• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A novel low-loss four-bit bandpass filter using RF MEMS switches

    2022-01-23 06:35:18LuluHan韓路路YuWang王宇QiannanWu吳倩楠ShiyiZhang張世義
    Chinese Physics B 2022年1期
    關(guān)鍵詞:王宇

    Lulu Han(韓路路) Yu Wang(王宇) Qiannan Wu(吳倩楠) Shiyi Zhang(張世義)

    Shanshan Wang(王姍姍)1,2,3,4, and Mengwei Li(李孟委)1,2,3,4,?

    1School of Instrument and Electronics,North University of China,Taiyuan 030051,China

    2Nantong Institute of Intelligent Opto-Mechatronics,North University of China,Nantong 226000,China

    3Center for Microsystem Integration,North University of China,Taiyuan 030051,China

    4Academy for Advanced Interdisciplinary Research,North University of China,Taiyuan 030051,China

    5School of Science,North University of China,Taiyuan 030051,China

    Keywords: four-bit,RF microelectromechanical system(MEMS)switch,reconfigurable filter,comb resonator

    1. Introduction

    Bandpass filters are widely used in microwave and millimeter-wave circuits and systems due to their ability to select or suppress signals at specific frequencies.[1-12]In recent years,great attention has been paid to reconfigurable filters based on various circuit structures,owning to their ability to reduce complexity and strengthen expansibility in modern electronic systems.[13-19]

    Traditional reconfigurable filters, including semiconductor filters,[14]and MEMS filters,[15-17,19]have been extensively studied over the last two decades. However, these filters have shortcomings,such as large structural size,complex structure, high loss, and low integration. Chuanget al.[14]proposed a switchable filter with a selectable range of 0.9-2.35 GHz based on the use of p-i-n diode switches. The maximum insertion loss of the filter was approximately 3 dB,and the overall size was 97 mm×32 mm. Since each diode was too complicated to be integrated into a uniplanar filter structure,this reconfigurable bandpass filter had limitations,for instance, a large size and large insertion loss. Moreover, based on MEMS switches, Zhanget al.[15]demonstrated an openloop reconfigurable filter composed of“open-loop”resonators and cantilever MEMS switches with reconfigurable frequency bands of 7.81 GHz and 8.35 GHz,respectively. The insertion loss of this reconfigurable filter in the passband was smaller than 3.4 dB,and its size was 25 mm×17 mm. Compared with the device described in Ref.[14],its size was greatly reduced,but it was still not conductive to integration into an RF module.

    To address the abovementioned problems associated with existing MEMS reconfigurable filters, this study proposes a novel low-loss four-bit filter using RF MEMS switches. It can switch 16 operating states through eight switches in the frequency range of 7-16 GHz, and the overall size of this novel proposed filter is only 4.4 mm×2.5 mm×0.4 mm. It can effectively reduce insertion loss, reduce the system size, and improve the reliability of the system.

    2. Theory and design

    2.1. Design of the MEMS switch

    The reconfigurable filter has eight MEMS switches that represent 16 operating states according to their positioning in the ‘up’ and ‘down’ states. Ohmic contact MEMS switches are employed to tune the filter frequency,[20,21]the equivalent circuit diagram is shown in Fig.1,in whichZcpwis the equivalent impedance of a coplanar waveguide (CPW),Rsis the resistance when the switch is“closed”,andCsis the coupling capacitance formed by the cantilever beam and the CPW signal line when the switch is“open”.

    The cantilever beam of the MEMS switch is a straight plate structure that has the characteristics of a simple structure and is easy to process. Additionally, to facilitate the release of the sacrificial layer and reduce the driving voltage of the MEMS switch, several release holes are designed in the cantilever beam. The structure and simulation results of the MEMS switch are shown in Figs.2(a)and 2(b),respectively.

    Fig. 1. Equivalent circuit diagram of the ohmic contact MEMS switch: (a)“closed”state and(b)“open”state.

    Fig. 2. (a) Structure of the MEMS switch. (b) Simulation results of the MEMS switch.

    The elastic coefficient of the straight plate cantilever beam design is mainly determined by the beam stiffness,k.When the driving voltage is applied directly under the cantilever beam,it is equivalent to a distributed load acting on the single-ended cantilever beam. Based on this,the elastic coefficientkof the cantilever beam can be expressed as

    wherel,w,t, andEare the length, width, thickness, and Young’s modulus of the cantilever beam. The elastic coefficient,kc, of the designed cantilever beam is calculated to be 1.024 N/m. The area between the cantilever beam and the pull-down electrode isA=18000 μm2, and the distance between the cantilever beam and the pull-down electrode isg=3.0μm. According to the calculation,the driving voltage isV=12.41 V.

    Fig.3. Displacement simulation of the cantilever beam of the MEMS switch.

    The coupling field finite-element software,COMSOL,is used to simulate the cantilever beam of the MEMS switch,and the simulation results are shown in Fig.3.The cantilever beam deforms under the action of static electricity,and the deformation is largest at its free end.When a distributed load is applied directly under the cantilever beam, the maximum displacement of the cantilever beam in theZdirection is 4.3μm,which is greater than the distance of 3.0μm between the switch pulldown electrode and the cantilever beam. We have therefore determined that the structure of the designed switch is reasonable.

    2.2. Design of the comb resonator

    In this study,a stepped impedance resonator(SIR)is applied to the comb resonator to realize the design of a miniaturized filter. SIRs are divided into theλg/4 type,theλg/2 type,and theλgtype. Theλg/4 type of SIR is selected because of its small size and the location of the center of its second passband at triple the base frequency. Theλg/4 type SIR is composed of an open circuit and short circuit in series through an impedance step junction.As shown in Fig.4,the equivalent impedance and equivalent electrical length of the open-circuit end are(Z1,θ1),and the equivalent impedance and equivalent electrical length of the short-circuit end are (Z2,θ2), respectively.

    Fig.4. Schematic of a λg/4-type SIR.

    Equation (2) represents the input impedance, ignoring the edge capacitance of the resonator. If the admittance isYi=1/Zi=0,theλg/4-type SIR resonance condition can be achieved as shown in Eq. (3). Thus, theλg/4-type SIR resonance conditions are related toθ1,θ2,andZ1/Z2.

    Equation (4) represents the total electrical length of theλg/4-type SIR. Compared with the electrical length ofπ/2 of a uniform impedance resonator (whose open-end width is equal to the short-end width), the SIR normalized resonator length is

    The comb resonator is composed of an arrangement of parallel coupling lines,in which one end is short-circuited and the other end is grounded through the lumped capacitor. Two symmetrical 50 Ω transmission lines are arranged at both ends of the resonator to form input and output signal ends of the resonator.[22]

    In the schematic diagram of the comb resonator in Fig.5,C′irepresents the load capacitance corresponding to the coupling line in sectioni, whereW′irepresents the width of the coupling line in sectioni,L′irepresents the length of the coupling line in sectioni, andSi,i+1represents the interval between the coupling line in sectioniand sectioni+1 of the resonator. Here,i=0-m. For narrowband comb resonators,the coupling lines from sections one tomare all resonators.The coupling lines of section zero and sectionm+1 feed the external circuit, which changes the impedance instead of acting as a resonator.[23]

    Fig.5. Schematic diagram of the comb resonator.

    Comb resonators have evolved from parallel coupling line resonators,and the central frequency of the resonator is mainly determined by the length of the resonator and the load capacitance. The coupling coefficient and the port loadQvalue of the resonator can be calculated by[24]

    whereσiis the Chebyshev low-pass prototype value,f0is the center frequency of the filter,BWis the passband bandwidth of the filter,and theKlevel is the coupling coefficient.

    2.3. Design of the four-bit filter

    Generally,the terminal load capacitance of the comb line is small and fixed. The central frequency of the filter can be adjusted by changing the capacitance if the fixed capacitance is replaced by an adjustable capacitor. Equation(7)shows the relationship between the central frequency of the filter,the resonator length,and the terminal capacitance value:

    whereYais the characteristic admittance of the resonator,θis the electrical length of the resonator, andCis the terminal capacitance.

    According to Eq.(7),the inverse relationship between the resonance frequency and the capacitance can be obtained by fixing the electrical length of the resonator and the specific admittance.Based on this characteristic,we designed a reconfigurable bandpass filter. The designed reconfigurable filter consists of eight MEMS switches and comb resonators,and the selection of a specific operating frequency band can be achieved by controlling the gating state of the MEMS switches.

    The reconfigurable filter in Fig. 6 is manufactured using MEMS technology and is mainly composed of a substrate and a metal structure.

    Fig.6. The structure of the reconfigurable filter.

    The filter uses a microstrip line to transmit microwave signals, and the characteristic impedance of its input/output terminals is 50 Ω. By controlling the size of each comb resonator and optimizing the spacing between them,a filter with excellent performance can be obtained. The structural parameters are shown in Table 1.

    Table 1. Structural parameters of the reconfigurable comb filter.

    Using the ANSOFT HFSS software,the RF performance of the four-bit filter based on MEMS switches is simulated,and the simulation results are shown in Fig. 7. Figures 7(a)-7(c)show the simulation results for theS21,S11and group delays of the filter, respectively. The filter performance of each switch state is shown in Table 2, where ‘1’ indicates that the switch is on and‘0’indicates that the switch is off.

    The simulation results indicate that for a frequency range of 7-16 GHz, the maximum insertion loss of the filter is approximately 1.99 dB, the minimum out-of-band rejection is about 18.30 dB, and the maximum bandpass group delay is 0.25 ns. This four-bit filter exhibits excellent performance among reconfigurable bandpass filters,and the proposed filter can switch 16 channel frequencies with fewer switches.

    Table 2. Corresponding filter performance of each switch state. f1/2 is the frequency point of the sideband.

    Fig.7. Simulation results for the filter: (a)S21,(b)S11,and(c)group delay.

    Table 3 provides a comparison between the results for currently used reconfigurable filters and the filter designed in this study. As can be seen from Table 3,the proposed filter is able to switch 16 channel frequencies with the least number of switches,thus improving the reliability of the filter.Compared with current reconfigurable band-pass filters,the proposed filter has the advantages of low insertion loss, small size, and high integration.

    Table 3. Comparison of reconfigurable bandpass filters.

    2.4. Fabrication and measurement of the RF MEMS switch

    The MEMS switch, as the core device of the reconfigurable filter, is fabricated using micro-nano surface technology. Figure 8 illustrates the fabrication process of the MEMS switch.

    First,a thermal oxide layer is grown by a wet etching process on a silicon wafer with a thickness of 400 μm. Second,a silicon nitride layer is deposited by plasmaenhanced chemical vapor deposition(PECVD).Third,a square silicon nitride layer is etched by reactive ion etching (RIE). Fourth, an aluminum(Al)layer is sputtered by magnetron sputtering to fabricate the drive electrode. Subsequently, an Au layer with a thickness of 2 μm is plated to fabricate the transmission line of the MEMS switch. Then,a polyimide(PI)sacrificial layer is spun and cured. Next, on the sacrificial layer, an Au layer with a thickness of 2 μm is electroplated to fabricate the top electrode. Finally,the sacrificial layer is released by RIE,and the MEMS switch is finally fabricated.9(c) show the switching on and switching off times of the switch,respectively. As the actuation signal rises from zero to the signal voltage,the switch starts to pull down and achieves a stable contact after multiple bounces; and the switching on time of the switch is about 48.2 μs. When the actuation signal drops from the pull-down voltage to zero, the switching off of the switch from the “on” state to the “off” state takes about 8.1 μs. On the other hand, reliability is a key metric of a MEMS reconfigurable filter, and the switching life of a MEMS switch can be up to 107times. After many tests, the insertion loss changed little and the repeatability was good,which confirms the performance of the reconfigurable filter.

    Fig.8. The fabrication processes of the MEMS switch.

    Fig.9. Measured results of the MEMS switch: (a)S21,(b)switching on time and(c)switching off time.

    3. Conclusions and perspectives

    In this study,the current development status of reconfigurable filters is first analyzed,and then a four-bit bandpass filter with a small size, low loss, and strong reconfigurability is designed.The terminal load capacitance of the comb resonator can be changed by MEMS switches,thus tuning the filter. The results show that this filter has good performance within a 7-16 GHz operational frequency range and can be used in multifrequency complex communication systems.As a result,it has great potential for use in channel selection,image suppression,duplexing,and multichannel communication.

    Acknowledgments

    Project supported by the National Defense Technology Industry Strong Foundation Project of China (Grant No. JCKY2018****06) and the Information System New items Project(Grant Nos.2018****26 and 2019****10).We thank the Key Laboratory of Instrumentation Science and Dynamic Measurement for their support.

    The measured results in Fig.9(a)show that the insertion loss of the MEMS switch is approximately 1.0 dB and the isolation is more than 22.0 dB in the range of 7-16 GHz,which satisfy the design specification requirements. Figures 9(b)and

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計
    應(yīng)急物流:疫情之下迎來“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    死不瞑目!我愛的悲情已婚男是個“影帝”
    報銷
    故事會(2014年19期)2014-09-25 14:08:10
    A Support Vector Machine Based on Bayesian Criterion
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    国产成人精品久久久久久| 97人妻天天添夜夜摸| 七月丁香在线播放| 国产精品成人在线| 国产av码专区亚洲av| 久久女婷五月综合色啪小说| a级片在线免费高清观看视频| 国产日韩欧美亚洲二区| 18禁观看日本| 自线自在国产av| 中文字幕制服av| 蜜桃国产av成人99| 国产69精品久久久久777片| 亚洲欧美日韩另类电影网站| 久久国内精品自在自线图片| 春色校园在线视频观看| 亚洲综合精品二区| 夜夜骑夜夜射夜夜干| av卡一久久| 美女内射精品一级片tv| 精品第一国产精品| 久久久久人妻精品一区果冻| 国产片内射在线| 中文字幕最新亚洲高清| 亚洲国产精品一区三区| 国产片内射在线| 观看美女的网站| 天美传媒精品一区二区| 看免费av毛片| 一级a做视频免费观看| 伦理电影免费视频| 久久热在线av| 亚洲情色 制服丝袜| 黄片播放在线免费| 看免费av毛片| 日本爱情动作片www.在线观看| 亚洲精品国产色婷婷电影| av天堂久久9| 午夜免费鲁丝| 黄片播放在线免费| 最近中文字幕高清免费大全6| 青春草亚洲视频在线观看| 看免费av毛片| 精品少妇内射三级| 亚洲婷婷狠狠爱综合网| 咕卡用的链子| 国产精品久久久久成人av| 国产精品久久久久成人av| 高清欧美精品videossex| 一级毛片我不卡| 大香蕉97超碰在线| 国产亚洲精品久久久com| 亚洲四区av| 日韩欧美精品免费久久| 亚洲欧美清纯卡通| av电影中文网址| 大香蕉97超碰在线| 在线 av 中文字幕| 最近手机中文字幕大全| 日韩欧美精品免费久久| 国产在视频线精品| 又黄又粗又硬又大视频| 亚洲欧美清纯卡通| 国内精品宾馆在线| 丝袜脚勾引网站| 少妇熟女欧美另类| 亚洲av综合色区一区| 香蕉精品网在线| 久久人人97超碰香蕉20202| 韩国精品一区二区三区 | 亚洲精品日韩在线中文字幕| 婷婷色麻豆天堂久久| 男女边摸边吃奶| 日本av免费视频播放| 亚洲精品,欧美精品| 亚洲色图 男人天堂 中文字幕 | 免费大片18禁| 看免费av毛片| 热re99久久国产66热| 亚洲欧美清纯卡通| 97人妻天天添夜夜摸| 国产乱来视频区| 久久久久国产精品人妻一区二区| 另类精品久久| av在线app专区| 免费看不卡的av| 国产欧美亚洲国产| 99国产综合亚洲精品| 视频在线观看一区二区三区| 亚洲天堂av无毛| 国产成人91sexporn| 亚洲国产欧美在线一区| 日韩av免费高清视频| 丰满迷人的少妇在线观看| 一级毛片我不卡| 在线 av 中文字幕| 啦啦啦啦在线视频资源| 欧美3d第一页| 午夜福利视频在线观看免费| 精品人妻在线不人妻| 国产伦理片在线播放av一区| 国产一区二区激情短视频 | 中文字幕亚洲精品专区| 久久久a久久爽久久v久久| 亚洲欧美成人精品一区二区| 看十八女毛片水多多多| a级毛片在线看网站| 日本午夜av视频| 十分钟在线观看高清视频www| av一本久久久久| 国产精品女同一区二区软件| 嫩草影院入口| 国产精品久久久久久精品电影小说| 成人二区视频| 国产乱人偷精品视频| 午夜免费观看性视频| 91精品三级在线观看| 人体艺术视频欧美日本| 人成视频在线观看免费观看| av播播在线观看一区| 日韩大片免费观看网站| 一级毛片电影观看| 久久精品久久精品一区二区三区| 午夜福利影视在线免费观看| 一级黄片播放器| 免费黄网站久久成人精品| 成年动漫av网址| 免费大片黄手机在线观看| 久久99一区二区三区| 午夜日本视频在线| 97在线视频观看| 校园人妻丝袜中文字幕| 欧美国产精品va在线观看不卡| 97精品久久久久久久久久精品| 久久久久久人妻| 两个人免费观看高清视频| 精品酒店卫生间| 免费高清在线观看视频在线观看| 国产精品秋霞免费鲁丝片| 夫妻午夜视频| 中文字幕精品免费在线观看视频 | 视频在线观看一区二区三区| 极品人妻少妇av视频| 制服人妻中文乱码| 春色校园在线视频观看| 如何舔出高潮| 久久婷婷青草| 黄色配什么色好看| 亚洲精品乱码久久久久久按摩| 精品国产乱码久久久久久小说| 午夜久久久在线观看| 亚洲成人手机| 少妇 在线观看| 精品亚洲成a人片在线观看| 免费看光身美女| av网站免费在线观看视频| 日韩不卡一区二区三区视频在线| 国产视频首页在线观看| 我要看黄色一级片免费的| 久久精品国产亚洲av天美| 国产成人午夜福利电影在线观看| 波野结衣二区三区在线| freevideosex欧美| 亚洲av男天堂| 成人漫画全彩无遮挡| 老司机亚洲免费影院| 日日啪夜夜爽| 国产成人精品福利久久| 国产黄频视频在线观看| 欧美国产精品一级二级三级| 欧美日韩国产mv在线观看视频| 免费黄网站久久成人精品| 久久亚洲国产成人精品v| 成人毛片60女人毛片免费| 国产一区二区在线观看av| 久久 成人 亚洲| 婷婷色av中文字幕| 高清视频免费观看一区二区| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 卡戴珊不雅视频在线播放| 午夜激情av网站| 久久久久久久亚洲中文字幕| 欧美激情极品国产一区二区三区 | 一边摸一边做爽爽视频免费| tube8黄色片| www.av在线官网国产| 欧美精品一区二区免费开放| 综合色丁香网| 韩国av在线不卡| 日韩欧美一区视频在线观看| 日本黄大片高清| 99热网站在线观看| 免费观看无遮挡的男女| 欧美成人精品欧美一级黄| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 一级片'在线观看视频| 又黄又粗又硬又大视频| 国产高清三级在线| 欧美最新免费一区二区三区| 成人国产av品久久久| 丰满饥渴人妻一区二区三| tube8黄色片| 国产精品一区二区在线观看99| 成人国产麻豆网| 精品一区在线观看国产| 人妻人人澡人人爽人人| 99久久人妻综合| 99视频精品全部免费 在线| 国产一区二区在线观看日韩| 久久青草综合色| 欧美亚洲日本最大视频资源| 久久av网站| 日本与韩国留学比较| av天堂久久9| 亚洲欧美日韩另类电影网站| 在线观看免费视频网站a站| 日本黄大片高清| 亚洲伊人久久精品综合| 亚洲国产最新在线播放| 国产欧美日韩一区二区三区在线| 赤兔流量卡办理| 交换朋友夫妻互换小说| 男女国产视频网站| 国产精品99久久99久久久不卡 | 亚洲欧美日韩卡通动漫| 三级国产精品片| 18禁国产床啪视频网站| 男的添女的下面高潮视频| 免费久久久久久久精品成人欧美视频 | 精品一区二区免费观看| 日本爱情动作片www.在线观看| 啦啦啦啦在线视频资源| 欧美激情国产日韩精品一区| 亚洲美女黄色视频免费看| 久久ye,这里只有精品| 久久精品久久久久久久性| 97超碰精品成人国产| 日韩av不卡免费在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 国产在视频线精品| 午夜影院在线不卡| 美女脱内裤让男人舔精品视频| 草草在线视频免费看| 国产av国产精品国产| 亚洲国产欧美日韩在线播放| 看免费av毛片| 如何舔出高潮| 久久精品国产亚洲av涩爱| 看非洲黑人一级黄片| 久久97久久精品| 男人舔女人的私密视频| 久久久国产精品麻豆| 精品一区二区三区四区五区乱码 | 国产免费视频播放在线视频| 午夜精品国产一区二区电影| www.av在线官网国产| 日韩中字成人| 中文字幕av电影在线播放| 日韩制服丝袜自拍偷拍| videosex国产| 草草在线视频免费看| av电影中文网址| 欧美精品高潮呻吟av久久| 香蕉丝袜av| 我的女老师完整版在线观看| 美国免费a级毛片| 在线观看一区二区三区激情| 中文字幕人妻丝袜制服| 女人精品久久久久毛片| av卡一久久| 高清欧美精品videossex| 国产亚洲av片在线观看秒播厂| 色5月婷婷丁香| 久久免费观看电影| 男女国产视频网站| 久久精品久久久久久久性| 99国产精品免费福利视频| 久久这里只有精品19| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 久久99蜜桃精品久久| 一二三四中文在线观看免费高清| 亚洲图色成人| 免费观看在线日韩| 国产精品欧美亚洲77777| 韩国av在线不卡| 国产成人精品福利久久| 日韩制服骚丝袜av| 亚洲精品国产av成人精品| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 观看美女的网站| 天天躁夜夜躁狠狠躁躁| 一级毛片黄色毛片免费观看视频| 少妇的逼好多水| 一级黄片播放器| 欧美日本中文国产一区发布| 亚洲国产av影院在线观看| 9热在线视频观看99| 亚洲在久久综合| 最新中文字幕久久久久| 一本久久精品| 精品视频人人做人人爽| 91国产中文字幕| 免费观看无遮挡的男女| 久久国产精品男人的天堂亚洲 | 97精品久久久久久久久久精品| 高清视频免费观看一区二区| 日本wwww免费看| 2021少妇久久久久久久久久久| 久久精品aⅴ一区二区三区四区 | 久久国产精品大桥未久av| xxx大片免费视频| 一二三四在线观看免费中文在 | 亚洲伊人久久精品综合| 国产精品久久久久成人av| 久久久精品免费免费高清| 亚洲欧洲国产日韩| 久久国内精品自在自线图片| 欧美激情 高清一区二区三区| 草草在线视频免费看| 亚洲av免费高清在线观看| 精品视频人人做人人爽| 亚洲av国产av综合av卡| 日本爱情动作片www.在线观看| 黑人巨大精品欧美一区二区蜜桃 | av国产久精品久网站免费入址| 成人综合一区亚洲| av在线观看视频网站免费| 亚洲精品av麻豆狂野| 巨乳人妻的诱惑在线观看| 女性生殖器流出的白浆| 在线观看三级黄色| 麻豆精品久久久久久蜜桃| 欧美激情极品国产一区二区三区 | 久久精品国产鲁丝片午夜精品| 免费观看在线日韩| 激情五月婷婷亚洲| 国产一级毛片在线| 亚洲经典国产精华液单| 亚洲精品色激情综合| 欧美日韩av久久| 99re6热这里在线精品视频| 一级毛片 在线播放| 国产精品嫩草影院av在线观看| 国产不卡av网站在线观看| 看非洲黑人一级黄片| 大香蕉97超碰在线| 蜜桃在线观看..| av福利片在线| 我要看黄色一级片免费的| 午夜免费男女啪啪视频观看| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频 | 精品久久国产蜜桃| 亚洲av综合色区一区| 日韩熟女老妇一区二区性免费视频| 亚洲精品色激情综合| 秋霞在线观看毛片| 伦理电影大哥的女人| 久久久久视频综合| 三级国产精品片| 国产免费现黄频在线看| 中国三级夫妇交换| a级毛色黄片| 色网站视频免费| 男女边吃奶边做爰视频| 国产成人欧美| 免费高清在线观看日韩| 2018国产大陆天天弄谢| 婷婷成人精品国产| 久久久久久久久久人人人人人人| 高清av免费在线| 日韩制服丝袜自拍偷拍| 日韩av不卡免费在线播放| 黄片播放在线免费| 日本91视频免费播放| 只有这里有精品99| 午夜福利影视在线免费观看| 久久久精品免费免费高清| 精品一区二区三卡| 日韩一本色道免费dvd| 卡戴珊不雅视频在线播放| 成年动漫av网址| 亚洲伊人久久精品综合| 97精品久久久久久久久久精品| 色网站视频免费| 亚洲国产精品一区三区| av黄色大香蕉| 在线观看免费日韩欧美大片| 大香蕉97超碰在线| 久久精品国产亚洲av涩爱| 爱豆传媒免费全集在线观看| 麻豆乱淫一区二区| 亚洲av电影在线进入| 久久久精品94久久精品| 欧美成人午夜免费资源| 一级片免费观看大全| 精品少妇内射三级| 久久av网站| 精品久久蜜臀av无| 99热全是精品| 日本-黄色视频高清免费观看| 亚洲精品久久午夜乱码| 80岁老熟妇乱子伦牲交| 国产精品秋霞免费鲁丝片| 丰满饥渴人妻一区二区三| av.在线天堂| 免费观看性生交大片5| 国产乱人偷精品视频| 91国产中文字幕| 亚洲国产色片| 国产精品.久久久| 国产片内射在线| 久久久国产欧美日韩av| 如日韩欧美国产精品一区二区三区| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 高清av免费在线| 老熟女久久久| 欧美精品一区二区免费开放| av不卡在线播放| 国产一区二区三区综合在线观看 | 日本91视频免费播放| 哪个播放器可以免费观看大片| 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| 黄色怎么调成土黄色| 午夜免费男女啪啪视频观看| 777米奇影视久久| 内地一区二区视频在线| 蜜臀久久99精品久久宅男| 国产片特级美女逼逼视频| 人人妻人人澡人人爽人人夜夜| 久久久久人妻精品一区果冻| 国产精品久久久av美女十八| 免费在线观看黄色视频的| 侵犯人妻中文字幕一二三四区| 国产免费福利视频在线观看| 大片免费播放器 马上看| 午夜福利,免费看| 狂野欧美激情性xxxx在线观看| 国产xxxxx性猛交| 18禁裸乳无遮挡动漫免费视频| 黑人巨大精品欧美一区二区蜜桃 | 久久精品久久久久久久性| 在线看a的网站| 成人无遮挡网站| 黄色一级大片看看| 久久久久人妻精品一区果冻| 国产精品一区www在线观看| 人人妻人人澡人人爽人人夜夜| 成人18禁高潮啪啪吃奶动态图| 久久精品熟女亚洲av麻豆精品| 国产精品国产三级国产av玫瑰| 欧美3d第一页| 一级片免费观看大全| av电影中文网址| av有码第一页| 日本av手机在线免费观看| 少妇被粗大的猛进出69影院 | 国产精品熟女久久久久浪| 久久久久久久久久久免费av| 青春草亚洲视频在线观看| 一区二区日韩欧美中文字幕 | 亚洲人与动物交配视频| 国产免费福利视频在线观看| 毛片一级片免费看久久久久| 国产毛片在线视频| 色哟哟·www| 一级爰片在线观看| 国产成人91sexporn| 新久久久久国产一级毛片| 亚洲精品第二区| 边亲边吃奶的免费视频| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 黑人猛操日本美女一级片| 成年动漫av网址| 我的女老师完整版在线观看| 黄色 视频免费看| 久久99蜜桃精品久久| 熟女人妻精品中文字幕| 亚洲第一区二区三区不卡| 美女内射精品一级片tv| 亚洲中文av在线| 国国产精品蜜臀av免费| 精品99又大又爽又粗少妇毛片| videosex国产| 日韩不卡一区二区三区视频在线| 黑人欧美特级aaaaaa片| 在现免费观看毛片| 国产片特级美女逼逼视频| 国产在线一区二区三区精| 黄色配什么色好看| 亚洲天堂av无毛| 午夜激情av网站| 老司机影院毛片| 国产精品久久久久久av不卡| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| 18+在线观看网站| 男女国产视频网站| av视频免费观看在线观看| 亚洲内射少妇av| 在线观看免费视频网站a站| 国产国拍精品亚洲av在线观看| 亚洲三级黄色毛片| 国产成人免费观看mmmm| 国产亚洲精品第一综合不卡 | 中文字幕亚洲精品专区| 婷婷色综合大香蕉| 如何舔出高潮| 免费观看a级毛片全部| 亚洲国产日韩一区二区| 视频中文字幕在线观看| 亚洲在久久综合| 天美传媒精品一区二区| 99国产精品免费福利视频| 久久精品久久精品一区二区三区| 国产在线视频一区二区| 精品少妇久久久久久888优播| 深夜精品福利| 美女xxoo啪啪120秒动态图| 国产精品人妻久久久久久| 国产视频首页在线观看| 免费看不卡的av| 丰满乱子伦码专区| 久久精品aⅴ一区二区三区四区 | 美女主播在线视频| 狠狠精品人妻久久久久久综合| 99热国产这里只有精品6| 久久久久久人妻| 草草在线视频免费看| 97在线人人人人妻| 99久久中文字幕三级久久日本| 999精品在线视频| 亚洲色图 男人天堂 中文字幕 | 国产一区二区激情短视频 | 草草在线视频免费看| 国产深夜福利视频在线观看| 亚洲综合色惰| 一个人免费看片子| 日韩大片免费观看网站| 久久久久久久亚洲中文字幕| 精品午夜福利在线看| 久久婷婷青草| 伦理电影免费视频| a级片在线免费高清观看视频| 免费大片18禁| 国产欧美亚洲国产| av卡一久久| 欧美日韩综合久久久久久| 精品国产国语对白av| 天堂中文最新版在线下载| 国产精品熟女久久久久浪| 中文天堂在线官网| 97人妻天天添夜夜摸| 婷婷色麻豆天堂久久| 欧美3d第一页| 少妇人妻 视频| 新久久久久国产一级毛片| xxx大片免费视频| 人妻 亚洲 视频| 两个人看的免费小视频| www.av在线官网国产| videossex国产| 狠狠婷婷综合久久久久久88av| 热99国产精品久久久久久7| 欧美精品一区二区大全| 99热6这里只有精品| 免费人妻精品一区二区三区视频| 欧美3d第一页| 亚洲国产av影院在线观看| 国产成人精品一,二区| 搡老乐熟女国产| 黄色一级大片看看| 亚洲精品国产av成人精品| 中文天堂在线官网| 青春草国产在线视频| 精品国产一区二区久久| 一级爰片在线观看| 国产亚洲最大av| 欧美日本中文国产一区发布| 王馨瑶露胸无遮挡在线观看| 寂寞人妻少妇视频99o| 亚洲五月色婷婷综合| 男人操女人黄网站| 老熟女久久久| 久久久久视频综合| 成人综合一区亚洲| 国产日韩一区二区三区精品不卡| 黄色配什么色好看| 中文字幕精品免费在线观看视频 | 欧美日韩av久久| 91国产中文字幕| 亚洲国产成人一精品久久久| av免费在线看不卡| 在线观看免费视频网站a站| 青春草亚洲视频在线观看| 成年人免费黄色播放视频| 99久久综合免费| 满18在线观看网站| 天堂俺去俺来也www色官网| 视频区图区小说| 久久久久久久亚洲中文字幕| 男女高潮啪啪啪动态图| 国产探花极品一区二区| 国产在视频线精品| 亚洲精品久久久久久婷婷小说| 天天躁夜夜躁狠狠躁躁| 精品久久蜜臀av无| 亚洲,欧美,日韩|