• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fabrication and investigation of ferroelectric memristors with various synaptic plasticities

    2022-08-01 05:59:32QiQin秦琦MiaochengZhang張繆城SuhaoYao姚蘇昊XingyuChen陳星宇AozeHan韓翱澤ZiyangChen陳子洋ChenxiMa馬晨曦MinWang王敏XintongChen陳昕彤YuWang王宇QiangqiangZhang張強強XiaoyanLiu劉曉燕ErtaoHu胡二濤LeiWang王磊andYiTong童祎
    Chinese Physics B 2022年7期
    關(guān)鍵詞:王宇

    Qi Qin(秦琦), Miaocheng Zhang(張繆城),?, Suhao Yao(姚蘇昊), Xingyu Chen(陳星宇), Aoze Han(韓翱澤),Ziyang Chen(陳子洋), Chenxi Ma(馬晨曦), Min Wang(王敏), Xintong Chen(陳昕彤), Yu Wang(王宇),Qiangqiang Zhang(張強強), Xiaoyan Liu(劉曉燕), Ertao Hu(胡二濤), Lei Wang(王磊),?, and Yi Tong(童祎),§

    1College of Electronic and Optical Engineering and College of Microelectronics,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    2Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors,Nanjing University of Posts and Telecommunications,Nanjing 210023,China

    Keywords: brain-inspired computing,ferroelectric memristors,mechanisms,resistive-switching

    1. Introduction

    The development of artificial intelligence is currently hindered by the bottlenecks of traditional von Neumann computing systems. The human brain, which can perform parallel operation and realize computing-in-memory, provides a solution to break the von Neumann bottlenecks.[1–3]Memristive devices feature continuously tunable conductive states, specific structures similar to the synapses in human brain,as well as excellent performance in emulating various synaptic plasticities. As a result, they are being explored to improve the power consumption, integration and efficiency of neuromorphic computing systems.[4–10]

    Recently,ferroelectric memristors have attracted huge attention for realizing non-volatile storage due to their great endurance, stable conductive states, fast switching speed and enormous application potential in microelectronics.[11–18]The polarization of ferroelectric tunnel junctions(FTJs)promotes charge accumulation and FTJs can be modified by variation of the interface barrier,[16]which will enhance the performance of memristive devices.Nevertheless,applications of ferroelectric memristive devices in artificial synapses have been rarely explored. In addition,the specific mechanisms of memristors with FTJs have not been fully clarified.[17,18]Therefore, the emulation of various synaptic functions and conductive mechanisms of ferroelectric memristors need to be investigated in detail.

    Herein, Cu/PbZr0.52Ti0.48O3(PZT)/Pt memristors have been fabricated by the traditional process for fabricating semiconductor devices. Physical characterizations of the PZT devices have been done using atomic force microscopy(AFM),scanning electron microscopy (SEM) and piezo-response force microscopy(PFM).During the electrical measurements,the transition from unipolar threshold-switching behavior to bipolar resistive-switching behavior (Roff/Ron104, switching voltage 3.5 V) can be observed by the modulation of the external signals. The switching mechanisms of the PZT devices based on interface barrier and conductive filament models have been studied in detail.Moreover,upon the stimulation of continuous pulses of voltage, some biological phenomena have been mimicked.[19–25]Therefore, this work may create more opportunities for the application of ferroelectric memristors in neuromorphic computing systems.

    2. Devices and experiments

    The structure of the PZT devices is schematically shown in Fig. 1(a). First, a p-type Si wafer was cleaned and used as the substrate. Next, 100 nm Pt was deposited onto the substrate as the bottom electrode by physical vapor deposition(PVD).Finally,40 nm PZT and 80 nm Cu with a shadow mask,as the ferroelectric film and top electrode,respectively,were successively grown on the Pt layer in the same way. The surface roughness of obtained PZT layer was investigated by AFM(Dimension Icon). The sectional structure of Cu/PZT/Pt memristors was observed by SEM (Hitachi S-4800). Moreover,the ferroelectric properties of PZT film were analyzed by PFM.To investigate the electrical properties of the PZT ferroelectric memristors, a bidirectional scan voltage was applied to the devices(Keithley 4200A SCS Semiconductor Analyzer and Cascade Micromesh M150).

    Fig.1. Physical characterizations of the PZT devices. (a)The structural representation of PZT devices. The SEM(b)and AFM picture(c)of sectional structure. (d)The phase hysteresis curve of the PZT film measured by PFM.

    3. Results and discussion

    3.1. The physical characterizations

    In order to analyze the stability and large-area uniformity of the PZT memristors, the sectional structure was observed by SEM. As shown in Fig. 1(b), the interfaces between each layer were clearly distinguished by white lines (the scale bar is 300 nm). In addition,AFM was performed on the PZT film.The AFM images of the PZT film with a scanning area of 3.6 μm×3.1 μm and a height range of-2.8 nm to 2.6 nm are shown in Fig. 1(c). The root-mean-square (RMS) roughness of the film is 0.77 nm. It can be observed from the right panel that there are no obvious large dark or light patches.Therefore,the results indicate a smooth surface of the PZT film in a direction perpendicular to the substrate. In addition,the images of the PFM phase measured by the voltage sweep (-10 V to+10 V)are presented in Fig.1(d). The 180°phase difference suggests that the PZT ferroelectric film exhibits two opposite polarization states during the voltage sweep.

    3.2. The switching characteristics

    In this work, successive direct current (DC) voltage sweeps with increasing current compliances(from 5×10-5A to 5×10-4A) were applied to the devices. Interestingly, by precise regulation of the current compliances and the ranges of the voltage sweep, the devices can realize the transition of switching characteristics from threshold switching (TS) to resistance switching (RS). The results of the first four voltage sweeps are presented in Fig.2(a). It can be seen that the devices exhibit TS characteristics at comparatively small current compliances (5×10-5A and 1×10-4A). Meanwhile,the devices exhibit RS characteristics at a comparatively large current compliance(5×10-4A),which can be inferred from Fig.2(b).The transition of switching characteristics can be explained using the conductive filaments model. Larger ranges of voltage sweep and current compliances will result in bigger conductive filaments. The realization of tuning the devices from volatile storage to nonvolatile storage may offer more possibilities for applications.

    The typical current–voltage curve of PZT devices is presented in Fig.2(c). During the positive voltage sweep,a rapid increase in current occurred at approximately 3.5 V, corresponding to the ‘SET’ process. During the negative voltage sweeps,the‘RESET’process can be also observed at-3.5 V.The data from the retention test at high- and low-resistance states (HRS and LRS) are displayed in Fig. 2(d), read at 0.02 V.It can be observed that the switching ratioRoff/Ronis approximately 104. There is no noticeable change in the two resistance states in 4000 s. In order to evaluate the repeatability of the Cu/PZT/Pt devices,consecutive DC voltage sweeps were applied to the devices. The cumulative distribution ofRonandRofffor 50 cycles is shown in Fig. 2(e). The HRS and LRS can be easily distinguished from the window and the conformity of each state is at an acceptable level. As a result,the devices exhibit repeatable bipolar switching characteristics with a high switching ratio of 104,a low operating voltage of±3.5 V and a long retention time of over 4000 s.

    3.3. The simulation of synaptic behaviors

    The bipolar analogous characteristics of the PZT devices were further investigated. As shown in Figs. 3(a) and 3(b),the response current increases regularly under positive voltage scans. Similarly,the response current decreases continuously under successive negative voltage scans.These results confirm that the devices exhibit excellent analogous switching characteristics under both positive and negative voltage sweeps.[27]This will make it possible to mimic synaptic behaviors using these ferroelectric memristors.

    Fig. 2. Electrical characteristics of PZT memristors. The transition from volatile storage (a) to nonvolatile storage (b) by changing the ranges of voltage sweep and current compliances. The ranges of voltage sweep and current compliances have been indicated. (c) The bipolar resistiveswitching characteristics. (d)The memory retention test,read at 0.02 V.(e)The cumulative probability of high resistance states and low resistance states(extracted at 0.1 V)of Cu/PZT/Pt memristors.

    A schematic diagram of the functions of neurons in the human brain is displayed in Fig.3(c). A biological synapse is the key part where two neurons contact each other by transferring neurotransmitters. Under external stimulation, action potentials from a neuron can be sent to the next neuron(s)via synapses and produce an excitatory post-synaptic current(EPSC).[26,28]As shown in Fig. 3(c), a single voltage pulse(4 V, 200 ms) was imposed on the memristors to mimic this phenomenon. The pulse reached at 450 ms. The post-synaptic current increases rapidly at the same time as the pulse arrives and gradually decays when the pulse is removed, as demonstrated in Fig.3(c). The variation in conductance is attributed to the formation of conductive filaments in the PZT film. The final value of the response current is larger than that of the initial state,indicating that the generated conductive filaments made of oxygen vacancies do not disappear immediately.

    With respect to neuroscience, synaptic plasticity means that the connections between neurons can be adjusted. Pairedpulse facilitation(PPF)and paired-pulse depression(PPD)are typical short-term plasticity processes,which can be simulated using the PZT memristors. The responses of the memristors to two consecutive positive pulses(3 V,20 ms)are presented in the inset of Fig. 3(d). The conductance of devices increases when the second pulse arrives, showing that the devices are more sensitive to the second pulse.[29–31]Moreover, the PPF index is related to the inter-spike interval, which is displayed in Fig.3(d). The functional relationship is as follows:

    Thus, the PPF-related short-term synaptic plasticity has been simulated using PZT ferroelectric memristors.

    In a biological synapse,the variation from potentiation to depression of the synapse can be caused by the application of continuous spikes with the same interval. This synaptic function can be demonstrated using the PZT memristors. In Fig. 3(e), under a train of pulses (3 V, 20 ms) with intervals of 100 ms,the response current rises constantly and reaches a saturation state.The current gradually decays after 130 pulses,revealing that the transition from PPF to PPD behavior has occurred. The PPF behavior was induced by the movement of oxygen vacancies. However, when the current saturates at a high level,the back-diffusion of oxygen vacancies induced by a higher concentration gradient is inevitable. The conductive filaments are not stable,causing the decrease in current.

    The spike timing-dependent plasticity (STDP) rule is a vital supplement to the Hebbian learning rule, revealing that the connection between neurons can be modified according to the sequence of pre- and post-neuron spikes.[32]In order to implement the STDP function,a pulse pair was applied to the PZT devices. The pulse protocol and results are demonstrated in Fig. 3(f). Here, Δtrefers to the time interval between two pulses

    and ΔWis the rate of change of conductance

    whereG1andG2are the conductances measured before and after the application of pulses, respectively. It can be observed that if pre-neuron pulse precedes the post-neuron pulse(Δt >0), the connection between neurons will be enhanced(ΔW >0). When the order of pulses is reversed (Δt <0),the conductance decreases (ΔW <0), corresponding to a depressed connection between neurons. These results have demonstrated that the STDP learning rule has been mimicked using the PZT devices.[33,34]

    Fig. 3. The emulation of synaptic plasticities by PZT memristors. (a) The analogy behaviors under positive voltage sweeps. (b) The analogy behaviors under negative voltage sweeps. (c)EPSC responses under a pulse signal(4 V,200 ms). The inset displays the functions of neurons and synapses of human brain. (d)The fitting map of relationship between PPF index and pulse interval. The PPF index is calculated as(I2-I1)/I1,in which I2 and I1 are the peak values of the second and first post-synaptic current responses. (e)The inflection from PPF behavior to PPD behavior.(f)The presentation of pulse protocol and simulation of STDP function.

    3.4. The conductive mechanisms

    To better understand the switching process of the PZT memristors,first-principles calculations were performed to investigate the conductive mechanisms of the devices. First,the PbTiO3crystal structure with the number 236933 and space groupP4mmwas selected from the Inorganic Crystal Structure Database. After optimization, the parameters of the unit cell werea=4.01 ?A,b=4.01 ?A,c=4.20 ?A and the optimized structure was expanded to 3×3×3. The structure obtained consisted of 27 Ti atoms, 14 of which were replaced with Zr atoms. The one with the lowest energy from the 10 crystal structures was chosen and the cleaved (100) surface was optimized. The dipole moment was eliminated by balancing the interfaces on both sides of the vacuum layer.Based on the final structure,the work function of PZT was calculated as 4.52 eV.Additionally,in order to work out the migration barrier of Cu ions and oxygen vacancies in the PZT layer,the two structures were doped with Cu atoms and oxygen vacancies,respectively.The structures were optimized and five points were analyzed between the initial and final states (Figs. 4(a) and 4(b)). Finally,the migration barrier of oxygen(0.44357 eV)is far less than that of Cu atoms(1.651064 eV),indicating that it is easier for oxygen vacancies to migrate in the PZT layer than Cu ions. As a result,the migration of Cu ions was ignored in the following.

    Fig.4.The internal mechanisms of PZT devices based on first-principles calculation. The Cu-doped (a) and oxygen vacancies-doped (b) PZT structure for calculation of migration barrier. The initial and final state of migration have been indicated. The variation of interface barrier and migration of oxygen vacancies under different voltage bias, including the HRS (c) and LRS(d). The polarization states have been indicated by the blue arrows.

    Schematic diagrams of possible conductive mechanisms of the Cu/PZT/Pt devices are shown in Fig. 4. The external voltages were applied to the Cu layer. Since the work function of Cu(4.65 eV)is larger than that of n-type PZT(4.52 eV),[35]there is a barrier at the interface of the Cu and PZT and positive charges in the depletion layer,indicating the initial state of the FTJ(V=0).[12,13]Several oxygen vacancies already exist in the PZT film. Upon a positive voltage bias(V >0),the Cu layer is oxidized to CuOxand more oxygen vacancies appear in the PZT layer.[36]Meanwhile, the polarization is pointing to the Pt layer and the negatively polarized charges tend to suppress the interface barrier of the PZT layer,[37]leading to the transport of electrons from the PZT layer to the Cu layer.As a result, the connection of conductive filaments made of oxygen vacancies and suppression of the interface barrier both contribute to state switching. On the contrary, under a negative bias, the interface barrier of the PZT layer may be enhanced by the positively polarized charges. The disruption of conductive filaments is induced by the migration of the oxygen vacancies in the opposite direction. Thus,the devices are switched to HRS.[38]Therefore,the excellent performances of the devices can be explained. The migration of oxygen vacancies and the variation of interface barriers both contribute to the state switching of PZT memristors.

    4. Conclusion and perspectives

    In summary, ferroelectric memristors based on PZT tunnel junctions have been manufactured. The hysteresis curves were measured by the Cu/PZT/Pt devices. The transition from threshold-switching behavior to resistive-switching behavior has been observed. Furthermore,the conduction mechanisms based on the interface barrier and oxygen vacancies of the PZT devices have been researched in detail. Additionally, under continuous voltage pulses,the memristors are able to simulate biological synaptic responses, including analogous behaviors and synaptic plasticities. This work may contribute to the developments of future neuromorphic computing.

    Acknowledgments

    Project supported by Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007), the Jiangsu Province Research Foundation (Grant Nos. BK20191202, RK106STP18003, and SZDG2018007),the Research Innovation Program for College Graduates of Jiangsu Province (Grant Nos. KYCX200806,KYCX190960, and SJCX190268), and NJUPTSF (Grant Nos.NY217116,NY220078,and NY218107).

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    應(yīng)急物流:疫情之下迎來“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    報銷
    故事會(2014年19期)2014-09-25 14:08:10
    A Support Vector Machine Based on Bayesian Criterion
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    国产黄a三级三级三级人| 久久久久久久久大av| 国产精品一及| 丰满的人妻完整版| 亚洲片人在线观看| 日本 av在线| or卡值多少钱| 免费在线观看成人毛片| 美女被艹到高潮喷水动态| 亚洲中文字幕日韩| 黄片小视频在线播放| 日本免费a在线| 在现免费观看毛片| 精品久久久久久久久久免费视频| 内射极品少妇av片p| 熟妇人妻久久中文字幕3abv| 欧美色欧美亚洲另类二区| 宅男免费午夜| 久久精品国产亚洲av香蕉五月| 久久精品久久久久久噜噜老黄 | 一进一出好大好爽视频| 一边摸一边抽搐一进一小说| 久久久久精品国产欧美久久久| 国产免费男女视频| 97人妻精品一区二区三区麻豆| 成人特级av手机在线观看| 亚洲欧美清纯卡通| 淫妇啪啪啪对白视频| av天堂中文字幕网| 我的女老师完整版在线观看| 久久性视频一级片| 免费观看精品视频网站| 身体一侧抽搐| 国产亚洲欧美在线一区二区| 国内精品久久久久久久电影| 看黄色毛片网站| 一进一出抽搐gif免费好疼| 我的女老师完整版在线观看| 久久久色成人| 国产精品一区二区免费欧美| 在线a可以看的网站| 少妇被粗大猛烈的视频| 俄罗斯特黄特色一大片| 中文字幕熟女人妻在线| 又爽又黄a免费视频| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩高清专用| 久久午夜亚洲精品久久| 97热精品久久久久久| 亚洲狠狠婷婷综合久久图片| 嫩草影院精品99| 色综合站精品国产| 午夜精品在线福利| 成人欧美大片| 波多野结衣高清无吗| 精品久久久久久久久av| 精品人妻熟女av久视频| 在线国产一区二区在线| 亚洲精品在线观看二区| 日本免费a在线| 两人在一起打扑克的视频| 午夜视频国产福利| 欧美日本亚洲视频在线播放| 91在线精品国自产拍蜜月| 久久精品国产99精品国产亚洲性色| 亚洲国产日韩欧美精品在线观看| 波多野结衣高清无吗| 久久久久久大精品| 国产单亲对白刺激| 网址你懂的国产日韩在线| 中文字幕人成人乱码亚洲影| 97热精品久久久久久| 又爽又黄a免费视频| 日本成人三级电影网站| 日本精品一区二区三区蜜桃| 日韩 亚洲 欧美在线| 日日摸夜夜添夜夜添小说| 在线观看av片永久免费下载| 听说在线观看完整版免费高清| 午夜激情欧美在线| 欧美精品啪啪一区二区三区| 亚洲av.av天堂| 最后的刺客免费高清国语| 级片在线观看| 一区二区三区高清视频在线| 舔av片在线| 老司机午夜十八禁免费视频| 少妇熟女aⅴ在线视频| 18禁黄网站禁片免费观看直播| 搡老妇女老女人老熟妇| 久久久久精品国产欧美久久久| 又紧又爽又黄一区二区| 长腿黑丝高跟| 简卡轻食公司| 亚洲一区二区三区不卡视频| 国产伦精品一区二区三区视频9| 欧美在线一区亚洲| 久久久久久久亚洲中文字幕 | 午夜免费激情av| 十八禁国产超污无遮挡网站| 日本免费一区二区三区高清不卡| 国产成人影院久久av| 女人被狂操c到高潮| 美女被艹到高潮喷水动态| 国产午夜精品论理片| 99久久九九国产精品国产免费| 少妇熟女aⅴ在线视频| 一个人看的www免费观看视频| 一级黄色大片毛片| 亚洲无线观看免费| 日韩精品中文字幕看吧| 国产乱人伦免费视频| 欧美又色又爽又黄视频| 久久精品国产清高在天天线| 99国产综合亚洲精品| 嫁个100分男人电影在线观看| 国产69精品久久久久777片| 国产色爽女视频免费观看| 欧美精品啪啪一区二区三区| 日本免费一区二区三区高清不卡| 精品国产三级普通话版| 露出奶头的视频| 桃红色精品国产亚洲av| 蜜桃亚洲精品一区二区三区| 熟女电影av网| 综合色av麻豆| 欧美高清性xxxxhd video| 在线观看66精品国产| 国产精品,欧美在线| 免费观看的影片在线观看| 级片在线观看| 三级国产精品欧美在线观看| 国产精品女同一区二区软件 | 内射极品少妇av片p| 国产三级在线视频| or卡值多少钱| av视频在线观看入口| 国产乱人视频| 久久香蕉精品热| 日本成人三级电影网站| 国产精品影院久久| 亚洲国产欧洲综合997久久,| av视频在线观看入口| 老司机福利观看| 黄色一级大片看看| 日韩欧美精品v在线| 黄色视频,在线免费观看| 又爽又黄无遮挡网站| 欧美激情久久久久久爽电影| 亚洲av成人av| 首页视频小说图片口味搜索| 夜夜看夜夜爽夜夜摸| 免费电影在线观看免费观看| 很黄的视频免费| 欧美乱色亚洲激情| 精品国产三级普通话版| 日韩亚洲欧美综合| 日韩国内少妇激情av| 无遮挡黄片免费观看| 最近视频中文字幕2019在线8| 精品人妻熟女av久视频| 亚洲欧美日韩高清在线视频| 伊人久久精品亚洲午夜| 久久欧美精品欧美久久欧美| 天堂√8在线中文| 亚洲国产欧洲综合997久久,| 91久久精品电影网| 国产爱豆传媒在线观看| 少妇被粗大猛烈的视频| 两个人视频免费观看高清| 日韩高清综合在线| 亚洲人成电影免费在线| aaaaa片日本免费| 国产单亲对白刺激| 中文字幕久久专区| ponron亚洲| 黄片小视频在线播放| 亚洲av日韩精品久久久久久密| 18禁裸乳无遮挡免费网站照片| 日韩欧美精品免费久久 | 天天一区二区日本电影三级| 99久久久亚洲精品蜜臀av| 一a级毛片在线观看| 国产亚洲欧美在线一区二区| 国内毛片毛片毛片毛片毛片| 一本一本综合久久| 久久人妻av系列| 一区二区三区激情视频| 亚洲av.av天堂| 最后的刺客免费高清国语| 国产综合懂色| 国产一级毛片七仙女欲春2| 亚州av有码| 精品熟女少妇八av免费久了| 小蜜桃在线观看免费完整版高清| 精品人妻1区二区| 久久国产乱子免费精品| 国产精品精品国产色婷婷| 国产精品美女特级片免费视频播放器| 免费人成在线观看视频色| 国产老妇女一区| 91av网一区二区| 草草在线视频免费看| 亚洲成人中文字幕在线播放| 欧美成人性av电影在线观看| 亚洲人与动物交配视频| 免费在线观看日本一区| 免费看光身美女| 免费在线观看影片大全网站| 久久亚洲精品不卡| av视频在线观看入口| 麻豆成人午夜福利视频| 99热这里只有是精品在线观看 | 日韩欧美在线二视频| 中文字幕高清在线视频| 国产久久久一区二区三区| 久久久久久久久中文| 亚洲成av人片在线播放无| 91九色精品人成在线观看| 日韩国内少妇激情av| 亚洲av二区三区四区| 午夜福利高清视频| 婷婷精品国产亚洲av在线| 午夜福利18| 亚洲精品亚洲一区二区| 人人妻人人澡欧美一区二区| 亚洲美女黄片视频| av在线观看视频网站免费| 久久人人精品亚洲av| 日韩中字成人| 日韩中字成人| 欧美成人a在线观看| 国产精品伦人一区二区| 精品久久久久久久久久免费视频| 欧美乱色亚洲激情| 欧美一区二区精品小视频在线| 亚洲av.av天堂| 午夜福利视频1000在线观看| 很黄的视频免费| 在线观看午夜福利视频| 97热精品久久久久久| 国产成人福利小说| 少妇裸体淫交视频免费看高清| 久久6这里有精品| 在线观看午夜福利视频| 青草久久国产| 精品免费久久久久久久清纯| 久久午夜亚洲精品久久| 日本三级黄在线观看| 日韩中文字幕欧美一区二区| eeuss影院久久| 天美传媒精品一区二区| 狂野欧美白嫩少妇大欣赏| 窝窝影院91人妻| 少妇熟女aⅴ在线视频| 又粗又爽又猛毛片免费看| 日本与韩国留学比较| 人人妻人人澡欧美一区二区| 午夜影院日韩av| 搡老岳熟女国产| 婷婷色综合大香蕉| 舔av片在线| 亚州av有码| 色哟哟·www| 变态另类丝袜制服| 最近中文字幕高清免费大全6 | 午夜免费成人在线视频| 国产精品久久久久久精品电影| 欧美精品国产亚洲| 丝袜美腿在线中文| 久久午夜福利片| 一级黄片播放器| 麻豆av噜噜一区二区三区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 乱码一卡2卡4卡精品| 好看av亚洲va欧美ⅴa在| 午夜免费成人在线视频| 日本 av在线| 国产亚洲欧美在线一区二区| 久久午夜福利片| 亚洲一区高清亚洲精品| 国产色爽女视频免费观看| 国产成+人综合+亚洲专区| 内射极品少妇av片p| 亚洲欧美日韩东京热| 老熟妇乱子伦视频在线观看| 乱码一卡2卡4卡精品| 观看免费一级毛片| 亚洲最大成人中文| 欧美又色又爽又黄视频| 国内毛片毛片毛片毛片毛片| 日韩 亚洲 欧美在线| 99久久成人亚洲精品观看| 欧美日韩瑟瑟在线播放| 亚洲成人久久性| 91av网一区二区| 日韩国内少妇激情av| 国产精品一区二区三区四区免费观看 | 美女xxoo啪啪120秒动态图 | 亚洲成人久久爱视频| 亚洲在线自拍视频| 亚洲经典国产精华液单 | 90打野战视频偷拍视频| 国产精品一区二区三区四区久久| 九色成人免费人妻av| 国内毛片毛片毛片毛片毛片| 久久天躁狠狠躁夜夜2o2o| 女人被狂操c到高潮| 午夜久久久久精精品| 欧美不卡视频在线免费观看| 国产午夜福利久久久久久| 国产不卡一卡二| 波多野结衣高清作品| 国产精品女同一区二区软件 | 午夜两性在线视频| 国产一级毛片七仙女欲春2| 自拍偷自拍亚洲精品老妇| 午夜福利欧美成人| 国产黄a三级三级三级人| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区成人| 亚洲最大成人手机在线| 午夜福利成人在线免费观看| 亚洲欧美日韩高清在线视频| 日本熟妇午夜| 三级男女做爰猛烈吃奶摸视频| 一个人免费在线观看电影| 变态另类丝袜制服| 一个人免费在线观看电影| 成人性生交大片免费视频hd| 99久国产av精品| 热99re8久久精品国产| 欧美国产日韩亚洲一区| 久久久久国产精品人妻aⅴ院| 人人妻人人澡欧美一区二区| 久久久久久久久久黄片| 狠狠狠狠99中文字幕| 99国产精品一区二区蜜桃av| 嫁个100分男人电影在线观看| 午夜精品在线福利| 欧美另类亚洲清纯唯美| 亚洲,欧美,日韩| avwww免费| 精品久久国产蜜桃| 毛片一级片免费看久久久久 | 久久久久免费精品人妻一区二区| 精品福利观看| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 少妇的逼好多水| 一个人观看的视频www高清免费观看| 一进一出抽搐动态| 日本三级黄在线观看| 欧美不卡视频在线免费观看| 欧美日本亚洲视频在线播放| 99久久精品热视频| 嫩草影院新地址| 国产精品嫩草影院av在线观看 | 麻豆久久精品国产亚洲av| 国产主播在线观看一区二区| 国产精品女同一区二区软件 | 欧美精品啪啪一区二区三区| 欧美日韩黄片免| 日本黄色视频三级网站网址| 丰满人妻一区二区三区视频av| 一个人免费在线观看电影| 日韩高清综合在线| 成熟少妇高潮喷水视频| 99久久九九国产精品国产免费| 亚洲国产精品999在线| 岛国在线免费视频观看| 久久国产精品人妻蜜桃| 国产精品亚洲一级av第二区| 亚洲美女黄片视频| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产美女午夜福利| 欧美成人免费av一区二区三区| 内射极品少妇av片p| 91午夜精品亚洲一区二区三区 | 亚洲美女黄片视频| 99在线视频只有这里精品首页| 国产精品野战在线观看| 90打野战视频偷拍视频| 高潮久久久久久久久久久不卡| 波多野结衣高清作品| 内地一区二区视频在线| 亚洲专区中文字幕在线| 国产视频内射| 每晚都被弄得嗷嗷叫到高潮| 日韩有码中文字幕| 亚洲国产高清在线一区二区三| 宅男免费午夜| 很黄的视频免费| 欧美激情国产日韩精品一区| 1000部很黄的大片| 国产免费av片在线观看野外av| 禁无遮挡网站| 欧美激情久久久久久爽电影| 婷婷六月久久综合丁香| 亚洲欧美清纯卡通| 精品日产1卡2卡| 老司机深夜福利视频在线观看| 亚洲精品成人久久久久久| 有码 亚洲区| 亚洲av免费高清在线观看| 欧美国产日韩亚洲一区| av中文乱码字幕在线| 久9热在线精品视频| av福利片在线观看| 禁无遮挡网站| av天堂中文字幕网| 久久性视频一级片| 国产精品久久久久久久电影| 色播亚洲综合网| 国产毛片a区久久久久| 国产精品爽爽va在线观看网站| 欧美日本视频| 久久人人爽人人爽人人片va | 好男人电影高清在线观看| 亚洲精华国产精华精| 嫩草影视91久久| 可以在线观看的亚洲视频| 熟女电影av网| 国产淫片久久久久久久久 | 久久人人精品亚洲av| 国产精品亚洲av一区麻豆| 一进一出抽搐gif免费好疼| 美女 人体艺术 gogo| 亚洲最大成人中文| 亚洲av美国av| 久久久国产成人精品二区| 日韩国内少妇激情av| 久久国产乱子免费精品| 久久天躁狠狠躁夜夜2o2o| av在线老鸭窝| 国语自产精品视频在线第100页| 90打野战视频偷拍视频| 国产真实乱freesex| 久久久久免费精品人妻一区二区| 一区二区三区高清视频在线| 亚洲国产精品sss在线观看| 美女高潮喷水抽搐中文字幕| 啪啪无遮挡十八禁网站| 久久草成人影院| 亚洲精品在线观看二区| 亚洲内射少妇av| 非洲黑人性xxxx精品又粗又长| netflix在线观看网站| 宅男免费午夜| 真人一进一出gif抽搐免费| 一本综合久久免费| 男女做爰动态图高潮gif福利片| 少妇裸体淫交视频免费看高清| 中出人妻视频一区二区| 国产白丝娇喘喷水9色精品| 色综合亚洲欧美另类图片| 亚洲欧美日韩高清专用| 色综合婷婷激情| 亚洲成人久久性| 一边摸一边抽搐一进一小说| 夜夜躁狠狠躁天天躁| 午夜福利在线在线| 俺也久久电影网| 老女人水多毛片| 大型黄色视频在线免费观看| 90打野战视频偷拍视频| 久久精品国产99精品国产亚洲性色| 精品久久久久久久人妻蜜臀av| 最好的美女福利视频网| 日本a在线网址| 亚洲久久久久久中文字幕| 动漫黄色视频在线观看| 我的女老师完整版在线观看| 麻豆成人午夜福利视频| 亚洲成人免费电影在线观看| 精品久久久久久久久av| 久久草成人影院| 757午夜福利合集在线观看| 中文字幕人成人乱码亚洲影| 国产成人啪精品午夜网站| 成人精品一区二区免费| 国产精品三级大全| 99热精品在线国产| 欧美性感艳星| 色5月婷婷丁香| 色哟哟·www| 免费看光身美女| 黄色视频,在线免费观看| 久久久久国产精品人妻aⅴ院| 欧美日韩乱码在线| 特级一级黄色大片| 免费观看的影片在线观看| 变态另类成人亚洲欧美熟女| 可以在线观看的亚洲视频| 国产精品综合久久久久久久免费| 简卡轻食公司| 欧美日韩综合久久久久久 | 成年免费大片在线观看| 亚洲欧美日韩东京热| 国产成人福利小说| 天天一区二区日本电影三级| 岛国在线免费视频观看| 亚洲中文字幕一区二区三区有码在线看| 久久午夜亚洲精品久久| 国产老妇女一区| 国产成人av教育| 精品人妻偷拍中文字幕| 免费黄网站久久成人精品 | 欧美黄色片欧美黄色片| 欧美国产日韩亚洲一区| 人人妻,人人澡人人爽秒播| 久久亚洲真实| 国产精品电影一区二区三区| 在线观看一区二区三区| 国产精品久久久久久久久免 | 成人av一区二区三区在线看| 最近在线观看免费完整版| 婷婷亚洲欧美| 男女视频在线观看网站免费| 久久国产精品人妻蜜桃| 日本五十路高清| 一区二区三区免费毛片| 国产白丝娇喘喷水9色精品| 淫秽高清视频在线观看| 美女被艹到高潮喷水动态| 91av网一区二区| 久久久国产成人免费| 亚洲国产高清在线一区二区三| 久久99热6这里只有精品| 日本黄大片高清| 好男人在线观看高清免费视频| 亚洲成av人片在线播放无| 久久中文看片网| 免费在线观看成人毛片| 激情在线观看视频在线高清| 亚洲av熟女| 高潮久久久久久久久久久不卡| 人人妻人人澡欧美一区二区| 亚洲天堂国产精品一区在线| 国产精品三级大全| 丁香六月欧美| 亚洲七黄色美女视频| 特级一级黄色大片| 精品欧美国产一区二区三| 91久久精品电影网| 桃色一区二区三区在线观看| 美女免费视频网站| 欧美成人免费av一区二区三区| 哪里可以看免费的av片| 老司机午夜十八禁免费视频| 亚洲成人免费电影在线观看| 男女视频在线观看网站免费| 国产欧美日韩精品一区二区| 国产高清激情床上av| 欧美xxxx性猛交bbbb| 成人国产综合亚洲| 丰满乱子伦码专区| 亚洲成av人片在线播放无| 久久婷婷人人爽人人干人人爱| 国产欧美日韩一区二区精品| 特级一级黄色大片| 精品久久国产蜜桃| 中文字幕av在线有码专区| 久久这里只有精品中国| xxxwww97欧美| 人妻夜夜爽99麻豆av| 久99久视频精品免费| 国产视频一区二区在线看| 天美传媒精品一区二区| 又黄又爽又刺激的免费视频.| 欧美精品国产亚洲| 国产精品电影一区二区三区| 丰满乱子伦码专区| 少妇熟女aⅴ在线视频| 可以在线观看的亚洲视频| 国产男靠女视频免费网站| 久久久久久久亚洲中文字幕 | 亚洲国产精品久久男人天堂| 久久久久久久久久黄片| 成人美女网站在线观看视频| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 亚洲成a人片在线一区二区| 亚洲精品日韩av片在线观看| 啦啦啦韩国在线观看视频| 丰满乱子伦码专区| 日本黄色视频三级网站网址| 精品人妻熟女av久视频| 久久精品国产清高在天天线| 亚洲三级黄色毛片| 99久久无色码亚洲精品果冻| 一区二区三区激情视频| 欧美极品一区二区三区四区| 国产精品,欧美在线| 欧美日韩瑟瑟在线播放| 18禁裸乳无遮挡免费网站照片| 久久国产乱子伦精品免费另类| 老司机福利观看| a级毛片a级免费在线| 久久精品国产亚洲av涩爱 | 国产伦在线观看视频一区| 久久6这里有精品| 久久精品人妻少妇| 中出人妻视频一区二区| 久久精品久久久久久噜噜老黄 | 一级黄片播放器| 宅男免费午夜| 中文字幕久久专区| 18美女黄网站色大片免费观看| 国产精品一区二区性色av| 国产精品永久免费网站| 久久精品影院6| 日本成人三级电影网站|