• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Support Vector Machine Based on Bayesian Criterion

    2011-03-09 11:57:02YUChuanqiang于傳強(qiáng)GUOXiaosong郭曉松WANGYu王宇WANGZhenye王振業(yè)
    Defence Technology 2011年2期
    關(guān)鍵詞:王宇

    YU Chuan-qiang(于傳強(qiáng)),GUO Xiao-song(郭曉松),WANG Yu(王宇),WANG Zhen-ye(王振業(yè))

    (1.The Second Artillery Engineering College,Xi’an 710025,Shaanxi,China;2.The Second Artillery Weather Center,Beijing 100089,China)

    Introduction

    Monitor devices always detect system’s state parameters and compare them with their normal values to decide the system’s running state.As changes of some factors,such as system model deviation,noise,system’s reference input and the external environment etc.,the deference between the detected parameter and its normal value is usually not zero even in normal system[1].In order to reduce the effects of the uncertainty factors on the parameter’s deference,thresholds are often introduced to enhance the robustness of the monitor device[2-4].The selection of threshold is important because a big threshold can cause high missing report rate and a small threshold can cause high false report rate.

    In practical applications,the threshold selection method most in use is that based on 3σ criterion[5],where σ is the standard deviation of the detected parameter,and the better method is that based on minimum error probability criterion[6].

    There are two significant shortcomings for the practical application of the method based on minimum error probability.Firstly,the prior probability is not taken into account.Secondly,the losses caused by wrong decision are not considered.

    Aiming at the above two shortcomings,a Bayesian threshold selection criterion based on minimum risk is used in a certain weapon system’s state decision process.Compared with other criterion in the classification problem,Bayesian criterion has two advantages:i.e.,it considers the system’s prior knowledge,and it takes the losses caused by wrong decision into account.This criterion greatly improves the effect in the system state decision[7].

    The main drawback of Bayesian criterion for the state decision is that the system’s distribution density has to be known and it is usually found out cumbersomely.There is a basic principle in the statistical learning theory[8]:in a solution of a given problem,we should try to avoid putting a more general problem as its middle step.Compared with the solution of parameter probability density,the classification of system state according to the detected parameters is a more specific problem.Therefore,a better solution idea is to classify the parameters directly according to the training samples,which omits the solution of probability density.

    Classification is one of the major applications of SVM which can classify the test samples after training.Thus,it can be directly used to classify the detected signals and to judge the system’s state[9].But,it does not consider the classified problem’s prior probability and occurrence probability,and is only interested in the magnitude of the problem’s actual value,strictly speaking,the inner product of the sample for seedless function or the inner product of the kernel function for seed function,its solution depends on the characteristics of the training samples.According to the Bayesian criterion,if the prior probability of the classified information can be added into support vector machine algorithm,the reliability of the classification results will be enhanced.Next,the main idea of SVM based on the Bayesian theory and the implementation process of the algorithm will be discussed.

    1 SVM in Classification Problem

    Suppose two types of one-dimensional data{x1,…,xn}∈X,{y1,…,yn}∈Y,and their locations in the one-dimensional coordinate are shown in Fig.1,where▽and○represent the different categories respectively,and obviously,this group of data is linearly inseparable.

    Fig.1 A group of linearly inseparable data

    To solve this problem with SVM,one method is through introducing slack variables,misjudged loss or penalty parameter to extend the distance between the non-separable points in the training samples and the decision hyper-plane,so that the problem becomes linearly separable;the other is to use the kernel function to map one-dimensional data to a high-dimensional space,which is equivalent to change the original decision hyper-plane into hyper-surface,so that the issues can be resolved.Similarly,the above two method can be combined to solve the nonlinear non-separable problem.

    However,the decision function obtained by training SVM with this data group will inevitably lead to misclassification,because the training data used in SVM crosses,as shown in middle part of Fig.1.The decision function’s establishment entirely depends on the training samples,the decision results for this sample group may be optimal,SVM can make the right judgments for this data group,but it is difficult to ensure to make high reliability judgment for other new data,especially near the data crossover,the misclassification probability is higher.In fact,this is an inevitable problem in the classification method to use the samples to make judgment,the basic reason is that the complete samples of the problem can not be obtained;even if we can obtain the complete samples,it may not be able to classify completely,and we can only make the optimal decisions based on the existing samples.

    2 SVM Based on Bayesian Criterion

    In weapon systems,the data crossover phenomenon of the detected parameters is quite prominent because the working environment is quite poor and some factors,such as interference,are very strong,many data detected as failure results may be caused by the interference and other factors.Therefore,the classification reliability is in doubt if the support vector machine is only used to carry out judgment and decision or the decision is only made on the basis of the analysis results for the historical samples.The method with higher reliability is to make decision by considering not only the historical information of the existing samples,but also the current information.

    SVM has the advantage in the use of existing samples,therefore,we just discuss how to add the current information into SVM.For convenience,we take the one-dimensional sample as an example.

    notes the support vector,the decision function of SVM can be expressed as

    For a set of samples,the classification result de-pends on s(x).If X1={1.5,2,3.1,4,5}in f(x)=1 and X2={4.4,5.2,6,7}in f(x)= -1,trained SVM with the samples and classified them then,we can obtain the classification region,as shown in Fig.2.In Fig.2,the vertical axis denotes the value of s(x),the horizontal axis the value of sample,□ the sample in X1,○ the sample in X2,and ▽ the value of s(x).The divide point is the intersection of line a and horizontal axis,L1denotes the positive region,L2the negative region.The falsely divided samples A and B are the first sample in the left and right of line a,respectively.

    Fig.2 Classification region

    This false divide issue is simply described in Section 1.In order to solve this problem,the slack variables,misjudgment loss(penalty parameter),kernel function or their combination will be introduced in SVM.

    If such modified SVM can completely classify the training samples,a new problem will be engendered to use that classification method to solve practical problems.We can reasonably suppose that a test data is at point A belonging to positive type;when SVM classifies this data,it will be divided into negative type,because A in the training samples belong to negative type.The main reason causing the above phenomenon is that the area near points A and B belongs to the cross-region,the data at this area can not be classified accurately without other conditions.

    Since we can not correctly classify,then we can only improve the accurate probability of the classification results as much as possible.A feasible solution on this issue is to add a prior probability to the decision function of SVM,i.e.,

    Compared with the traditional decision function,c(p-0.5)is the added term,where c(-∞ <c≤∞)is the weighting coefficient,p(0 ≤p≤1)the prior probability,if p=0.5,there is no prior information of the samples.

    The parameter p can be obtained from the prior probability algorithm or other ways.c depends on the sample characteristics.

    2.1 Derivation of SVM Based on Bayesian Criterion

    Following two rules can be summarized for the classification problem.

    1)Point A belonging to positive-region can be classified as a negative type if the prior probability belonging to the negative type reaches a certain value,and vice versa.

    2)For the point A belonging to the positive-region,the larger the value of s(A)is,the larger the prior probability to partition it into the negative type is,and vice versa.

    We can obtain the algorithm to get the value of c according to the above simple rules.It can be discussed as the following three situations.

    2.1.1 Falsely Divided Samples in Two Regions for Training Samples

    1)The prior probability of the samples belonging to the positive type exceeds 0.5

    For point B in Fig.2,if s(x)=s(B)<0,then f(B)=-1,and if c(p-0.5)≥ -s(B),then f(B)=1.Suppose that the value of s(x)is the smallest value in all falsely divided samples.It can be believed that point B is classified as positive type only if the prior probability of point B belonging to positive type reaches a certain value.In order to have higher reliability,the value of prior probability can be set to 1.Thus,we have

    2)The prior probability of the samples belonging to the negative type exceeds 0.5

    Similarly,for point A in Fig.2,we have

    2.1.2 No Falsely Divided Samples in Two Regions for Training Samples

    For convenience,we also take Fig.2 as an example.The points A and B are not the falsely divided points.In this case,the samples are completely separable,we can also use the similar calculation method.

    1)The prior probability of the samples belonging to the positive type exceeds 0.5

    For point B,suppose that s(x)is the smallest value in all negative samples,if s(x)=s(B)< 0,then f(B)= -1,and if c(p-0.5)≥ -s(B),then f(B)=1.Like the above method,it can also be believed that point B can be classified as positive type only if the prior probability of point B belonging to positive type reaches a certain value,therefore,we have

    2)The prior probability of the samples belonging to the negative type exceeds 0.5

    Similarly,for the point A in Fig.2,we have

    2.1.3 Falsely Divided Samples in Only One Region for Training Samples

    In this case,the problem can be solved by combining the above two methods.

    2.2 Conclusions on SVM Based on Bayesian Criterion

    Based on the above three cases, the value of c can be found out by using following two formulas.If p=0.5,the adding items in the formula(2)are zero,thus,c can be taken as any value.

    1)If the prior probability of samples belonging to the positive type exceeds 0.5,

    where the point B is the nearest point in the negative region to the demarcation line.

    2)If the prior probability of samples belonging to the negative type exceeds 0.5,

    where the point A is the nearest point in the positive region to the demarcation line.

    Now,the problems for finding the value of the parameter c are solved.In this way,the problems for using the decision function of SVM based on Bayesian criterion to obtain the parameter values are all solved,and the implementation steps are as follows.

    (1)Train SVM with the training samples;

    (2)After training,test the training samples by using SVM;

    (3)Find out the value of c according to the formulas(5)and(6);

    (4)For a given sample,if its prior probability is known,substituting this value into formula(2)to get the classification result,and if it is unknown,substituting p=0.5 into formula(2)to get the classification result.

    3 Problems in Application

    In the above algorithm,the value of c only depends on the positive point or the negative point the nearest to the demarcation line,but it may not be reasonable in many cases.As we know,the support vector of SVM is the best point to reflect the characteristics of the classified sample.Therefore,the value of s(x)can be taken as the average value of s(x)of a few points near to the demarcation line.The experiment results show that the expansibility and robustness are improved by using such method.

    In order to solute the prior probability,if the result of the testing data is negative type at a time,then the test data belongs to the negative type at the next time,and vise versa.Its probability can be taken as 1 in both cases,but different value of c represents different meanings.

    In the status detection,the data of SVM inputs in a time sequence,the value of prior probability can be calculated according to the above method.For some static classification problems,such as the character recognition,image segmentation,and so on,the prior probability calculation needs to be further studied.

    4 Verifications

    For a temperature control device in a weapon system,its power is supplied by a regulated power supply with 28 V.The output power of this power supply is larger,and it is used very frequently and irregularly,thus,it is easy to be broken down.Now,we detect its status by using the common SVM and the SVM based on Bayesian criterion[10].

    According to the system’s historical data,a training sample set including 200 normal date,with 27.6 in mean value and 0.55 in,standard deviation,and 200 data in exceptional status with 29.5 in mean value and 0.52 in standard deviation can be built.The distribution of training data is shown in Fig.3,where ○ denotes the sample in fault condition,* the sample in normal condition.It can be seen evidently form the figure that there is data crossover phenomenon in the two kinds of samples.

    Fig.3 Distribution of training data

    Now we train two kinds of SVM,a traditional SVM and a SVM based on Bayesian criterion with the samples.These two SVMs all use the support vector machine algorithm in type C,the value of parameter C is taken as 100,and use the RBF kernel function,the number of support vectors is 48 after training,which account for 12%of the entire samples.In the SVM based on Bayesian criterion,the number of positive support vectors is 23,and the value of parameter c is 1.177 5;the number of negative support vectors is 25,and the value of parameter c is -1.393 4.

    After training,the actual detected data in sampling rate of 1 000 is classified by using two kinds of support vector machines algorithm.

    4.1 Classification Results for Fault Data

    The failure data is acquired when the filter capacitor in the power supply is burnt.The classification results are shown in Fig.4.

    Fig.4 Classification results for fault data with two kinds of SVMs

    The top curve in Fig.4 represents the measured output voltage of the power supply,which is changed from 100-th sample point,and reaches 29.1 in 110-th sample point.The above phenomenon is caused by the breakage of the filter capacitor in the power supply.The middle curve in Fig.4 shows the classification results of the traditional support vector machine algorithm.In this curve,“1”represents the normal status and“-1”the fault status.We find the fault in the 105-th sample point,and there is some false reported status during the fault.The bottom curve in Fig.4 shows the classification results of the support vector machine algorithm based on Bayesian criterion.Similarly,“1”denotes the normal status and“-1”the fault status,and the false reported status exists also,but the number of false report is reduced obviously.It shows the superiority of this algorithm.

    4.2 Classification Results for Disturbed Data

    We used the data,which is disturbed by the starting of a hydraulic system,to verify two support vector machine algorithms,as shown in Fig.5.The meaning of the curve in Fig.5 is similar to Fig.4.It can be seen from Fig.5 that the support vector machine algo-rithm based on Bayesian criterion has the better classification result.

    Fig.5 Classification results for disturbed data with two kinds of SVM

    5 Conclusions

    The traditional SVM algorithm only uses the historical training sample and does not consider the current system status in the classification.The improved SVM algorithm based on Bayesian criterion overcomes the shortcoming of the traditional one.This new algorithm is used to detect the status of a weapon system,and the classification results show that it is better than the traditional algorithm.Both robustness and sensitivity of the algorithm are enhanced.

    [1]LIU Chun-heng,ZHOU Dong-hua.An adaptive selection method for threshold in fault detection[J].Journal of Shanghai Maritime University,2001,22(3):46 - 50.(in Chinese)

    [2]Ding X,Guo L,F(xiàn)rank P M.Parameterization of linear observers and its application to observer design[J].IEEE Transactions on Automatic Control,1994,39(8):1648-1652.

    [3]Ding S X,Jeinsch T,F(xiàn)rank P M,Ding E L.A unified approach to the optimization of fault detection systems[J].International Journal of Adaptive Control and Signal Processing,2000,14(7):725 -745.

    [4]Basseville M.Detecting changes in signals and systems[J].Automatic,1998,24(3):309-326.

    [5]JIANG Yun-chun,QIU Jing,LIU Guan-jun,et al.A adaptive threshold method in fault detection[J].Journal of Astronautics,2006,27(1):36 -40.(in Chinese)

    [6]FENG Shao-jun,YUAN Xin.A new method to identify the threshold in fault diagnosis[J].Journal of Data Acquisition and Processing,1999,14(1):30 - 32.(in Chinese)

    [7]JIA Nai-guang.Statistical decision theory and Bayesian[M].Beijing:China Statistics Press,1998:78 -96.(in Chinese)

    [8]Vapnik V N.The nature of statistical learning theory[M].New York:Springer-Verlag,2000:102-112.

    [9]Granovsky B L,Hans-Georg Müller.Optimizing kernel methods:a unifying variational principle[J].International Statistical Review,1999,59(3):373-388.

    [10]YU Chuan-qiang.The realization of fault diagnosis device in the temperature and electricity control and hydraulic system in XXX weapons system[D].Xi’an:Second Artillery Engineering Institute,2003.(in Chinese)

    猜你喜歡
    王宇
    Experimental study on the effect of H2O and O2 on the degradation of SF6 by pulsed dielectric barrier discharge
    基于ShuffleNet V2算法的三維視線估計(jì)
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    應(yīng)急物流:疫情之下迎來(lái)“大考”
    美術(shù)作品
    人生的岔路口,幸好遇到你
    Cavitation erosion in bloods*
    死不瞑目!我愛(ài)的悲情已婚男是個(gè)“影帝”
    報(bào)銷
    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*
    建设人人有责人人尽责人人享有的| 青草久久国产| 大型av网站在线播放| 最近最新免费中文字幕在线| 90打野战视频偷拍视频| 国产免费福利视频在线观看| 最新的欧美精品一区二区| 99国产精品一区二区蜜桃av | 午夜老司机福利片| 国产熟女午夜一区二区三区| 一区二区av电影网| 亚洲av男天堂| 国产男人的电影天堂91| 中国国产av一级| 人人妻人人添人人爽欧美一区卜| 高清在线国产一区| xxxhd国产人妻xxx| 亚洲精品av麻豆狂野| 午夜91福利影院| 岛国在线观看网站| 亚洲中文字幕日韩| 国产精品免费视频内射| 国产成人欧美| 少妇粗大呻吟视频| av有码第一页| 亚洲国产av新网站| 久久午夜综合久久蜜桃| 热re99久久精品国产66热6| 国产精品久久久人人做人人爽| 国产成人精品久久二区二区91| 日韩大片免费观看网站| 97人妻天天添夜夜摸| 日韩 欧美 亚洲 中文字幕| 免费观看人在逋| 免费不卡黄色视频| 亚洲专区字幕在线| 啦啦啦免费观看视频1| 丝袜美腿诱惑在线| 国产97色在线日韩免费| 一本大道久久a久久精品| 精品亚洲成a人片在线观看| 久久女婷五月综合色啪小说| 久久久久视频综合| 午夜激情av网站| 一区福利在线观看| 亚洲国产欧美一区二区综合| 亚洲欧洲精品一区二区精品久久久| 欧美精品亚洲一区二区| 欧美黄色片欧美黄色片| 一进一出抽搐动态| 一本久久精品| 男人添女人高潮全过程视频| 丝袜人妻中文字幕| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 久久中文字幕一级| av又黄又爽大尺度在线免费看| 超碰成人久久| 国产欧美日韩一区二区三 | 99久久99久久久精品蜜桃| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 首页视频小说图片口味搜索| a 毛片基地| 国产淫语在线视频| 青草久久国产| 9191精品国产免费久久| tube8黄色片| 亚洲精品中文字幕一二三四区 | 亚洲一区中文字幕在线| 国产欧美日韩一区二区三 | 欧美日韩精品网址| 男女床上黄色一级片免费看| 亚洲国产av影院在线观看| 大片免费播放器 马上看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久人妻精品电影 | 亚洲一区二区三区欧美精品| 精品国产乱子伦一区二区三区 | 一本色道久久久久久精品综合| 欧美乱码精品一区二区三区| 亚洲精品久久成人aⅴ小说| 久久久久久久久久久久大奶| 久久综合国产亚洲精品| av天堂在线播放| 久久中文字幕一级| 老司机福利观看| 9热在线视频观看99| 久久亚洲精品不卡| 成人黄色视频免费在线看| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 各种免费的搞黄视频| 女性被躁到高潮视频| 日韩 欧美 亚洲 中文字幕| 国产精品 国内视频| 中文字幕最新亚洲高清| 伊人久久大香线蕉亚洲五| 人人妻人人澡人人爽人人夜夜| 免费不卡黄色视频| 亚洲专区国产一区二区| www.av在线官网国产| 国产一区二区在线观看av| 搡老熟女国产l中国老女人| 韩国精品一区二区三区| 黄频高清免费视频| 欧美大码av| 美女视频免费永久观看网站| 91av网站免费观看| 一级片'在线观看视频| 老熟妇乱子伦视频在线观看 | 爱豆传媒免费全集在线观看| 少妇 在线观看| 亚洲成av片中文字幕在线观看| 操出白浆在线播放| 岛国在线观看网站| 亚洲成av片中文字幕在线观看| 女警被强在线播放| 亚洲一区中文字幕在线| 国产在线视频一区二区| 日韩大片免费观看网站| 国产精品一二三区在线看| 欧美激情极品国产一区二区三区| 国产欧美日韩综合在线一区二区| 中文精品一卡2卡3卡4更新| 亚洲视频免费观看视频| 亚洲精品美女久久久久99蜜臀| 久久国产精品大桥未久av| 老鸭窝网址在线观看| 最黄视频免费看| 国产高清videossex| 制服人妻中文乱码| 超碰成人久久| 飞空精品影院首页| 日本五十路高清| 国产欧美日韩一区二区三 | 国产伦人伦偷精品视频| 丝袜人妻中文字幕| 久久精品久久久久久噜噜老黄| 欧美中文综合在线视频| 男男h啪啪无遮挡| 国产视频一区二区在线看| 波多野结衣av一区二区av| 国产欧美日韩精品亚洲av| 满18在线观看网站| 精品久久久久久电影网| 一级毛片女人18水好多| 久久久久久久久免费视频了| 在线观看舔阴道视频| 性色av一级| 精品一品国产午夜福利视频| 免费高清在线观看日韩| 如日韩欧美国产精品一区二区三区| 国产精品免费大片| 999久久久国产精品视频| 欧美xxⅹ黑人| 黄色a级毛片大全视频| 久久精品国产a三级三级三级| 欧美xxⅹ黑人| 啦啦啦视频在线资源免费观看| 久久久国产欧美日韩av| 香蕉国产在线看| 91九色精品人成在线观看| 久久狼人影院| 国产成人av教育| 岛国在线观看网站| 捣出白浆h1v1| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| 纵有疾风起免费观看全集完整版| 日日夜夜操网爽| 午夜影院在线不卡| 久久香蕉激情| 高清欧美精品videossex| 国产不卡av网站在线观看| av福利片在线| 97人妻天天添夜夜摸| 亚洲精品美女久久av网站| 桃花免费在线播放| 咕卡用的链子| 国产亚洲av片在线观看秒播厂| 久久久久精品人妻al黑| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区 | 午夜福利在线免费观看网站| 人人妻人人澡人人看| 国产日韩一区二区三区精品不卡| 欧美乱码精品一区二区三区| 久久国产精品男人的天堂亚洲| 人人妻人人澡人人爽人人夜夜| e午夜精品久久久久久久| 99九九在线精品视频| 午夜精品国产一区二区电影| 亚洲精品国产精品久久久不卡| 大香蕉久久成人网| 欧美久久黑人一区二区| 亚洲精品第二区| 日韩欧美一区视频在线观看| cao死你这个sao货| 一级,二级,三级黄色视频| 午夜激情久久久久久久| 欧美激情久久久久久爽电影 | 精品少妇一区二区三区视频日本电影| 美女午夜性视频免费| 欧美日韩亚洲综合一区二区三区_| 精品久久久久久电影网| 在线观看舔阴道视频| 午夜免费成人在线视频| 深夜精品福利| 大香蕉久久成人网| 久久综合国产亚洲精品| 欧美日韩黄片免| 欧美日本中文国产一区发布| 青草久久国产| 日日夜夜操网爽| 国产在线一区二区三区精| 国产不卡av网站在线观看| 亚洲精品第二区| 欧美黄色片欧美黄色片| av超薄肉色丝袜交足视频| 国产精品免费大片| 久久久久网色| 80岁老熟妇乱子伦牲交| 超色免费av| 亚洲熟女精品中文字幕| 丝袜美足系列| h视频一区二区三区| 中文欧美无线码| 看免费av毛片| 久久久国产欧美日韩av| 纵有疾风起免费观看全集完整版| 色视频在线一区二区三区| 精品人妻一区二区三区麻豆| av超薄肉色丝袜交足视频| 高潮久久久久久久久久久不卡| 亚洲三区欧美一区| 国产不卡av网站在线观看| 国产精品偷伦视频观看了| 咕卡用的链子| 欧美激情 高清一区二区三区| 黄色片一级片一级黄色片| 一边摸一边抽搐一进一出视频| 少妇被粗大的猛进出69影院| 成人黄色视频免费在线看| 99国产精品99久久久久| 欧美在线黄色| 免费高清在线观看视频在线观看| netflix在线观看网站| 成年动漫av网址| 亚洲五月婷婷丁香| 一本久久精品| 国产又色又爽无遮挡免| 国产精品.久久久| 成人国语在线视频| 在线观看舔阴道视频| 青春草视频在线免费观看| 桃红色精品国产亚洲av| 精品卡一卡二卡四卡免费| 涩涩av久久男人的天堂| 五月开心婷婷网| 婷婷丁香在线五月| 国产亚洲一区二区精品| 国产欧美亚洲国产| 中文精品一卡2卡3卡4更新| 久久久精品区二区三区| 99re6热这里在线精品视频| 亚洲精华国产精华精| 搡老乐熟女国产| 久久久久久人人人人人| 91av网站免费观看| 久久热在线av| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 脱女人内裤的视频| 热re99久久精品国产66热6| www.999成人在线观看| 久久精品亚洲av国产电影网| 国产高清国产精品国产三级| 不卡一级毛片| 69av精品久久久久久 | 超碰成人久久| 男人爽女人下面视频在线观看| 在线永久观看黄色视频| 精品熟女少妇八av免费久了| 精品少妇内射三级| 国产淫语在线视频| av网站免费在线观看视频| 欧美久久黑人一区二区| 涩涩av久久男人的天堂| 男女边摸边吃奶| 午夜91福利影院| 国产91精品成人一区二区三区 | 在线观看免费日韩欧美大片| 高潮久久久久久久久久久不卡| 久久久久久免费高清国产稀缺| 91av网站免费观看| 久久久久久久久免费视频了| av在线老鸭窝| 久久精品亚洲av国产电影网| 午夜91福利影院| av在线app专区| 亚洲精华国产精华精| 黄色毛片三级朝国网站| 国产日韩欧美在线精品| 黄片大片在线免费观看| 搡老熟女国产l中国老女人| 18禁国产床啪视频网站| 99热国产这里只有精品6| 欧美日韩国产mv在线观看视频| 日本欧美视频一区| 亚洲激情五月婷婷啪啪| 中文字幕av电影在线播放| 一个人免费看片子| 亚洲精品自拍成人| 9色porny在线观看| 久久国产精品男人的天堂亚洲| tocl精华| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 欧美国产精品一级二级三级| 国产高清视频在线播放一区 | 中文字幕av电影在线播放| 日韩 欧美 亚洲 中文字幕| 操出白浆在线播放| 97人妻天天添夜夜摸| 成人亚洲精品一区在线观看| 高清av免费在线| 午夜免费成人在线视频| 俄罗斯特黄特色一大片| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 亚洲人成电影免费在线| 国产精品熟女久久久久浪| 欧美日本中文国产一区发布| 久久久久视频综合| 美女视频免费永久观看网站| 亚洲av日韩精品久久久久久密| av网站在线播放免费| 丝瓜视频免费看黄片| 亚洲av欧美aⅴ国产| 午夜91福利影院| 亚洲第一青青草原| av片东京热男人的天堂| 建设人人有责人人尽责人人享有的| 久久人妻福利社区极品人妻图片| 久久人人爽av亚洲精品天堂| 少妇精品久久久久久久| 久久久国产成人免费| 精品少妇久久久久久888优播| 日韩视频在线欧美| 十分钟在线观看高清视频www| 欧美亚洲日本最大视频资源| 欧美在线一区亚洲| 国产成人精品久久二区二区免费| 国产伦理片在线播放av一区| 成人国语在线视频| 纯流量卡能插随身wifi吗| 亚洲激情五月婷婷啪啪| 日韩免费高清中文字幕av| 两个人免费观看高清视频| 如日韩欧美国产精品一区二区三区| 国产精品99久久99久久久不卡| 色94色欧美一区二区| 搡老乐熟女国产| 少妇精品久久久久久久| 久久精品久久久久久噜噜老黄| 97人妻天天添夜夜摸| 免费观看人在逋| 精品国内亚洲2022精品成人 | 欧美精品一区二区大全| 黑人欧美特级aaaaaa片| 国产成人系列免费观看| 视频在线观看一区二区三区| 亚洲va日本ⅴa欧美va伊人久久 | 一本色道久久久久久精品综合| 婷婷成人精品国产| 国产免费福利视频在线观看| 99九九在线精品视频| 人妻一区二区av| 久久久久久亚洲精品国产蜜桃av| 国产精品国产三级国产专区5o| 美女脱内裤让男人舔精品视频| 丁香六月欧美| 考比视频在线观看| 老司机午夜十八禁免费视频| 日韩中文字幕欧美一区二区| 久久久久久久久久久久大奶| 欧美精品啪啪一区二区三区 | 老司机福利观看| 男女午夜视频在线观看| 欧美精品一区二区免费开放| 不卡av一区二区三区| 黄色视频不卡| 国产成人啪精品午夜网站| 国产亚洲精品第一综合不卡| 69精品国产乱码久久久| 国产精品国产三级国产专区5o| cao死你这个sao货| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 精品国内亚洲2022精品成人 | 各种免费的搞黄视频| 丝瓜视频免费看黄片| 成人黄色视频免费在线看| 亚洲精品国产区一区二| 色精品久久人妻99蜜桃| 热99国产精品久久久久久7| 人人妻人人爽人人添夜夜欢视频| 久久久国产一区二区| 激情视频va一区二区三区| 国产精品久久久久久人妻精品电影 | 免费高清在线观看视频在线观看| 一区二区三区乱码不卡18| 欧美日韩中文字幕国产精品一区二区三区 | 丝袜在线中文字幕| 中国美女看黄片| 中文字幕精品免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 午夜福利乱码中文字幕| 精品久久蜜臀av无| 亚洲专区中文字幕在线| 777久久人妻少妇嫩草av网站| 一本一本久久a久久精品综合妖精| 欧美另类一区| 亚洲全国av大片| 亚洲一卡2卡3卡4卡5卡精品中文| 激情视频va一区二区三区| 午夜福利在线观看吧| www日本在线高清视频| 黑丝袜美女国产一区| 日本av手机在线免费观看| 国产av一区二区精品久久| 女人精品久久久久毛片| 成年av动漫网址| 18禁黄网站禁片午夜丰满| 激情视频va一区二区三区| 十八禁人妻一区二区| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 咕卡用的链子| 在线精品无人区一区二区三| 国产精品一区二区在线不卡| 成年动漫av网址| 午夜激情久久久久久久| 亚洲av欧美aⅴ国产| 少妇裸体淫交视频免费看高清 | 国产av又大| 老熟妇乱子伦视频在线观看 | 黑人猛操日本美女一级片| 美女中出高潮动态图| 亚洲伊人久久精品综合| 国产成人欧美| 一级,二级,三级黄色视频| 国产成+人综合+亚洲专区| 久久女婷五月综合色啪小说| 亚洲成人手机| 国产一区二区三区在线臀色熟女 | 岛国在线观看网站| 一个人免费在线观看的高清视频 | 国产又爽黄色视频| 亚洲免费av在线视频| 日韩欧美国产一区二区入口| 在线观看免费午夜福利视频| 各种免费的搞黄视频| 狂野欧美激情性bbbbbb| 欧美xxⅹ黑人| 看免费av毛片| 久久久欧美国产精品| 午夜成年电影在线免费观看| 一区福利在线观看| 大码成人一级视频| 国产在线观看jvid| 十分钟在线观看高清视频www| 18禁观看日本| 制服诱惑二区| 狂野欧美激情性bbbbbb| 天堂中文最新版在线下载| 女性被躁到高潮视频| av超薄肉色丝袜交足视频| 欧美成人午夜精品| 中国美女看黄片| 成年人午夜在线观看视频| 欧美xxⅹ黑人| 免费在线观看视频国产中文字幕亚洲 | 男女之事视频高清在线观看| 欧美日韩国产mv在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 少妇粗大呻吟视频| 亚洲少妇的诱惑av| 国产精品成人在线| 麻豆乱淫一区二区| 91国产中文字幕| 蜜桃国产av成人99| 午夜精品久久久久久毛片777| 亚洲精品中文字幕在线视频| 日韩人妻精品一区2区三区| 国产亚洲av高清不卡| 久久九九热精品免费| 欧美亚洲日本最大视频资源| 欧美人与性动交α欧美精品济南到| 12—13女人毛片做爰片一| 欧美人与性动交α欧美精品济南到| 老汉色∧v一级毛片| 嫁个100分男人电影在线观看| 九色亚洲精品在线播放| 国产免费福利视频在线观看| 欧美人与性动交α欧美软件| 国产伦人伦偷精品视频| 老司机深夜福利视频在线观看 | 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 人人澡人人妻人| 在线精品无人区一区二区三| 高潮久久久久久久久久久不卡| 99re6热这里在线精品视频| 50天的宝宝边吃奶边哭怎么回事| 99re6热这里在线精品视频| 高潮久久久久久久久久久不卡| 在线天堂中文资源库| 少妇猛男粗大的猛烈进出视频| 午夜福利免费观看在线| 国产免费一区二区三区四区乱码| 黑丝袜美女国产一区| 搡老熟女国产l中国老女人| 日韩欧美免费精品| 中文字幕精品免费在线观看视频| 国产成人影院久久av| 日韩欧美国产一区二区入口| 亚洲精品国产色婷婷电影| 老司机影院毛片| 久热爱精品视频在线9| 国产国语露脸激情在线看| 国产主播在线观看一区二区| 热re99久久国产66热| 亚洲黑人精品在线| 亚洲 国产 在线| 日本猛色少妇xxxxx猛交久久| 国产一区二区激情短视频 | 最黄视频免费看| 日韩电影二区| 91精品伊人久久大香线蕉| 色精品久久人妻99蜜桃| 99国产极品粉嫩在线观看| 国产高清videossex| 亚洲性夜色夜夜综合| 国产日韩欧美视频二区| 久久久久久亚洲精品国产蜜桃av| 男女床上黄色一级片免费看| 欧美精品啪啪一区二区三区 | 亚洲三区欧美一区| 亚洲精品乱久久久久久| 捣出白浆h1v1| 精品福利观看| 国产一区二区在线观看av| 亚洲精品一二三| 亚洲欧美清纯卡通| 波多野结衣一区麻豆| 欧美日韩一级在线毛片| 久久久精品免费免费高清| 国产成人精品久久二区二区免费| 国产成人影院久久av| tube8黄色片| 日本av手机在线免费观看| 99国产精品一区二区蜜桃av | 老汉色∧v一级毛片| av网站在线播放免费| 成人免费观看视频高清| 99热全是精品| 精品久久蜜臀av无| 五月开心婷婷网| 亚洲精品成人av观看孕妇| 免费不卡黄色视频| 在线精品无人区一区二区三| 老熟妇乱子伦视频在线观看 | 飞空精品影院首页| 亚洲欧洲日产国产| 久久精品人人爽人人爽视色| 亚洲成人免费电影在线观看| 久久久久国产一级毛片高清牌| 欧美日本中文国产一区发布| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲精品国产av蜜桃| 精品一区在线观看国产| 免费观看人在逋| 女人被躁到高潮嗷嗷叫费观| 男女高潮啪啪啪动态图| 精品国产乱码久久久久久男人| 免费在线观看影片大全网站| 中文字幕色久视频| 国产亚洲欧美在线一区二区| 97精品久久久久久久久久精品| 夜夜夜夜夜久久久久| 欧美黑人欧美精品刺激| 国产精品久久久久久精品电影小说| 国产一区二区在线观看av| 男女床上黄色一级片免费看| a 毛片基地| 精品久久久久久电影网| 亚洲久久久国产精品| 欧美日韩精品网址| 两人在一起打扑克的视频| 国产在线视频一区二区| 一级a爱视频在线免费观看| 一本色道久久久久久精品综合| 亚洲精品国产精品久久久不卡| 秋霞在线观看毛片| 亚洲综合色网址| 国产一区二区三区在线臀色熟女 | 亚洲国产成人一精品久久久| 国产免费福利视频在线观看| 亚洲欧美精品综合一区二区三区| 日本91视频免费播放| 精品一区二区三区av网在线观看 | 国产不卡av网站在线观看|