doi:10.6048/j.issn.1001-4330.2024.05.023
摘" 要:【目的】評估封育對荒漠草原真菌群落的影響,并闡述真菌群落在土壤中的作用。
【方法】采用野外調(diào)查取樣的方法,以封育14年的荒漠草原和相鄰自由放牧荒漠草原為研究對象,基于內(nèi)轉(zhuǎn)錄間隔區(qū)(ITS)技術(shù)與液質(zhì)聯(lián)用(LC-MS)技術(shù)研究封育對荒漠草原真菌群落的影響。
【結(jié)果】封育增加了荒漠草原子囊菌門(Ascomycota)的相對豐度,降低了擔(dān)子菌門(Basidiomycota)、被孢霉門(Mortierellomycota)和unclassified_k__Fungi的相對豐度,顯著改變了真菌群落的β多樣性。此外,封育處理下土壤養(yǎng)分含量和植物生物量高于放牧處理。封育處理下真菌群落的內(nèi)部聯(lián)系更加緊密,主要關(guān)系為相互競爭,而放牧處理下真菌群落內(nèi)部關(guān)系主要是互利共生。真菌群落與土壤總鉀及植物生物量之間相關(guān)性較強(qiáng)。土壤差異真菌群落多與代謝物顯著正相關(guān)。
【結(jié)論】封育改變了荒漠草原真菌群落豐富度,增加了植物地上與地下部分生物量。
關(guān)鍵詞:荒漠草原;真菌多樣性;真菌群落;差異代謝物;植物生物量
中圖分類號:S815;Q938""" 文獻(xiàn)標(biāo)志碼:A""" 文章編號:1001-4330(2024)05-1250-09
收稿日期(Received):
2023-10-11
基金項(xiàng)目:
新疆維吾爾自治區(qū)自然科學(xué)基金項(xiàng)目(2022D01C397)
作者簡介:
耿美菊(1998-),女,碩士研究生,研究方向?yàn)橥寥牢⑸?,(E-mail)1743270502@qq.com
通訊作者:
王新繪(1979-),男,副研究員,博士,碩士生導(dǎo)師,研究方向?yàn)槲⑸锷鷳B(tài),(E-mail)wangxh@xju.edu.cn
0" 引 言
【研究意義】草原是地球生態(tài)系統(tǒng)的重要組成部分,約占地球表面積的40%[1]?;哪菰遣菰蚧哪^渡的一種類型,具有保護(hù)生物多樣性和維護(hù)生態(tài)平衡的生態(tài)功能[2]。而不合理的人類活動和自然因素會導(dǎo)致荒漠草原退化[3]、抑制土壤養(yǎng)分的積累[4]、影響生態(tài)系統(tǒng)的穩(wěn)定性[5-6]。封育是恢復(fù)退化草原的有效措施之一,土壤真菌是微生物群落的重要組成部分,在養(yǎng)分循環(huán)中具有重要作用。因此,研究封育條件下真菌群落的變化,可以評估封育的有效性及土壤真菌在修復(fù)退化草原中的作用。闡明影響土壤真菌群落變化因素,對研究封育土壤中的微生物變化具有重要意義。
【前人研究進(jìn)展】封育是一種有效恢復(fù)退化草原的措施[7]、改善土壤特性[8],從而有效緩解草地的退化。真菌群落是草原土壤中重要的功能群,在生態(tài)系統(tǒng)功能的調(diào)節(jié)中發(fā)揮著重要作用[9-12]。同時,土壤真菌群落作為環(huán)境變化指標(biāo),其群落結(jié)構(gòu)變化可以指示土壤特征變化[13],真菌群落會隨著土壤養(yǎng)分的變化改變其群落組成與多樣性適應(yīng)環(huán)境的變化[14]。代謝組學(xué)作為新興的技術(shù)在微生物的研究中引起廣泛關(guān)注[15]。通過代謝組學(xué)技術(shù)可以識別不同環(huán)境下土壤代謝物差異,更深入了解外部環(huán)境變化導(dǎo)致的土壤功能變化[16]。通過代謝組技術(shù)分析封育條件下土壤代謝變化顯示[17-20],土壤環(huán)境是影響土壤真菌群落的重要因素。土壤養(yǎng)分[19-22]是影響土壤真菌群落變化的主要驅(qū)動因子[23],土壤有機(jī)碳會影響真菌組成與多樣性,在真菌群落結(jié)構(gòu)中起關(guān)鍵作用[24],分析土壤真菌群落與土壤理化性質(zhì)之間的相互作用,能夠探究驅(qū)動真菌群落聚集的變化[25]。植物生物量能表征生態(tài)系統(tǒng)初級生產(chǎn)力[26],當(dāng)外界環(huán)境發(fā)生變化時,植物群落通過調(diào)節(jié)地上地下資源分配響應(yīng)環(huán)境的變化,從而導(dǎo)致地上地下生物量發(fā)生變化[27]。利用網(wǎng)絡(luò)分析方法探究土壤微生物之間的相互作用關(guān)系[28],更直觀的了解真菌群落結(jié)構(gòu),揭示真菌群落成員的內(nèi)部聯(lián)系[24]。
【本研究切入點(diǎn)】目前關(guān)于封育對荒漠草原中真菌群落的研究較少,需要研究封育對草原中土壤真菌群落的影響。【擬解決的關(guān)鍵問題】
選擇新疆地區(qū)封育14年荒漠草原為研究對象,利用ITS高通量測序技術(shù)分析真菌群落的組成和多樣性特征,比較封育與放牧條件下物種組成差異,利用共線性網(wǎng)絡(luò)揭示真菌群落內(nèi)部的相互作用關(guān)系,研究封育對荒漠草原土壤真菌群落的影響。
1" 材料與方法
1.1" 材 料
試驗(yàn)區(qū)位于新疆烏魯木齊市水磨溝區(qū)榆樹溝草原監(jiān)測站,選取封育14年的荒漠草原與相鄰的自由放牧區(qū)為研究區(qū),封育區(qū)N 43°46.617′,E 87° 42.999′,海拔1 058 m;放牧區(qū)N 43°46.555′,E 87°43.593′,海拔1 049 m。冬季時間長,春秋多大風(fēng),年均氣溫7~8℃。于2021年11月進(jìn)行土壤樣品采樣,選擇植被分布均勻樣地采樣。
1.2" 方 法
1.2.1" 試驗(yàn)設(shè)計(jì)
在封育14年的荒漠草原設(shè)置5個1 m×1 m的樣地,相鄰的自由放牧區(qū)也同樣為上述設(shè)置,土壤樣品采集均采用五點(diǎn)采樣法,清除地表的凋落物、石頭等雜物,采集0~20 cm的土壤樣品,用于土壤微生物高通量測序和土壤理化性質(zhì)的測量。
每個取樣區(qū)隨機(jī)建立5個1 m×1 m樣地,用于測量植被地上生物量(Aboveground biomass)、灌木地下生物量(Shrub root biomass)和草本地下生物量(Herbal root biomass)。
1.2.2" 測定指標(biāo)
1.2.2.1" 土壤理化性質(zhì)
采集后的土壤樣品進(jìn)行風(fēng)干,用于測量土壤理化性質(zhì)。NaOH熔融-火焰光度法測量土壤總鉀(Total potassium, TK)、NaOH熔融法-鉬銻抗比色法測量土壤總磷(Soil total phosphorus, TP)、重鉻酸鉀-濃硫酸外加熱法測量土壤有機(jī)質(zhì)(Soil organic matter, SOM)、土壤有機(jī)碳(Soil organic carbon, SOC)為有機(jī)質(zhì)與1.742的比值。
1.2.2.2" 植物生物量
采用收獲法獲取植被地上生物量(Aboveground biomass);挖土塊法獲取灌木地下生物量(Shrub root biomass)和草地下生物量(herb root biomass);采用直接測量法測量植株高度(Height)。將獲取到的植物地上部分和根系分別裝入信封袋中,在60℃干燥36 h測定其生物量。
1.2.2.3" 土壤真菌群落與土壤代謝
對ITS1F(5’-CTTGGTCATTTAGAGGAAGTAA-3’)和ITS2R(5’-GCTGCGTTCTTCATCGATGC-3’)全長進(jìn)行PCR擴(kuò)增。測序得到真菌OTU數(shù)據(jù),測定土壤樣本的真菌群落組成、α多樣性、β多樣性及差異真菌。LC-MS原始數(shù)據(jù)經(jīng)過處理后,將MS和MSMS質(zhì)譜信息與代謝公共數(shù)據(jù)庫HMDB(http://www.hmdb.ca/)和Metlin(https://metlin.scripps.edu/)數(shù)據(jù)庫進(jìn)行匹配,得到代謝物信息。
1.3" 數(shù)據(jù)處理
封育與放牧的所有土壤理化指標(biāo)及植物生物量數(shù)據(jù)用SPSS進(jìn)行顯著性方差分析。條形圖用GraphPad Prism繪制。韋恩圖、柱狀圖、冗余分析(RDA)圖和熱圖利用R軟件進(jìn)行作圖。采用mothur軟件(http://www.mothur.org/wiki/Calculators)計(jì)算α多樣性指數(shù),基于spearman相關(guān)性|r|gt;0.6,Plt;0.05挑選物種分析相關(guān)性網(wǎng)絡(luò)圖。
2" 結(jié)果與分析
2.1" 封育對土壤理化性質(zhì)與植物生物量的影響
研究表明,封育處理下土壤的理化性質(zhì)與植物生物量發(fā)生了顯著變化。土壤總磷、總鉀、C/N、地上生物量、灌木地下生物量、草本地下生物量都發(fā)生了顯著變化(Plt;0.05),其中,封育區(qū)土壤總磷、地上生物量、灌木地下生物量、草本地下生物量顯著大于放牧區(qū)。封育的土壤養(yǎng)分水平和植物生物量高于放牧區(qū),封育可以改變土壤養(yǎng)分情況與植物生長水平。圖1
2.2" 封育對真菌群落多樣性和群落組成的影響
2.2.1" 封育真菌群落多樣性的影響
研究表明,封育改變了真菌群落的α多樣性。Sobs指數(shù)、Ace指數(shù)、Chao指數(shù)表現(xiàn)為封育處理顯著高于放牧處理,封育顯著增加了真菌的豐富度。Simpson指數(shù)表現(xiàn)為封育處理高于放牧處理,Shannon指數(shù)表現(xiàn)為放牧處理高于封育處理,封育改變了真菌多樣性,但不顯著。Coverage指數(shù)均gt;99%。表1
2.2.2" 封育對真菌群落組成的影響
研究表明,Illumina測序共產(chǎn)生882 312個原始序列,處理后得到876 302個高質(zhì)量序列,平均序列長度為245 bp,以97%的序列相似性進(jìn)行歸類后,共獲得1 653個OTU,歸屬于12門,37綱,86目,188科和380屬。封育與放牧處理共有516個OTU,封育處理特有OTU數(shù)目為737個,放牧處理特有OTU數(shù)目為400個,封育處理的OTU數(shù)目多于放牧處理。封育與放牧處理下土壤真菌群落門水平的子囊菌門(Ascomycota)相對豐度最高,封育處理下的相對豐度為89.77%,比放牧處理高19.22%;放牧處理下的擔(dān)子菌門(Basidiomycota)相對豐度高于封育處理,差值為6.42%;放牧處理下的被孢霉門(Mortierellomycota)相對豐度為6.48%,與封育處理的差值為4.63%,均為封育與放牧處理的優(yōu)勢真菌。屬水平真菌群落組成相對豐度前四位真菌屬分別為刺孢屬(Phaeomycocentrospora)、unclassified_c__Sordariomycetes、光黑殼屬(Preussia)、曲霉屬(Aspergillus)。封育處理下的刺孢屬相對豐度為11.76%,放牧處理下的相對豐度為4.8%;封育處理下的unclassified_c__Sordariomycetes相對豐度較放牧處理高7.21%;封育處理下的光黑殼屬相對豐度高于放牧處理,差值為6.58%;封育處理下的曲霉屬相對豐度較放牧處理高1.65%。真菌群落中豐度顯著差異的物種中除了封育處理下子囊菌門的相對豐度顯著高于放牧區(qū),霉梳菌門(Kickxellomycota)、球囊菌門(Glomeromycota)、被孢霉門、距孢霉門(Calcarisporiellomycota)相對豐度皆是放牧處理顯著高于封育處理。封育使真菌出現(xiàn)了明顯的分離,封育對真菌群落產(chǎn)生了影響,改變了真菌群落的β多樣性。圖2
注:研究區(qū)(A)、門(B)和屬(C)的組成、差異真菌對比(D)、真菌β多樣性(E)
Note:Study area(A), the composition of phyla (B) and genera (C), comparison of differential fungi (D), and fungal β diversity (E)
2.3" 土壤理化性質(zhì)、植物生物量及差異代謝物對差異真菌的影響
研究表明,冗余分析(RDA)解釋了真菌群落94.48%的總方差,分析了真菌群落與土壤理化性質(zhì)、植物生物量、植株高度的關(guān)系??傗?、地上生物量、灌木地下生物量、草本地下生物量是影響真菌群落的主要因素。土壤總鉀和C/N與霉梳菌、球囊菌、被孢霉菌、距孢霉菌呈顯著正相關(guān),但與子囊菌呈顯著負(fù)相關(guān),總磷、地上生物量、灌木地下生物量、草本地下生物量與霉梳菌、球囊菌、被孢霉菌、距孢霉菌呈顯著負(fù)相關(guān),總磷、草本地下生物量與子囊菌呈顯著正相關(guān)。子囊菌多與代謝物正顯著相關(guān),但與肉豆蔻酸(Myristic acid)、4-亞甲基-L-谷氨酰胺(4-Methylene-L-glutamine)、十六烷二酸(Hexadecanedioic acid)顯著負(fù)相關(guān),而其霉梳菌、球囊菌、被孢霉菌、距孢霉菌余菌與肉豆蔻酸、4-亞甲基-L-谷氨酰胺、十六烷二酸呈顯著正相關(guān),與其余差異代謝物呈負(fù)相關(guān)。圖3
注:總磷(TP)、總鉀(TK)、有機(jī)碳(SOC)、植被地上生物量(Aboveground biomass)、灌木根生物量(Shrub root biomass)、草根生物量(herbal root biomass);圖(A)、土壤理化性質(zhì)(B)、差異代謝物(C)與差異真菌之間的相關(guān)關(guān)系(P lt; 0.001標(biāo)記為***, P lt; 0.01 標(biāo)記為**, P lt; 0.05 標(biāo)記為*)
Note: Total phosphorus (TP), total potassium (TK), organic carbon (SOC), aboveground biomass, shrub root biomass, herbal root biomass;
(A), soil physicochemical properties (B), differential metabolites (C), and differential fungi during sealing(where P lt; 0.001 is marked as ***, P lt; 0.01 is marked as **, and P lt; 0.05 is marked as *)
2.4" 真菌群落內(nèi)部的相關(guān)性
研究表明,封育處理下具有相關(guān)聯(lián)的真菌共有45個,放牧處理下具有相關(guān)聯(lián)的真菌有43個。放牧處理有較高相連的節(jié)點(diǎn)數(shù)目,平均聚類系數(shù)放牧處理較高,且放牧處理下真菌群落具有更高的正相關(guān)性。圖4
3" 討論
3.1" 封育對土壤理化性質(zhì)與植物生物量的影響
封育處理增加了土壤中有機(jī)碳含量,顯著增加了土壤總磷、地上生物量、灌木地下生物量、草本地下生物量含量,與前人的結(jié)果類似[6,15]。封育減少了牲畜對植物的食用和踩踏行為,增強(qiáng)了植物的光合能力,從而影響光合產(chǎn)物的合成和積累??偭椎瑞B(yǎng)分的增加,使植物能夠從土壤中獲取足夠的養(yǎng)分,最終影響植物的生物量[29,30]。總之,封育改變了土壤理化指標(biāo),增加了植物生物量。
3.2" 封育改變了真菌群落組成和多樣性
封育顯著增加了土壤真菌群落豐富度(即Chao、ACE,Sobs)[31],封育處理下的土壤生境更加豐富。封育與放牧處理的土壤真菌群落結(jié)構(gòu)有顯著差異,封育改變了真菌群落的β多樣性,與前人[31]結(jié)果類似,封育處理改變了真菌群落的結(jié)構(gòu)。研究結(jié)果表明,封育與放牧地區(qū)真菌門主要為子囊菌門、擔(dān)子菌門、被孢霉門,三類真菌門占封育地區(qū)與放牧地區(qū)真菌的96.13%和87.96%,是許多研究中土壤真菌群落的優(yōu)勢菌[32],是土壤中的核心微生物[33],該真菌對微生物群的功能和穩(wěn)定性有重要作用[34]。除了子囊菌門、被孢霉門、球霉門、灰霉門、距孢霉門外,其余真菌門的豐度無差異,證明其余真菌對封育與放牧并不敏感[34]。子囊菌門是真菌群落中最多樣的真菌門[35],在凋落物分解過程和營養(yǎng)循環(huán)中有重要作用[36],子囊菌可能會在低營養(yǎng)需求的情況下增強(qiáng)資源競爭[31],封育使地面積累了更多營養(yǎng)物質(zhì),將使子囊菌門這種快速生長的多養(yǎng)型真菌豐度增加[24]。
3.3" 差異真菌與理化指標(biāo)、植物生物量及差異代謝物的聯(lián)系
土壤總磷、地上生物量、灌木地下生物量、草本地下生物量顯著影響了土壤真菌群落,植物生物量是真菌群落組成的關(guān)鍵因素[37]。在封育處理與放牧處理的差異真菌群落中,土壤總磷通常與除子囊菌外的差異真菌呈負(fù)相關(guān)。在封育處理過程中,隨著土壤總磷含量的顯著增加,與總磷呈負(fù)相關(guān)的差異真菌豐度均減少,而與總磷呈正相關(guān)的子囊菌的相對豐度增加,磷會改變微生物群落組成[38]。代謝物與內(nèi)生真菌之間存在顯著相關(guān)性[39],研究結(jié)果表明,12種主要的差異代謝物包括氨基酸、脂質(zhì)、碳水化合物。子囊菌與肉豆蔻酸、4-亞甲基-L-谷氨酰胺、十六烷二酸顯著負(fù)相關(guān)[16],子囊菌抑制這些代謝物的積累。肉豆蔻酸會在不利的情況下增加來適應(yīng)環(huán)境變化[40]。除子囊菌外的差異真菌與肉豆蔻酸、4-亞甲基-L-谷氨酰胺、十六烷二酸顯著正相關(guān)。土壤代謝產(chǎn)物與真菌群落之間的關(guān)系將指導(dǎo)植物通過土壤改良或生物技術(shù)來提高植物產(chǎn)量[41]。
3.4" 封育條件下真菌內(nèi)部關(guān)聯(lián)性
網(wǎng)絡(luò)分析能夠探究真菌群落在封育與放牧處理下的相互作用[13,42]。研究結(jié)果表明,真菌群落內(nèi)部存在相關(guān)關(guān)系。與封育處理相比,放牧處理的真菌群落之間正相關(guān)關(guān)系較多,且真菌群落之間更多的關(guān)系為合作共生,這些真菌群落適應(yīng)放牧的土壤環(huán)境。封育處理下的營養(yǎng)物質(zhì)比較豐富,所以真菌群落間的競爭較大,真菌群落之間的關(guān)系多為相互競爭,可能對封育處理下的真菌群落組成產(chǎn)生較大影響[34]。共生網(wǎng)絡(luò)中真菌群落之間的協(xié)同關(guān)系有助于土壤中養(yǎng)分的轉(zhuǎn)化,促進(jìn)草地的生態(tài)功能,因此封育改變了真菌群落的共生聯(lián)系。
4" 結(jié) 論
封育處理改變了真菌群落結(jié)構(gòu),增加了子囊菌門的相對豐度,降低了擔(dān)子菌門、被孢霉門的相對豐度。封育處理顯著改變荒漠草原中土壤真菌群落的豐富度。顯著增加了土壤總磷的含量、植物地上生物量、灌木地下生物量、草本地下生物量。真菌群落與土壤總鉀及植物生物量之間相關(guān)性較強(qiáng)。土壤差異真菌群落多與代謝物顯著正相關(guān)。封育處理改變了真菌群落的網(wǎng)絡(luò)共生模式,封育處理下的真菌主要為競爭關(guān)系,而放牧處理下的真菌關(guān)系主要為共生關(guān)系。
參考文獻(xiàn)(References)
[1]
Dlamini P, Chivenge P, Chaplot V. Overgrazing decreases soil organic carbon stocks the most under dry climates and low soil pH: a meta-analysis shows[J]. Agriculture, Ecosystems amp; Environment, 2016, 221: 258-269.
[2] Kang B, Bowatte S, Hou F. Soil microbial communities and their relationships to soil properties at different depths in an alpine meadow and desert grassland in the Qilian mountain range of China [J]. Journal of Arid Environments, 2021, 184: 104316.
[3] Liu S B, Zamanian K, Schleuss P M, et al. Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles[J]. Agriculture, Ecosystems amp; Environment, 2018, 252: 93-104.
[4] Gao X X, Dong S K, Xu Y D, et al. Resilience of revegetated grassland for restoring severely degraded alpine meadows is driven by plant and soil quality along recovery time: a case study from the Three-river Headwater Area of Qinghai-Tibetan Plateau[J]. Agriculture, Ecosystems amp; Environment, 2019, 279: 169-177.
[5] Huhe, Chen X J, Hou F J, et al. Bacterial and fungal community structures in Loess Plateau grasslands with different grazing intensities[J]. Frontiers in Microbiology, 2017, 8: 606.
[6] Cheng J M, Jing G H, Wei L, et al. Long-term grazing exclusion effects on vegetation characteristics, soil properties and bacterial communities in the semi-arid grasslands of China[J]. Ecological Engineering, 2016, 97: 170-178.
[7] Zhang C, Liu G B, Song Z L, et al. Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands[J]. Soil Biology and Biochemistry, 2018, 124: 47-58.
[8] Yin Y L, Wang Y Q, Li S X, et al. Soil microbial character response to plant community variation after grazing prohibition for 10years in a Qinghai-Tibetan alpine meadow[J]. Plant and Soil, 2021, 458(1): 175-189.
[9] 單貴蓮, 陳功, 寧發(fā), 等. 典型草原恢復(fù)演替過程中土壤微生物及酶活性動態(tài)變化研究[J]. 草地學(xué)報(bào), 2012, 20(2): 292-297.
SHAN Guilian, CHEN Gong, NING Fa, et al. Dynamics of soil microorganism and enzyme activity in typical steppe of restoration succession process[J]. Acta Agrestia Sinica, 2012, 20(2): 292-297.
[10] Sun S, Li S, Avera B N, et al. Soil bacterial and fungal communities show distinct recovery patterns during forest ecosystem restoration[J]. Applied and Environmental Microbiology, 2017, 83(14): e00966-e00917.
[11] Li H L, Ostermann A, Karunarathna S C, et al. The importance of plot size and the number of sampling seasons on capturing macrofungal species richness[J]. Fungal Biology, 2018, 122(7): 692-700.
[12] Ladwig L M, Bell-Dereske L P, Bell K C, et al. Soil fungal composition changes with shrub encroachment in the northern Chihuahuan Desert[J]. Fungal Ecology, 2021, 53: 101096.
[13] Wu D, Zhang M M, Peng M, et al. Variations in soil functional fungal community structure associated with pure and mixed plantations in typical temperate forests of China[J]. Frontiers in Microbiology, 2019, 10: 1636.
[14] Schulz S, Brankatschk R, Dümig A, et al. The role of microorganisms at different stages of ecosystem development for soil formation[J]. Biogeosciences, 2013, 10(6): 3983-3996.
[15] Buyer J S, Vinyard B, Maul J, et al. Combined extraction method for metabolomic and PLFA analysis of soil[J]. Applied Soil Ecology, 2019, 135: 129-136.
[16] Bi B Y, Wang K Y, Zhang H, et al. Plants use rhizosphere metabolites to regulate soil microbial diversity[J]. Land Degradation amp; Development, 2021, 32(18): 5267-5280.
[17] Jones O A H, Sdepanian S, Lofts S, et al. Metabolomic analysis of soil communities can be used for pollution assessment[J]. Environmental Toxicology and Chemistry, 2014, 33(1): 61-64.
[18] Li Y X, Laborda P, Xie X L, et al. Spartina alterniflora invasion alters soil microbial metabolism in coastal wetland of China[J]. Estuarine, Coastal and Shelf Science, 2020, 245: 106982.
[19] Xu M P, Li W J, Wang J Y, et al. Soil ecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China[J]. The Science of the Total Environment, 2022, 815: 152918.
[20] Wang X, Cui Y X, Zhang X C, et al. A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination: evidence derived from microbial metabolic limitation[J]. Science of the Total Environment, 2020, 738: 139709.
[21] Coince A, Cal O, Bach C, et al. Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest[J]. Fungal Ecology, 2013, 6(3): 223-235.
[22] Liu J J, Sui Y Y, Yu Z H, et al. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of Northeast China[J]. Soil Biology and Biochemistry, 2015, 83: 29-39.
[23] Lladó S, López-Mondéjar R, Baldrian P. Drivers of microbial community structure in forest soils[J]. Applied Microbiology and Biotechnology, 2018, 102(10): 4331-4338.
[24] Chen L, Xiang W H, Wu H L, et al. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests[J]. Applied Microbiology and Biotechnology, 2019, 103(13): 5421-5433.
[25] Schappe T, Albornoz F E, Turner B L, et al. The role of soil chemistry and plant neighbourhoods in structuring fungal communities in three Panamanian rainforests[J]. Journal of Ecology, 2017, 105(3): 569-579.
[26] 向雪梅, 德科加, 張琳, 等. 氮素添加下短期內(nèi)高寒草甸生物量與養(yǎng)分間的關(guān)系[J]. 中國草地學(xué)報(bào), 2023, 45(1): 53-61.
XIANG Xuemei, DE Kejia, ZHANG Lin, et al. Relationship between biomass and nutrients of alpine meadows in the short term under nitrogen addition[J]. Chinese Journal of Grassland, 2023, 45(1): 53-61.
[27] 劉文蘭, 師尚禮, 田福平, 等. 紫花苜蓿生物量空間層次分布與葉片C、N、P化學(xué)計(jì)量特征對P添加的響應(yīng)[J]. 草地學(xué)報(bào), 2017, 25(2): 322-329.
LIU Wenlan, SHI Shangli, TIAN Fuping, et al. Spatial distribution of alfalfa biomass and response of leaf C, N, P ecological stoichiometry to P addition[J]. Acta Agrestia Sinica, 2017, 25(2): 322-329.
[28] Toju H, Kishida O, Katayama N, et al. Networks depicting the fine-scale co-occurrences of fungi in soil horizons[J]. PLoS One, 2016, 11(11): e0165987.
[29] 張彬, 李邵宇, 古琛, 等. 內(nèi)蒙古荒漠草原4種優(yōu)勢植物生物量分配對不同放牧強(qiáng)度的響應(yīng)[J]. 草地學(xué)報(bào), 2022, 30(12): 3355-3363.
ZHANG Bin, LI Shaoyu, GU Chen, et al. Biomass allocation of four dominant plant species in Inner Mongolia Desert grasslands in response to different grazing intensities[J]. Acta Agrestia Sinica, 2022, 30(12): 3355-3363.
[30] Qiu L P, Wei X R, Zhang X C, et al. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland[J]. PLoS One, 2013, 8(1): e55433.
[31] Wang Z, Ding Y, Jin K, et al. Soil bacterial and fungal communities are linked with plant functional types and soil properties under different grazing intensities[J]. European Journal of Soil Science," 2022, 73(1): e13195.
[32] Cassman N A, Leite M F A, Pan Y, et al. Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland[J]. Scientific Reports, 2016, 6: 23680.
[33] Xiao C C, Ran S J, Huang Z W, et al. Bacterial diversity and community structure of supragingival plaques in adults with dental health or caries revealed by 16S pyrosequencing[J]. Frontiers in Microbiology, 2016, 7: 1145.
[34] Chao Y Q, Liu W S, Chen Y M, et al. Structure, variation, and co-occurrence of soil microbial communities in abandoned sites of a rare earth elements mine[J]. Environmental Science amp; Technology, 2016, 50(21): 11481-11490.
[35] Wang J X, Gao J, Zhang H Q, et al. Changes in rhizosphere soil fungal communities ofPinus tabuliformisplantations at different development stages on the Loess Plateau[J]. International Journal of Molecular Sciences, 2022, 23(12): 6753.
[36] Hartmann M, Brunner I, Hagedorn F, et al. A decade of irrigation transforms the soil microbiome of a semi-arid pine forest[J]. Molecular Ecology," 2017, 26(4): 1190-1206.
[37]Wang Z, Zhang Q, Staley C, et al. Impact of long-term grazing exclusion on soil microbial community composition and nutrient availability [J]. Biology and Fertility of Soils, 2019, 55(2): 121-134.
[38] 程紅巖. 旱作農(nóng)田土壤微生物群落及代謝產(chǎn)物對磷肥管理的響應(yīng)[D]. 楊凌: 西北農(nóng)林科技大學(xué), 2022.
CHENG Hongyan. Response of Soil Microbial Communities and Metabolites to Phosphorus Fertilizer Management in Dryland Farmland[D]. Yangling: Northwest A amp; F University, 2022.
[39] Cui J L, Gong Y, Vijayakumar V, et al. Correlation in chemical metabolome and endophytic mycobiome in Cynomorium songaricum from different desert locations in China[J]. Journal of Agricultural and Food Chemistry, 2019, 67(13): 3554-3564.
[40] Yang X, Lai J L, Zhang Y, et al. Microbial community structure and metabolome profiling characteristics of soil contaminated by TNT, RDX, and HMX[J]. Environmental Pollution, 2021, 285: 117478.
[41] Csorba C, Rodi N, Zhao Y Y, et al. Metabolite production inAlkanna tinctoria links plant development with the recruitment of individual members of microbiome thriving at the root-soil interface[J]. mSystems, 2022, 7(5): e0045122.
[42] Cheng H Y, Yuan M S, Tang L, et al. Integrated microbiology and metabolomics analysis reveal responses of soil microorganisms and metabolic functions to phosphorus fertilizer on semiarid farm[J]. The Science of the Total Environment, 2022, 817: 152878.
Effects of sealing on fungal communities in desert grasslands
GENG Meiju1,2,WANG Xinhui1,2,LIU Xiaoying1,2,LYU Pei1,2
((1. College of Ecology and Environment, Xinjiang University/Key Laboratory of Oasis Ecology of Ministry of Education, Urumqi 830046, China; 2. Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Jinghe Xinjiang 833305, China)
Abstract:【Objective】 Assess the response of closure to fungal communities and to describe the role of fungal communities in the soil.
【Methods】" A field survey was conducted to investigate the effect of sealing on the fungal communities of desert grasslands based on the internal transcribed spacer (ITS) technique and liquid chromatography-mass spectrometry (LC-MS), using 14 years of sealing and adjacent free-grazing desert grasslands as the study objects.
【Results】 The results showed that sealing increased the community abundance of Ascomycota and decreased the community abundance of Basidiomycota, Mortierellomycota, and unclassified_k_Fungi, significantly altered the beta diversity of the fungal community.In addition, soil nutrient content and plant biomass were higher under the sealing treatment than under the grazing treatment.The fungal communities were more closely linked internally under closed conditions, with the main relationships being competitive with each other, whereas under grazing conditions the fungal communities were mainly in a mutually beneficial symbiotic relationship.A strong correlation between fungal communities and total soil potassium and plant biomass.Soil differential fungal communities were mostly significantly and positively correlated with metabolites.
【Conclusion】" Sealing altered fungal community richness and increased plant biomass above and below ground.
Key words:desert grassland; fungal diversity; fungal community; differential metabolites; plant biomass
Fund project:Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01C397)
Correspondence author: WANG Xinhui (1979-), male, Ph.D., associate researcher, research direction: microbial ecology, (E-mail)wangxh@xju.edu.cn