• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*

    2009-05-15 01:40:14GAOQijun高啟君WANGYuxin王宇新XULi許莉WANGZhitao王志濤andWEIGuoqiang衛(wèi)國強(qiáng)
    關(guān)鍵詞:高啟王宇衛(wèi)國

    GAO Qijun (高啟君), WANG Yuxin (王宇新), XU Li (許莉), WANG Zhitao (王志濤) and WEI Guoqiang (衛(wèi)國強(qiáng))

    ?

    Proton-exchange Sulfonated Poly(ether ether ketone)/SulfonatedPhenolphthalein Poly(ether sulfone) Blend Membranes in DMFCs*

    GAO Qijun (高啟君)1,2, WANG Yuxin (王宇新)1,2, XU Li (許莉)1,**, WANG Zhitao (王志濤)1,2and WEI Guoqiang (衛(wèi)國強(qiáng))1,2

    1School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China2State Key Laboratory of Chemical Engineering, Tianjin 300072, China

    sulfonated poly(ether ether ketone), sulfonated phenolphthalein poly(ether sulfone), blend membrane, direct methanol fuel cell

    1 INTRODUCTION

    Direct methanol fuel cells (DMFCs) have attracted considerable attention as electrical power sources, especially for portable or mobile power, owing to their high efficiency, low emissions, and easy fuel carriage [1]. Development and research on the cells have been an active area since the 1990s [2, 3]. DMFC technology has made significant progress, but two obstacles need to be surmounted before commercialization [4, 5]. First, the anode catalyst is inactive and unstable, causing a high overpotential loss of the anode. Second, severe methanol crossover from anode to cathode in the commercially available perfluorosulfonic acid (PFSA) proton-exchange membranes (PEM) (.., Nafion?) reduces fuel efficiency and increases the mixed electrode potential of the cathode, resulting in low cell performance [4, 5]. Moreover, the production of the commercially available PFSA polymer membranes is costly. Therefore, it is urgent to develop PEM with improved properties, including high proton conductivity, low methanol permeability, and low cost.

    Much effort has been made in recent years to develop alternative fluorine-free polymer membranes[6-12] and to modify PFSA polymer membranes [13-15]. It is widely recognized that sulfonated poly(ether ether ketone) (SPEEK) polymers are promising materials for membranes in DMFCs [6]. SPEEK polymers, in theory, have higher ion-exchange capacity (IEC) than PFSA polymers, which may compensate for the demerit of weaker acidity of their own sulfonic groups (SO3H). SPEEK membranes also exhibit lower methanol crossover and are less costly to produce than PFSA membranes [7]. The demand for high proton conductivity calls for SPEEK membranes to have a high degree of sulfonation (DS) and to function at high temperatures. However, highly sulfonated SPEEK membranes tend to swell excessively or even dissolve at high temperatures. Several attempts have been made to overcome the excessive swelling while maintaining high proton conductivity, for example, by synthesizing SPEEK with various ratios of hydrophobic block to hydrophilic block [16], by introducing cross-links between some of the sulfonic groups in the SPEEK membrane [17], and by adding inorganic particles (.., ZrO2) into the SPEEK matrix [18].

    Blend of polymers with different properties is also an important approach in PEM research. A sulfonated polymer is blended with a non-conductive or relatively poorly conductive engineering thermoplastic. The sulfonated polymer provides high proton conductivity, and the engineering thermoplastic maintains the mechanical integrity. This approach aims to combine the desired properties and features of each component. SPEEK was blended with a variety of nonconductive polymers, including poly(ether imide) (PEI) [19, 20], poly(ether sulfone) (PES) [21], polyaniline (PANI) [22], polybenzimidazole (PBI) [23] and poly(vinylidene fluoride) (PVDF) [24]. These blend membranes showed, to different extents, improved mechanical stability and decreased methanol crossover, but at the cost of decreased proton conductivity.

    Zaidi. [25] doped with inorganic acids to enhance the proton conductivity of SPEEK/PEI blend membranes, but the initially high conductivity decreased because of gradual leaking of acid from the membranes. Blend membranes comprising two different sulfonated polymers were studied (.., SPS/SPPO, SPEKK/SPEKK) [26, 27].

    In this study, sulfonated phenolphthalein poly(ether sulfone) (SPES-C) is blended with the SPEEK matrix to prepare SPEEK/SPES-C blend membranes. Phenolphthalein poly(ether sulfone) (PES-C) is a novel thermoplastic engineering material and can be sulfonated easily in concentrated sulfuric acid [28]. The SPES-C membrane has low methanol permeability and high resistance to swelling, even at a DS of 65%, owing to the rigidity of the main chains and the steric hindrance effect of phenolphthalein side chains. It is expected that the blending of SPES-C into the SPEEK matrix leads to more thermostable membranes with high proton conductivity, low methanol permeability, and low swelling degree.

    2 EXPERIMENTAL

    2.1 Materials

    2.2 Sulfonation of PEEK and PES-C

    PEEK (10 g) was added gradually to 100 ml of concentrated sulfuric acid in a three-necked flask with vigorous stirring at 60oC. At a prescribed time point, the acid polymer solution was added to a large excessive ice-cold water with continuous agitation. The SPEEK precipitate was rinsed repeatedly with deionized water until the water reached pH 7. Then the SPEEK was dried at room temperature for 2 days followed by drying at 60oC for 24 h under vacuum. The PES-C was sulfonated as described in a previous study [29]. The IEC and DS of the sulfonated polymers were determined by a classical back-titration method [29].

    2.3 Membrane preparation

    Membranes were prepared by solution casting. SPEEK and SPES-C in prescribed amount were dissolved separately in DMF (10%, by mass) and then the two solutions were mixed and stirred for 6 h. The mixed solution was cast onto a glass plate and dried overnight at 60oC in a vacuum oven, followed by annealing at 100oC for 4 h. After cooling to room temperature, the membrane was peeled from the glass plate with deionized water. Finally, the membrane was treated with 1 mol·L-1sulfuric acid at room temperature for 24 h and subsequently rinsed with deionized water several times to remove acid completely. Membranes were kept in deionized water before testing. The thickness of the dried membranes was 80-90 μm.

    2.4 Membrane characterization

    Fourier transform infrared spectroscopy (FT-IR) was measured in absorbance mode by using an FT-IR spectrometer (Bio-RAD FTS 6000) in the range of wave numbers 4000-600 cm-1to compare the position of IR bands and to check the presence of functional groups and their interaction in composite membranes. Prior to the measurement, the samples were dried at 80°C for 24 h.

    Thermogravimetric analysis (TGA) was used to estimate the thermal stability of the blend membranes. We used a TGA thermogravimetric analyzer (TA-50 Instrument Shimadzu TGA) at a heating rate of 10 K·min-1in nitrogen gas in the temperature range 30-800°C. All specimens were dried overnight at 90°C under vacuum before measurements.

    The glass transition temperature (g) was determined with a differential scanning calorimeter (DSC) (TA-50 Instrument Shimadzu DSC). Measurements were performed over the temperature range 30-400oC at a heating rate of 5 K·min-1in nitrogen gas.

    The morphology of the cross-section of samples was examined with an environment-scanning electron microscope (PHILIPS XL30 ESEM). The samples were cryo-fractured in liquid nitrogen to obtain fresh cross-sections, which were coated with gold before measurements.

    The swelling degree (SD) of the specimens was obtained by measuring the area difference between the dry and the wet states as described in Ref. [23]. The membranes were cut into 3 cm × 4 cm rectangles and dried overnight at 90°C under vacuum before measuring the area (d). The dried membranes were immersed in 1 mol·L-1methanol for 48 h to reach equilibrium at the desired temperature. The wet membranes were wiped dry with tissue paper and the area was measured again (w). SD was calculated (in area percent) as follows:

    wheredandware the areas of dry and corresponding wet membrane sheets, respectively. Three sheets of each membrane composition were measured, and the average was calculated.

    Figure 11H-NMR spectra of SPEEK samples

    Figure 21H-NMR spectra of PES-C and SPES-C samples

    The proton conductivity of samples in the lateral direction was measured with a measurement cell and a frequency response analyzer (FRA) (Autolab PG-STAT20). Two stainless steel electrodes connected to the FRA were pressed against the membrane to be tested. The measurement temperature was controlled from room temperature to 160°C. The conductivity,, was calculated from the impedance data with the relation/(×), whereandare the distance between the electrodes and the cross-sectional area of the membrane, respectively, andwas derived from the low intersection of the high-frequency semi circle on a complex impedance plane with the() axis. For membranes that dissolved below 160°C, their dissolution was determined by measuring the mass before and after the proton conductivity measurement.

    3 RESULTS AND DISCUSSION

    3.1 1H-NMR study

    The1H-NMR spectra of the PEEK and PES-C were obtained with a Varian Unity-plus 400 NMR spectrometer, to determine the specific sites of sulfonation reaction in the polymer chains as well as their DS. Polymers (2.5%, by mass) in deuterated dimethyl sulfoxide (DMSO-d6) were prepared as1H-NMR samples. The chemical shift of tetramethylsilane was used as the internal standard reference. The spectral data were obtained at 30oC in the resonance frequency range of 3.99-95 MHz.

    The intensity of the distinct hydrogen signal at position g for SPEEK and that at position k for SPES-C are used to determine the Hgand Hkcontents, respectively. Noticing that the contents of Hgand Hkare equivalent to that of sulfonic acid groups, DS can be calculated by the following equation:

    whereis the total number of hydrogen atoms per repeat unit of the polymer before sulfonation, which is 12 for PEEK and 20 for PES-C,1is the peak area of the Hgsignal for SPEEK or that of the Hksignal for SPES-C, and2is the sum of the peak areas of all the signals except Hgfor SPEEK or except Hkfor SPES-C. The DS values obtained from NMR data and the back-titration method are given in Table 1. The DS values obtained from the two methods are in reasonably good agreement, confirming the validity of the back-titration method.

    Table 1 DS values of SPEEK and SPES-C obtained fromdifferent methods

    3.2 FT-IR spectra

    3.3 Thermogravimetric analysis

    3.4 Glass transition temperature and scanning electron microscope images

    The introduction of sulfonic groups increases the intermolecular interaction and the molecular size of the polymer, leading to an increase in glass transition temperature of the polymer. As shown in Fig. 5, the glass transition temperatures of PES-C and PEEK are around 260oC and 143oC, respectively, while those of SPES-C and SPEEK are around 276oC and 205oC, respectively.

    Figure 5 shows that the SPEEK/SPES-C blend membrane has only one glass transition temperature, instead of two for each of the components, indicating that SPEEK and SPES-C are perfectly mixed in the membrane [30]. Phase separation is not observed from the scanning electron microscope (SEM) images of the SPEEK/SPES-C blend membranes at magnification up to 10000′(Fig. 6), confirming the homogeneity of the membrane as concluded from the DSC measurement.

    3.5 Swelling behavior

    3.6 Methanol permeability

    The difference in methanol permeability between Nafionò115 and the SPEEK membrane can be explained qualitatively by the differences in their microstructures and the acidity of their sulfonic acid functional groups [6]. Nafion?115 macromolecules consist of very hydrophobic perfluorinated backbones and very hydrophilic side chains with sulfonic acid functional groups. It lead to relatively large microphase separation in Nafionò115, resulting in the low resistance to methanol permeation. The situation for SPEEK polymer is rather different. The carbon-hydrogen main chains with ether links, phenyl rings, and carbonyl groups in SPEEK make it less hydrophobic and more rigid compared with Nafionò115. Furthermore, the acidity of sulfonic acid functional groups of the SPEEK polymer is weaker than that of Nafionò115. Therefore, the microphase separation in the SPEEK membrane is not obvious and the hydrophilic ion channels are narrower, resulting in low methanol permeability. As shown in Fig. 8, the methanol permeability of the SPEEK/SPES-C blend membranes is even lower and decreases with the increase of SPES-C content in the membrane. The addition of SPES-C inhibits effectively the swelling of SPEEK matrix (Fig. 7) and thus imposes higher resistance to methanol crossover.

    3.7 Proton conductivity

    The relation between the conductivity in 100% RH and the reciprocal of the temperature for all the SPEEK and SPEEK/SPES-C (10%-40%, by mass) membranes, before they dissolve, can be described by the Arrhenius equation and exhibits straight lines in a semilogarithmic graph (Fig. 9). The apparent activation energy of proton transfer is obtained from the slope of the lines. It is noteworthy that the apparent activation energy of the SPEEK/SPES-C (30%, by mass) blend membrane has approximately 39 kJ×mol-1, in contrast to 38 kJ×mol-1for the SPEEK membrane and 9 kJ×mol-1for Nafion?115. The high apparent activation energy of SPEEK/SPES-C membranes is due to their low swelling degree and small variation with temperature (as shown in Fig. 9). Narrow ion channels and rich branches with dead-end “pockets” in the membrane will contribute to the high barrier to proton transfer [6].

    SPEEK and SPES-C materials are weakly acidic compared with Nafion?115. The dissociation of sulfonic acid functional groups in these polymers increases at high temperatures [6, 29], while that of Nafion?115 approaches 100% at room temperature. Therefore, the elevation of temperature increases the proton mobility and proton content in the SPEEK and SPEEK/SPES-C membranes, which results in a much faster increase of proton conductivity with temperature.

    3.8 Applicable temperature

    Figure 10 shows*as a function of the mass content of SPES-C in the blend membrane, which is markedly increased with the mass content of SPES-C polymer. As discussed in Section 3.5, the blending of SPES-C with SPEEK inhibits effectively the swelling and dissolution of the membranes. The increase of*with the increased content of SPES-C in the blend membrane is attributed to the depressed swelling and dissolution of the blend at high temperatures.

    The extension of the applicable temperature of the membrane is beneficial for DMFCs in many aspects. Working at higher temperatures, the membrane exhibits higher proton conductivity, lowering ohmic loss in DMFCs. The electrocatalysts are also more active and more tolerant to carbon monoxide poisoning at high temperatures [33]. When methanol fuel is fed in the form of gas at high temperature, the methanol crossover and its negative effects can be reduced markedly. Operating at high temperature also simplifies the management of water and heat in the DMFC systems [33].

    4 CONCLUSIONS

    SPEEK/SPES-C blend membranes with high levels of miscibility and thermal stability were prepared. Differential scanning calorimeter reveals acceptable miscibility of the two polymers. The methanol permeability of the membranes is about one order of magnitude lower than that of Nafion?115, and decreases with the increase of SPES-C content. The blending of SPES-C into the membranes also inhibits effectively their swelling, so that the membranes can be used at higher temperatures, presenting higher proton conductivity. The results of this study indicate a strong potential of these blend membranes for use in DMFCs.

    1 Hogarth, M.P., Hards, G.A., “Direct methanol fuel cells, Technological advances and further requirements”,.., 40, 150-159 (1996).

    2 Surampudi, S., Narayanan, S.R., Vamous, E., Frank, H., Halpert, G., Lconti, A., Kosek, J., Prakash, G.K., Olah, G.A., “Advances in direct oxidation methanol fuel cells”,., 47, 377-385 (1994).

    3 Kuver, A., Kamloth, K.P., “Comparative study of methanol crossover across electropolymerized and commercial proton exchange membrane electrolytes for the acid direct methanol fuel cell”,., 43, 2527-2535 (1998).

    4 Ren, X., Zawadzinski, T.A., Uribe, F., Dai, H., “Methanol cross-over in direct methanol fuel cells”,..., 95, 284-289 (1995).

    5 Heinzel, A., Barragan, V.M., “A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells”,., 84, 70-74 (1999).

    6 Kreuer, K.D., “On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells”,..., 185, 29-39 (2001).

    7 Yang, B., Manthiram, A., “Sulfonated poly(ether ether ketone) membranes for direct methanol fuel cells”,.-6, A229-A231 (2003).

    8 Wycisk, R., Lee, J.K., Pintauro, P.N., “Sulfonated polyphosphazene-polybenzimidazole membranes for DMFCs”,..., 152, A892-A898 (2005).

    9 Gu, S., He, G.H., Wu, X.M., Guo, Y.J., Liu, H.J., Peng, L., Xiao, G.k., “Preparation and characteristics of crosslinked sulfonated poly(phthalazinone ether sulfone ketone) with poly(vinyl alcohol) for proton exchange membrane”,..., 312, 48-58 (2008).

    10 Yamada, O., Yin, Y., Tanaka, K., Kita, H., Okamoto, K., “Polymer electrolyte fuel cells based on main-chain-type sulfonated polyimides”,., 50, 2655-2659 (2005).

    11 Song, J.M., Miyatake, K., Uchida, H., Watanabe, M., “Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane”,., 51, 4497-4504 (2005).

    12 Othman, M.H.D., Ismail, A.F., Mustafa, A., “Proton conducting composite membrane from sulfonated poly(ether ether ketone) and boron orthophosphate for direct methanol fuel cell application”,..., 299, 156-165 (2007).

    13 Lin, Y.F., Hsiao, Y.H., Yen, C.Y., Chiang, C.L., Lee, C.H., Huang, C.C., Ma, C.C.M., “Sulfonated poly(propylene oxide) oligomers/Nafion?acid-base blend membranes for DMFC”,., 172, 570-577 (2007).

    14 Ramya, K., Dhathathreyan, K.S., “Methanol crossover studies on heat-treated Nafion?membranes”,..., 311, 121-127 (2008).

    15 Park, K.T., Jung, U.H., Choi, D.W., Chun, K., Lee, H.M., Kim, S.H., “ZrO2-SiO2/Nafion?composite membrane for polymer electrolyte membrane fuel cells operation at high temperature and low humidity”,., 177, 247-253 (2008).

    16 Zhao, C., Li, X., Na, H., “Synthesis of sulfonated poly(ether ether ketone) (S-PEEKs) material for proton exchange membrane”,..., 280, 643-650 (2006).

    17 Mikhailenko, S.U.D., Wang K.P., Kaliaguine, S., Xing, P.X., Robertson, G.P., Guiver, M.D., “Proton conducting membranes based on cross-linked sulfonated poly(ether ether ketone) (SPEEK)”,..., 233, 93-99 (2004).

    18 Silva, V.S., Ruffmann, B., Silva, H., Gallego, Y.A., Mends, A., Madeira, L.M., Nunes, S.P., “Proton electrolyte membrane properties and direct methanol fuel cell performance (I) Characterization of hybrid sulfonated poly (ether ether ketone)/zirconium oxide membranes”,., 140, 34-40 (2005).

    19 Mikhailenko, S.U.D., Zaidi, S.M.J., Kaliaguine, S., “Electrical properties of sulfonated polyether ether ketone/polyetherimide blend membranes doped with inorganic acids”,...,:.., 33, 1386-1395 (2000).

    20 Kerres, J., Ullrich, A., Meier, F., Haring, T., “Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells”,., 125, 243-249 (1999).

    21 Manea, C., Mulder, M., “Characterization of polymer blends of polyether sulfone/sulfonated polysulfone and polyether sulfone/sulfonated polyetherether ketone for direct methanol fuel cell applications”,..., 206, 443-453 (2002).

    22 Nagarale, R.K., Gohil, G.S., Shahi, V.K., “Sulfonated poly(ether ether ketone)/polyaniline composite proton-exchange membrane”,..., 280, 389-396 (2006).

    23 Zaidi, S.M.J., “Preparation and characterization of composite membranes using blends of SPEEK/PBI with boron phosphate”,., 50, 4771-4777 (2005).

    24 Jung, H.Y., Park, J.K., “Blend membranes based on sulfonated poly(ether ether ketone) and poly(vinylidene fluoride) for high performance direct methanol fuel cell”,., 52, 7464-7468 (2007).

    25 Zaidi, S.M.J., Mikhailenko, S.D., Robertson, G.P., Guiver, M.D., Kaliaguine, S., “Proton conducting composite membranes from polyetherether ketone and heteropolyacids for fuel cell applications”,..., 173, 17-34 (2000).

    26 Jung, B., Kim, B., Yang, J.M., “Transport of methanol and protons through partially sulfonated polymer blend membranes for direct methanol fuel cell”,..., 245, 61-69 (2004).

    27 Swier, S., Ramani, V., Fenton, J.M., Kunz, H.R., Shaw, M.T., Weiss, R.A., “Polymer blends based on sulfonated poly(ether ketone ketone) and poly(ether sulfone) as proton exchange membranes for fuel cells”,..., 256, 122-133 (2005).

    28 Jia, L.D., Xu, X.F., Zhang, H.J., Xu, J.P., “Permeation of nitrogen and water vapor through sulfonated polyetherethersulfone membrane”,...,:.., 35, 2133-2140 (1997).

    29 Li, L., Wang, Y.X., “Sulfonated polyethersulfone Cardo membranes for direct methanol fuel cell”,..., 246, 167-172 (2005).

    30 Wu, P.X., Zhang, L.C., Polymer Blending Modification, China Light Industry Press, Beijing, 29-31 (1996).

    31 Tricoli, V., Carretta, N., Bartolozzi, M., “A comparative investgation of proton and methanol transport in fluorinated ionomeric membranes”,..., 147, 1286-1290 (2000).

    32 Huang, M.Y., Wang, Y.X., Cai, Y.Q., Xu, L., “Sulfonated poly(ether ether ketone)/zirconium tricarboxybutylphosphonate composite proton-exchange membranes for direct methanol fuel cells”,, 4, 337-342 (2007).

    33 Li, Q.F., Huang, R.H., “Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100oC”,.., 15, 4896-4915 (2003).

    2008-11-09,

    2009-08-18.

    the State Key Development Program for Basic Research of China (2008CB617502), the National Natural Science Foundation of China (20606025), and Program for Changjiang Scholars and Innovative Research Team in University of China (IRT0641).

    ** To whom correspondence should be addressed. E-mail: xuli620@eyou.com

    猜你喜歡
    高啟王宇衛(wèi)國
    基于ShuffleNet V2算法的三維視線估計(jì)
    A novel low-loss four-bit bandpass filter using RF MEMS switches
    許衛(wèi)國書法作品選
    我相信
    高啟與北郭詩社成員交游考
    Cavitation erosion in bloods*
    我的同桌
    高啟對李白詩歌藝術(shù)特點(diǎn)的繼承
    Evaluation on nitrogen isotopes analysis in high-C/N-ratio plants using elemental analyzer/isotope ratio mass spectrometry
    A Support Vector Machine Based on Bayesian Criterion
    国产成人福利小说| 欧美绝顶高潮抽搐喷水| av天堂在线播放| 免费av毛片视频| 国产伦人伦偷精品视频| 国产人妻一区二区三区在| 黄色丝袜av网址大全| 黄色配什么色好看| 国内少妇人妻偷人精品xxx网站| 欧美bdsm另类| 99国产精品一区二区蜜桃av| 老司机福利观看| 久久精品国产亚洲av涩爱 | 亚洲精品影视一区二区三区av| 成年免费大片在线观看| 9191精品国产免费久久| 国产野战对白在线观看| 一夜夜www| 桃色一区二区三区在线观看| 精品久久久久久久人妻蜜臀av| 精品一区二区三区视频在线观看免费| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 欧洲精品卡2卡3卡4卡5卡区| 中文亚洲av片在线观看爽| 热99在线观看视频| 99riav亚洲国产免费| 日本三级黄在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 久久亚洲精品不卡| a在线观看视频网站| 国产精品永久免费网站| 动漫黄色视频在线观看| 九色成人免费人妻av| 久久性视频一级片| 脱女人内裤的视频| 国产三级中文精品| 俄罗斯特黄特色一大片| 色综合欧美亚洲国产小说| 天天一区二区日本电影三级| 国产不卡一卡二| 日日干狠狠操夜夜爽| 男人狂女人下面高潮的视频| 又黄又爽又免费观看的视频| www.色视频.com| 夜夜爽天天搞| 国产在线精品亚洲第一网站| 999久久久精品免费观看国产| 美女黄网站色视频| 一夜夜www| av在线天堂中文字幕| 日本成人三级电影网站| 国产毛片a区久久久久| 欧美日韩黄片免| 日韩成人在线观看一区二区三区| 91麻豆精品激情在线观看国产| 久久精品综合一区二区三区| 免费搜索国产男女视频| 亚洲五月婷婷丁香| 精品乱码久久久久久99久播| 搡女人真爽免费视频火全软件 | 91久久精品国产一区二区成人| 毛片一级片免费看久久久久 | 精品午夜福利在线看| netflix在线观看网站| 国产淫片久久久久久久久 | 亚洲人成伊人成综合网2020| 中出人妻视频一区二区| 直男gayav资源| 丁香六月欧美| 少妇高潮的动态图| 亚洲第一区二区三区不卡| 亚洲精品一区av在线观看| av欧美777| 97超视频在线观看视频| 一个人免费在线观看的高清视频| 夜夜爽天天搞| 很黄的视频免费| 观看免费一级毛片| 国产午夜精品论理片| 国产一级毛片七仙女欲春2| 久久国产乱子伦精品免费另类| 在线免费观看的www视频| 国产一区二区三区在线臀色熟女| 久久午夜福利片| 桃色一区二区三区在线观看| 国产色爽女视频免费观看| 国产精品98久久久久久宅男小说| 久久精品影院6| 国产成人aa在线观看| 亚洲国产日韩欧美精品在线观看| av欧美777| 日韩欧美精品免费久久 | 国产亚洲欧美在线一区二区| 桃色一区二区三区在线观看| 精品不卡国产一区二区三区| 亚洲熟妇中文字幕五十中出| 午夜激情福利司机影院| 国产乱人伦免费视频| 亚洲综合色惰| 1024手机看黄色片| 国产在线男女| 在线观看一区二区三区| 国产精品久久视频播放| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 观看美女的网站| 亚洲avbb在线观看| 身体一侧抽搐| 51午夜福利影视在线观看| 欧美极品一区二区三区四区| 午夜福利在线观看免费完整高清在 | 欧美成人性av电影在线观看| 国产又黄又爽又无遮挡在线| 国产av在哪里看| 嫩草影院新地址| 如何舔出高潮| 麻豆久久精品国产亚洲av| 国产成人福利小说| 欧美另类亚洲清纯唯美| 色哟哟哟哟哟哟| 国产精品日韩av在线免费观看| 国产精品嫩草影院av在线观看 | 在线天堂最新版资源| 久久久久久久久大av| 久久性视频一级片| 欧美激情国产日韩精品一区| 黄片小视频在线播放| 国产高清有码在线观看视频| 国产成人av教育| xxxwww97欧美| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩国产亚洲二区| 日本熟妇午夜| 久久精品91蜜桃| 国产不卡一卡二| 99国产综合亚洲精品| 简卡轻食公司| 九色国产91popny在线| 黄色日韩在线| 午夜福利18| 亚洲18禁久久av| 欧美成人a在线观看| 一级av片app| 搞女人的毛片| 嫩草影视91久久| 91麻豆精品激情在线观看国产| 在线观看美女被高潮喷水网站 | 99精品在免费线老司机午夜| 在线观看免费视频日本深夜| 日韩中字成人| 偷拍熟女少妇极品色| av女优亚洲男人天堂| 亚洲第一电影网av| 欧美精品啪啪一区二区三区| 婷婷精品国产亚洲av在线| 成年女人永久免费观看视频| 午夜精品在线福利| 日韩欧美国产在线观看| 免费av不卡在线播放| 国产不卡一卡二| 一区二区三区四区激情视频 | 好看av亚洲va欧美ⅴa在| 亚洲一区二区三区色噜噜| 久久精品久久久久久噜噜老黄 | 午夜免费成人在线视频| 国产精品自产拍在线观看55亚洲| 成年女人毛片免费观看观看9| 精品福利观看| 国产精品免费一区二区三区在线| 欧美成狂野欧美在线观看| 免费在线观看日本一区| 人妻夜夜爽99麻豆av| 美女高潮喷水抽搐中文字幕| 亚洲aⅴ乱码一区二区在线播放| 久久久色成人| 午夜激情欧美在线| 欧美潮喷喷水| 欧美三级亚洲精品| 亚洲综合色惰| 欧美激情在线99| 99热这里只有是精品在线观看 | 亚洲自偷自拍三级| 久久午夜福利片| 老司机午夜十八禁免费视频| 十八禁国产超污无遮挡网站| 白带黄色成豆腐渣| 成人三级黄色视频| 亚洲狠狠婷婷综合久久图片| 别揉我奶头~嗯~啊~动态视频| 国产成人a区在线观看| 在线天堂最新版资源| 90打野战视频偷拍视频| 内地一区二区视频在线| 激情在线观看视频在线高清| 亚洲久久久久久中文字幕| 脱女人内裤的视频| 日本黄大片高清| 天堂√8在线中文| 午夜福利在线观看吧| 成熟少妇高潮喷水视频| 中文资源天堂在线| 精品人妻偷拍中文字幕| 国产亚洲欧美在线一区二区| 亚洲成人久久爱视频| 又爽又黄无遮挡网站| 搞女人的毛片| 婷婷精品国产亚洲av在线| 国产精品爽爽va在线观看网站| 国产精华一区二区三区| 久久人妻av系列| 国产精品亚洲一级av第二区| 国产精品一及| 一本一本综合久久| a级一级毛片免费在线观看| 中文字幕av成人在线电影| 久久这里只有精品中国| 欧美成人性av电影在线观看| 热99re8久久精品国产| 麻豆一二三区av精品| 国产精品影院久久| 一级毛片久久久久久久久女| 欧美丝袜亚洲另类 | 美女 人体艺术 gogo| 国产精品久久电影中文字幕| 一个人看的www免费观看视频| 国产主播在线观看一区二区| 欧美zozozo另类| 中文字幕免费在线视频6| 国产黄片美女视频| 少妇人妻一区二区三区视频| 天美传媒精品一区二区| 婷婷丁香在线五月| 亚洲色图av天堂| 久久久成人免费电影| 最后的刺客免费高清国语| 久久久久久久亚洲中文字幕 | 1024手机看黄色片| 国内精品久久久久精免费| 五月伊人婷婷丁香| 欧美xxxx性猛交bbbb| 国产精品乱码一区二三区的特点| 最近视频中文字幕2019在线8| 午夜久久久久精精品| 村上凉子中文字幕在线| 精品一区二区三区视频在线| 日本黄色视频三级网站网址| 性插视频无遮挡在线免费观看| 小蜜桃在线观看免费完整版高清| 我的女老师完整版在线观看| 亚洲av不卡在线观看| 1000部很黄的大片| 日韩欧美精品免费久久 | 午夜福利在线观看吧| 国产熟女xx| 波多野结衣高清作品| 99热这里只有精品一区| 亚洲精品一区av在线观看| 成年人黄色毛片网站| 日韩精品中文字幕看吧| 欧美日韩乱码在线| 好看av亚洲va欧美ⅴa在| 免费高清视频大片| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产欧美日韩一区二区精品| 国产精品久久久久久久电影| 嫩草影院入口| 色5月婷婷丁香| 欧美精品国产亚洲| 亚洲av成人精品一区久久| 欧美在线黄色| 性欧美人与动物交配| 亚洲专区中文字幕在线| 午夜精品在线福利| 午夜福利在线观看免费完整高清在 | 免费av毛片视频| 最近最新免费中文字幕在线| 十八禁国产超污无遮挡网站| 91字幕亚洲| 国产亚洲欧美在线一区二区| 亚洲人与动物交配视频| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 国产精品久久视频播放| 又爽又黄a免费视频| 91久久精品电影网| 国产精品三级大全| 女人被狂操c到高潮| 网址你懂的国产日韩在线| 国产91精品成人一区二区三区| 精品欧美国产一区二区三| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 精品免费久久久久久久清纯| 国产美女午夜福利| 国内精品一区二区在线观看| 国产蜜桃级精品一区二区三区| 国产淫片久久久久久久久 | 欧美在线黄色| 99riav亚洲国产免费| 免费观看精品视频网站| 亚洲成人精品中文字幕电影| a在线观看视频网站| 91在线观看av| 亚洲第一区二区三区不卡| 性插视频无遮挡在线免费观看| 搞女人的毛片| 精品免费久久久久久久清纯| 99国产精品一区二区三区| 噜噜噜噜噜久久久久久91| 精品国内亚洲2022精品成人| 99热只有精品国产| 久久久国产成人精品二区| 久久久久国产精品人妻aⅴ院| 免费看a级黄色片| 国产成人福利小说| 一进一出抽搐动态| 国产免费男女视频| 搡女人真爽免费视频火全软件 | 亚洲专区国产一区二区| 亚洲18禁久久av| 桃色一区二区三区在线观看| 亚洲经典国产精华液单 | 99热精品在线国产| 日本五十路高清| 亚洲五月天丁香| 精品国内亚洲2022精品成人| 少妇丰满av| 国产精品久久久久久久久免 | 国产真实乱freesex| 亚洲精品在线美女| 欧美色视频一区免费| 一区二区三区激情视频| 久久性视频一级片| 麻豆久久精品国产亚洲av| 免费观看的影片在线观看| 波野结衣二区三区在线| 中亚洲国语对白在线视频| 国产精品一区二区三区四区免费观看 | 亚洲中文字幕一区二区三区有码在线看| 大型黄色视频在线免费观看| 亚洲美女黄片视频| 国产精品爽爽va在线观看网站| 色综合欧美亚洲国产小说| 精品人妻偷拍中文字幕| 成人无遮挡网站| 国产熟女xx| 免费高清视频大片| 国产精品久久久久久久久免 | 97人妻精品一区二区三区麻豆| 国产精华一区二区三区| 91九色精品人成在线观看| 搡女人真爽免费视频火全软件 | 精品一区二区三区人妻视频| 舔av片在线| 亚洲第一电影网av| 人人妻,人人澡人人爽秒播| 99riav亚洲国产免费| 好看av亚洲va欧美ⅴa在| 波多野结衣高清作品| 国产视频内射| 亚洲一区二区三区色噜噜| 18美女黄网站色大片免费观看| 亚洲一区二区三区不卡视频| 少妇的逼好多水| 高清在线国产一区| 亚洲精品在线观看二区| 成人无遮挡网站| 国产在线男女| 国产真实伦视频高清在线观看 | 日本一二三区视频观看| 天天一区二区日本电影三级| 琪琪午夜伦伦电影理论片6080| 观看免费一级毛片| 亚洲成人中文字幕在线播放| aaaaa片日本免费| 国产精品亚洲一级av第二区| 国产一区二区三区在线臀色熟女| av在线老鸭窝| 国产高清激情床上av| 日本黄色片子视频| 亚洲精品亚洲一区二区| 嫩草影院入口| 国产伦精品一区二区三区四那| www.色视频.com| 久久久久九九精品影院| 国产精品99久久久久久久久| 国产黄a三级三级三级人| 精品人妻一区二区三区麻豆 | 久久久国产成人精品二区| 99久久久亚洲精品蜜臀av| 日韩欧美精品免费久久 | 俄罗斯特黄特色一大片| 亚洲欧美日韩高清在线视频| 搡女人真爽免费视频火全软件 | 国产野战对白在线观看| 欧美成狂野欧美在线观看| 757午夜福利合集在线观看| 久久精品影院6| 国产精品永久免费网站| 亚洲精品成人久久久久久| 国产美女午夜福利| 成年女人看的毛片在线观看| 嫩草影院新地址| 熟妇人妻久久中文字幕3abv| 黄色视频,在线免费观看| 真人做人爱边吃奶动态| 97超视频在线观看视频| 日韩欧美国产在线观看| 婷婷六月久久综合丁香| 亚洲avbb在线观看| 国产真实伦视频高清在线观看 | 亚洲av成人精品一区久久| 色综合亚洲欧美另类图片| 内地一区二区视频在线| 日韩中字成人| 蜜桃亚洲精品一区二区三区| 国产三级在线视频| 一级黄片播放器| 日本免费一区二区三区高清不卡| 99精品久久久久人妻精品| 精品一区二区三区人妻视频| 久久久色成人| 身体一侧抽搐| 最近在线观看免费完整版| 国产免费一级a男人的天堂| 给我免费播放毛片高清在线观看| 亚洲第一区二区三区不卡| 亚洲精品久久国产高清桃花| 亚洲经典国产精华液单 | 在线观看66精品国产| 国产精品久久视频播放| 99久久九九国产精品国产免费| 久久久久久久精品吃奶| 99国产精品一区二区三区| 男女之事视频高清在线观看| 欧美绝顶高潮抽搐喷水| 最近中文字幕高清免费大全6 | 在线播放无遮挡| 听说在线观看完整版免费高清| 中文字幕高清在线视频| 有码 亚洲区| 中文字幕av在线有码专区| 久久久久久国产a免费观看| 国产激情偷乱视频一区二区| 久久精品综合一区二区三区| 高潮久久久久久久久久久不卡| 长腿黑丝高跟| 99热精品在线国产| 女生性感内裤真人,穿戴方法视频| 丁香六月欧美| a级毛片免费高清观看在线播放| 久久精品国产清高在天天线| aaaaa片日本免费| 神马国产精品三级电影在线观看| 国产欧美日韩一区二区精品| 一区二区三区激情视频| 午夜免费激情av| h日本视频在线播放| 国产一区二区亚洲精品在线观看| 国产色婷婷99| 日本精品一区二区三区蜜桃| 真实男女啪啪啪动态图| 久久亚洲精品不卡| 人妻久久中文字幕网| 国产精品影院久久| 老司机午夜十八禁免费视频| 男人舔奶头视频| 在线免费观看不下载黄p国产 | 国产三级中文精品| 亚洲人与动物交配视频| 一区二区三区高清视频在线| 一本一本综合久久| 亚洲成人免费电影在线观看| 观看美女的网站| 国产伦在线观看视频一区| 亚洲狠狠婷婷综合久久图片| 国产激情偷乱视频一区二区| 精品久久国产蜜桃| 可以在线观看毛片的网站| 哪里可以看免费的av片| 国产av一区在线观看免费| 亚洲av.av天堂| 尤物成人国产欧美一区二区三区| 亚洲国产精品999在线| 亚洲人成电影免费在线| 麻豆久久精品国产亚洲av| 国产精品嫩草影院av在线观看 | 成人精品一区二区免费| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址| 欧美午夜高清在线| 精品久久久久久久久久久久久| 最新中文字幕久久久久| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 成人鲁丝片一二三区免费| 日本与韩国留学比较| 99久久精品国产亚洲精品| 国产三级中文精品| bbb黄色大片| 12—13女人毛片做爰片一| 久久久色成人| 亚洲中文字幕一区二区三区有码在线看| 高清毛片免费观看视频网站| 一个人看的www免费观看视频| 亚洲av熟女| 黄色一级大片看看| 在线观看美女被高潮喷水网站 | 少妇人妻一区二区三区视频| 夜夜夜夜夜久久久久| 3wmmmm亚洲av在线观看| 欧美成人免费av一区二区三区| 日韩中字成人| 国产v大片淫在线免费观看| 日本五十路高清| 欧美成狂野欧美在线观看| 色哟哟哟哟哟哟| 高清毛片免费观看视频网站| 动漫黄色视频在线观看| 真人一进一出gif抽搐免费| 三级国产精品欧美在线观看| 国产成人影院久久av| 999久久久精品免费观看国产| 国产真实乱freesex| 99国产极品粉嫩在线观看| 亚洲一区高清亚洲精品| 久久国产乱子伦精品免费另类| 在线免费观看不下载黄p国产 | 两个人的视频大全免费| 国产欧美日韩一区二区精品| 色哟哟哟哟哟哟| 三级毛片av免费| 精品人妻1区二区| 国产成人欧美在线观看| 亚洲国产精品sss在线观看| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 一卡2卡三卡四卡精品乱码亚洲| 3wmmmm亚洲av在线观看| 色av中文字幕| avwww免费| 色av中文字幕| 国产免费av片在线观看野外av| 色尼玛亚洲综合影院| 91麻豆精品激情在线观看国产| 久久久久久久亚洲中文字幕 | 亚洲av不卡在线观看| 美女免费视频网站| 99久国产av精品| av国产免费在线观看| 欧美3d第一页| 97人妻精品一区二区三区麻豆| 欧美黄色淫秽网站| 男女下面进入的视频免费午夜| 午夜久久久久精精品| 精品久久国产蜜桃| 亚洲一区二区三区不卡视频| 免费搜索国产男女视频| 亚洲国产高清在线一区二区三| 国产精华一区二区三区| 1000部很黄的大片| 国产成人aa在线观看| 午夜福利在线在线| 夜夜夜夜夜久久久久| 精华霜和精华液先用哪个| 午夜福利成人在线免费观看| 色噜噜av男人的天堂激情| 黄色丝袜av网址大全| 3wmmmm亚洲av在线观看| 欧美国产日韩亚洲一区| 精品乱码久久久久久99久播| 人妻丰满熟妇av一区二区三区| 久久精品综合一区二区三区| 一本综合久久免费| 91久久精品国产一区二区成人| 亚洲专区国产一区二区| 久久午夜亚洲精品久久| 日本免费一区二区三区高清不卡| 日本撒尿小便嘘嘘汇集6| 亚洲欧美日韩无卡精品| 成人亚洲精品av一区二区| 精品一区二区免费观看| 亚洲久久久久久中文字幕| 美女高潮喷水抽搐中文字幕| 欧美最黄视频在线播放免费| 午夜福利免费观看在线| 伊人久久精品亚洲午夜| 欧美成人a在线观看| 免费看a级黄色片| 尤物成人国产欧美一区二区三区| 露出奶头的视频| 亚洲电影在线观看av| 很黄的视频免费| 黄片小视频在线播放| 国产精品乱码一区二三区的特点| 可以在线观看的亚洲视频| 丰满的人妻完整版| 亚洲一区二区三区不卡视频| 麻豆成人午夜福利视频| 色综合亚洲欧美另类图片| 内射极品少妇av片p| 亚洲人成电影免费在线| 国产私拍福利视频在线观看| 在线十欧美十亚洲十日本专区| 午夜激情欧美在线| 深夜精品福利| 婷婷精品国产亚洲av| 欧美黄色淫秽网站| 亚洲精品粉嫩美女一区| 又紧又爽又黄一区二区| 极品教师在线视频| 亚洲最大成人av| 人妻夜夜爽99麻豆av| 国产av一区在线观看免费|