等高致病性疫苗株進行免疫。
4" 結(jié) 論
將海南分離到PRRSV HNHK3-2021株的GP5、GP7基因序列與GenBank上登錄的21株P(guān)RRSVGP5、GP7基因序列構(gòu)建遺傳進化樹顯示,與EU624117 XH-GD(廣東江門分離株)親緣關(guān)系最近,為高致病性毒株,屬于美洲型變異株。RRSV HNHK3-2021 毒株和EU624117 XH-GD具有最近的遺傳距離。
參考文獻(References)
[1]Wensvoort G, Terpstra C, Pol J M, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus[J]. The Veterinary Quarterly, 1991, 13(3): 121-130.
[2] 周峰, 郭龍飛, 劉紅英, 等. 豬繁殖與呼吸綜合征病毒XINX株的分離及NSP2基因的遺傳進化分析[J]. 江蘇農(nóng)業(yè)科學(xué), 2014, 42(9): 180-182.
ZHOU Feng, GUO Longfei, LIU Hongying, et al. Isolation of porcine reproductive and respiratory syndrome virus XINX strain and genetic evolution analysis of NSP2 gene[J]. Jiangsu Agricultural Sciences," 2014, 42(9): 180-182.
[3] 王亞磊, 茆達干, 孟春花, 等. PRRSV非結(jié)構(gòu)蛋白與病毒逃逸宿主免疫反應(yīng)的機制[J]. 江蘇農(nóng)業(yè)科學(xué), 2014, 42(5): 165-167.
WANG Yalei, MAO Dagan, MENG Chunhua, et al. Mechanism of non-structural protein of PRRSV and virus escaping from host immune response[J]. Jiangsu Agricultural Sciences," 2014, 42(5): 165-167.
[4] Allaire M, Chernaia M M, Malcolm B A, et al. Picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases[J]. Nature," 1994, 369(6475): 72-76.
[5] Zhou S C, Ge X N, Kong C, et al. Characterizing the PRRSV nsp2 deubiquitinase reveals dispensability of Cis-activity for replication and a link of nsp2 to inflammation induction[J]. Viruses, 2019, 11(10): 896.
[6] Weiland E, Wieczorek-Krohmer M, Kohl D, et al. Monoclonal antibodies to the GP5 of porcine reproductive and respiratory syndrome virus are more effective in virus neutralization than monoclonal antibodies to the GP4[J]. Veterinary Microbiology, 1999, 66(3): 171-186.
[7] Guzmán M, Meléndez R, Jiménez C, et al. Analysis of ORF5 sequences of Porcine Reproductive and Respiratory Syndrome virus (PRRSV) circulating within swine farms in Costa Rica[J]. BMC Veterinary Research," 2021, 17(1): 217.
[8] Olasz F, Dénes B, Bálint, et al. Immunological and biochemical characterisation of 7ap, a short protein translated from an alternative frame of ORF7 of PRRSV[J]. Acta Veterinaria Hungarica, 2016, 64(2): 273-287.
[9] Bálint, Molnár T, Kecskeméti S, et al. Genetic variability of PRRSV vaccine strains used in the national eradication programme, Hungary[J]. Vaccines," 2021, 9(8): 849.
[10] 賀冬梅, 譚樹義, 陳朝喜, 等. PRRSV HuN-2011株ORF5和ORF7基因的序列分析[J]. 黑龍江畜牧獸醫(yī), 2017(7): 188-191.
HE Dongmei, TAN Shuyi, CHEN Zhao Xi, et al. Sequence analysis of ORF5 and ORF7 genes of PRRSV HuN-2011 strain[J]. Heilongjiang Animal Science and Veterinary Medicine," 2017(7): 188-191.
[11] 秦宏陽, 曹宗喜, 湯國凱, 等. 4株P(guān)RRSV GP5蛋白編碼序列的序列測定和特性分析[J]. 廣東畜牧獸醫(yī)科技, 2008, 33(5): 25-28.
QIN Hongyang, CAO Zongxi, TANG Guokai, et al. Sequencing and analysis of four PRRSV strains' GP5 proteins[J]. Guangdong Journal of Animal and Veterinary Science, 2008, 33(5): 25-28.
[12] Cao Z X, Jiao P R, Huang Y M, et al. Genetic diversity analysis of the ORF5 gene in porcine reproductive and respiratory syndrome virus samples from South China[J]. Acta Veterinaria Hungarica," 2012, 60(1): 157-164.
[13] 曹宗喜, 潘全會, 林哲敏, 等. PRRSV廣東株XH-GD的分離及其NSP2、ORF3、ORF5的序列分析[J]. 廣東農(nóng)業(yè)科學(xué), 2013, 40(12): 159-163.
CAO Zongxi, PAN Quanhui, LIN Zhemin, et al. Isolation and sequence analysis of NSP2, ORF3 and ORF5 of PRRSV XH-GD strain from Guangdong Province[J]. Guangdong Agricultural Sciences, 2013, 40(12): 159-163.
[14] Guo Z H, Chen X X, Li R, et al. The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: a molecular epidemiological perspective[J]. Virology Journal," 2018, 15(1): 2.
[15] 郭寶清, 陳章水. 哈獸研所首次證實國內(nèi)豬群存在PRRSV感染[J]. 獸醫(yī)科技信息, 1996,(1): 8.
GUO Baoqing, CHEN Zhangshui. Harbin Institute of Veterinary Medicine confirmed for the first time that PRRSV infection exists in domestic pigs[J]. Chinese Journal of Animal Husbandry and Veterinary Medicine," 1996,(1): 8.
[16] 吳鵬, 張勛, 梁田, 等. 北疆地區(qū)豬繁殖與呼吸綜合征病毒ORF7基因克隆與遺傳演化分析[J]. 新疆農(nóng)業(yè)科學(xué), 2016, 53(11): 2149-2156.
WU Peng, ZHANG Xun, LIANG Tian, et al. PRRSV ORF7 cloning and genetic evolution analysis of pigs in northern Xinjiang[J]. Xinjiang Agricultural Sciences," 2016, 53(11): 2149-2156.
[17] An T Q, Zhou Y J, Liu G Q, et al. Genetic diversity and phylogenetic analysis of glycoprotein 5 of PRRSV isolates in mainland China from 1996 to 2006: coexistence of two NA-subgenotypes with great diversity[J]. Veterinary Microbiology, 2007, 123(1/2/3): 43-52.
[18] 陸桂麗, 汪萍, 成進, 等. 豬繁殖與呼吸綜合征新疆株ORF2-7基因的克隆及序列分析[J]. 新疆農(nóng)業(yè)科學(xué), 2014, 51(3): 546-551.
LU Guili, WANG Ping, CHENG Jin, et al. Clone and sequence analysis of ORF2-7 genes of porcine reproductive and respiratory syndrome virus of Xinjiang strains[J]. Xinjiang Agricultural Sciences, 2014, 51(3): 546-551.
[19] Suárez P, Zardoya R, Martín M J, et al. Phylogenetic relationships of European strains of porcine reproductive and respiratory syndrome virus (PRRSV) inferred from DNA sequences of putative ORF-5 and ORF-7 genes[J]. Virus Research, 1996, 42(1/2): 159-165.
[20]王旭哲, 劉永宏, 趙麗, 等. 新疆南疆豬繁殖與呼吸綜合征病毒ORF5基因克隆與序列分析[J]. 新疆農(nóng)業(yè)科學(xué), 2013, 50(2): 357-364.
WANG Xuzhe, LIU Yonghong, ZHAO Li, et al. The Cloning and the Sequence Analysis of Southern Xinjiang Strain ORF5 Gene of Porcine Reproductive and Respiratory Syndrome Virus[J]. Xinjiang Agricultural Sciences," 2013, 50(2): 357-364.
Sequence analysis of ORF3 and ORF5 of PRRSV HNHK3-2021 strain isolated in Hainan
FAN Yuexuan1,2, MA Jiamei1,2, HUANG Chunyuan2,ZHENG Jiaxin2, CHEN Suzhen1,2, ZHANG Yan2, LIU Guangliang1,3,CAO Zongxi1,2
(1. College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; 2. Hainan Provincial Key Laboratory of Tropical Animal Breeding and Disease Research, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; 3. Hainan Provincial Academician Innovation Center, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China)
Abstract:【Objective】 To explore the epidemiological characteristics and genetic variation of PRRSV in Hainan.
【Methods】" Samples were collected from Haikou and surrounding areas.The PRRSV strain HNHK3-2021 was isolated, and the NSP2 genes, as well as the ORF5 and ORF7 gene sequences, were determined.Sequence alignment analysis was conducted using Lasergene 7.1, and genetic evolution analysis was performed using MEGA-X.
【Results】" The PRRSV HNHK3-2021 strain isolated was found to be of American origin with high nucleotide similarity to EF112447 HEB1, EU109503 GD, and EU624117 XH-GD ORF5 and ORF7 (99.2%-99.3% and 99.5%-100%, respectively).The derived amino acid similarity was 99%-99.5% and 100%.The nucleotide similarities of ORF5 and ORF7 of PRRSV HNHK3-2021 strain and EU864232 SHB, AY262352_HB-2(sh)2002, AY656990 Abst-1, AY032626 CH-1a, EU807840 CH-1R were found to be 87.1% -96.4% and 91.4%-97.3%, respectively.Similarly, the similarity of amino acids was 86.6%-93% and 91.9%-97.6%.The nucleotide similarities of ORF5 and ORF7 of PRRSV HNHK3-2021 strain and JN654459 NADC30, KP860909 FJZ03, MH068878 SD17-38, AY881994 FJ-1 were found to be 85.4%-87.1% and 89%-91.4%.The similarity of amino acids was 86.1%-87.1% and 89.5%-91.9%.
【Conclusion】 The PRRSV HNHK3-2021 strain and EU624117 XH-GD have the closest genetic distance.
Key words:porcine reproductive and respiratory syndrome; genetic evolution analysis; ORF5; ORF7
Fund projects:Technological Innovation Project of Hainan Provincial Scientific Research Institutes(jscx202001);The National Natural Science Foundation of China(32060796);Open Fund of the State Key Laboratory of Pathogenic Biology of Livestock Diseases(SKLVEB2020KFKT021);Hainan Provincial Academy of Agricultural Sciences Research Project at the same level(HAAS2022PT0205);National Key Ramp;D Program of China(2023YFC3404302)
Correspondence author:CAO Zongxi (1982- ), male, from Xinxiang Henan, researcher, doctor, doctoral supervisor, research direction: livestock infectious diseases, (E-mail)caozongxi@163.com
LIU Guangliang (1975- ), male, from Zizhong Sichuan, researcher, doctor, doctoral supervisor, research direction:animal vaccine development and molecular immunology, (E-mail)liuguangliang01@caas.cn