• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of Inner-core Supersonic Gas Separation Device with Droplet Enlargement Method*

    2009-05-15 01:40:16MAQingfen馬慶芬HUDapeng胡大鵬HEGaohong賀高紅HUShijun胡施俊LIUWenwei劉文偉XUQiaolian徐巧蓮andWANGYuxin王予新
    關(guān)鍵詞:大鵬

    MA Qingfen (馬慶芬), HU Dapeng (胡大鵬), HE Gaohong (賀高紅), HU Shijun (胡施俊), LIU Wenwei (劉文偉), XU Qiaolian (徐巧蓮) and WANG Yuxin (王予新)

    ?

    Performance of Inner-core Supersonic Gas Separation Device with Droplet Enlargement Method*

    MA Qingfen (馬慶芬)1,2, HU Dapeng (胡大鵬)1,**, HE Gaohong (賀高紅)3, HU Shijun (胡施俊)1, LIU Wenwei (劉文偉)4, XU Qiaolian (徐巧蓮)1and WANG Yuxin (王予新)5

    1Department of Chemical Machinery, Dalian University of Technology, Dalian 116012, China2Department of Mechanical Engineering, Hainan University, Haikou 570228, China3Department of Chemical Engineering, Dalian University of Technology, Dalian 116012, China4China Liaohe Petroleum Engineering Co., Ltd. (LPE), Panjin 124010, China5China Beijing Dwell Petroleum & Gas Technology Development Company Ltd., Beijing 100085, China

    supersonic gas separation, gas mixture with a single heavy component, heterogeneous nucleation, cyclone gas/liquid separation

    1 INTRODUCTION

    Supersonic gas separation (SGS), a novel gas separation technology proposed in recent years [1-4], with similar thermodynamics to a turbo-expander, combines expansion, cyclone gas/liquid separation and re-compression in a compact static device. The device, with no rotating parts and operated without chemicals, ensures a simple and environmentally friendly facility, with a high reliability and availability, suitable for de-manned operation. To date, the reports on the experimental study for the technology are very limited and mainly focus on gas separation process of high-pressure natural gas flow (with inlet pressure more than 3.5MPa) from gas fields. Okimoto and Brouwer [5] designed an SGS device, Twister separator, and suggested that a maximum dew point depression of 22-28°C could be obtained, but the corresponding experimental conditions were not given. Then, the effectiveness of Twister separator was further studied experimentally [6, 7] and some factors influencing the separation effectiveness were found. Alfyorov. [8] designed an SGS device, 3-S separator, and tested it several times. Compared to Joule-Thomson valve and turboexpander, the 3-S separator could save 10%-20% compressor power for the same extraction level, and extract more C3+ from natural gas. Under certain conditions, especially with small concentrations of heavier hydrocarbons, the 3-S separator could separate liquid components that the Joule-Thomson valve could not separate.

    Although it has been proved that SGS is effective for the high-pressure natural gas processing, when it is applied for processing low-pressure gas mixture (inlet pressure less than 1.0 MPa) containing a single heavy component, the separation performance is much worse. Liu. [9] designed an SGS device and conducted an indoor test for dehumidification of low-pressure moist air and only attained a maximum dew point depression of about 18°C with the pressure loss more than 70%. In this study, a novel structure of SGS device with shorter settlement distance is constructed and an effective method for improving the device performance, droplet enlargement method, is applied. Series of experiments are carried out to validate the novel structure and method, and effects of some important parameters including the inlet pressure, temperature and relative humidity, swirling intensity, and mass flow rater of water are investigated.

    2 METHOD OF DROPLET ENLARGEMENT

    2.1 Theoretical fundamental—homogenous and heterogeneous nucleation

    If a gas mixture contains a single heavy component and no foreign particle exists, the appearance of the second phase (liquid) is governed by the process of homogeneous nucleation [10]. The free-energy barrier for the formation of very fine droplets can be overcome only when a high supersaturation condition is achieved. In this case, the critical nucleation radius given by the Kelvin equation [11] is very small, and the droplets formed are in size of 1 μm [12, 13]. As well known, it is difficult to separate the submicron droplets when they are smaller than 2.5 μm [14-18]. Therefore, to improve the separation performance of SGS device for the treatment of gas mixture with a single heavy component, the droplets should be enlarged.

    When solid particles are initially present in a gas carrier phase with vapor, Wilson observed that condensation appeared at low saturation conditions: heterogeneous condensation can occur at saturation ratio a few percents greater than 1. Solid particles act as nucleation centers and the vapor molecules deposit on the particle surface because of the sticking forces. The liquid film formed on the particle has a large curvature radius (compared to homogeneous nucleation), promoting deposition of vapor molecules due to the Kelvin effect. Hinds defined two kinds of solid particles: soluble and insoluble nuclei [19]. Because an insoluble nucleus needs larger saturation ratio for condensational growth, a soluble nucleus may be chosen as a condensation nucleus under low saturation and even sub-saturation conditions [20-22].

    2.2 Droplet enlargement—adding nucleation centers

    Based on the homogeneous and heterogeneous nucleation theory, a droplet enlargement method of adding nucleation centers is proposed to improve the separation performance of SGS device. The selected nucleation centers should meet the following requirements.

    (1) The supersaturation for activation of nucleation centers from added particles should be as small as possible, so that the condensation happens earlier, leading to larger size of droplets. Thus the nucleation centers should be soluble in the heavy component of gas mixture.

    (2) The added nucleation centers should have good fluidity so as to be removed easily, avoiding the block of pipelines due to their local accumulation. Thus the selected nucleation centers should remain liquid state in the SGS device.

    (3) The volatility of added nucleation centers should be much lower than that of the heavy component to avoid the pollution of the added liquid droplets in the gas phase.

    (4) There is no chemical reaction between added nucleation centers and any component of gas mixture, to avoid the external pollution caused by the generation of new substance.

    According to the above requirements, the nucleation centers added into the SGS device for the droplet enlargement should be the micro-droplets with lower volatility, soluble in heavy component and without reaction with any component of gas mixture. In this paper, gas mixture of air and ethanol vapor is chosen as the experimental medium and micro droplets of water are used as the nucleation centers.

    3 EXPERIMENTAL APPARATUS AND PROCESS

    3.1 Inner-core SGS device

    Figure 1 shows the structure of the inner-core SGS device [23] proposed for this study. The device is composed of three key parts: swirling generator, supersonic nozzle (converging-diverging nozzle) and gas diffuser. Comparing with the traditional structure, the swirling generator and supersonic nozzle are improved to reduce the energy loss and improve the separation performance.

    3.1.1

    In the traditional structure, the rotation of the two phase flow is generated by a swirling ring set up in the downstream of the diverging nozzle. However, shock waves due to the collision of the swirling ring and high speed flow might increase the energy loss and even destroy the low-pressure and -temperature environment which is necessary for the condensation of heavy component. To overcome this disadvantage, a novel structure of swirling generator is designed. As shown in Fig. 1, the swirling generator is in front of the converging-diverging nozzle. It is composed of several arc blades tangent to the nozzle and the spaces between adjacent blades form flow channels for the gas mixture. When the gas flow passes through these channels, it is accelerated and finally enters the nozzle with the tangential velocity of a certain value. Its axial velocity is much less than the sound velocity since the nozzle cross-section is much bigger than that of the nozzle throat. Thus, shock waves caused by the swirling generator are completely eliminated.

    The magnitude of the inlet tangential velocity can be controlled by inlet pressureinand the area of the minimum section of the channelsmin. Increasinginor decreasingminincreases the inlet tangential velocity.minis determined by the height of the swirling generator, the minimum distance between two bladesand the blade numberb.

    3.1.2

    Figure 1 Schematic graph of constructed SGS device

    3.2 Experimental process

    An experimental process and a measurement system are set up to investigate the separation performance of the improved SGS technique. A schematic diagram of experimental process and apparatus is shown in Fig. 2. The high pressure air is supplied by a gas supply system, which is composed of a four-stage compressor with the maximum pressure of 20 MPa and a storage tank of 10 m3. Ethanol vapor is produced from 95% ethanol liquid by a water vapor heater of 10 kW and then mixed with the air flow generated in the mixer & heater. The gas mixture with certain temperature enters the SGS device and the ethanol condenses on micro water droplets generated by an atomizer located around the throat of the supersonic nozzle. The liquid film on the nozzle wall is discharged together with a small portion of gas from the wet outlet. The dry gas goes out of the SGS device after it passes through a diffuser, which is used for the pressure recovery, and then vents into the atmosphere (the back pressure of outletbis 0.1 MPa).

    For the limitation of device space, a deep small hole with diameter of 0.22 mm and depth of 10 mm is chosen as the atomizer to avoid the damage to the gas flow field around the throat of SGS device. The water injected from the small hole encounters the self-rotational supersonic gas flow around the throat of SGS device and then breaks up into a great many micro droplets. For the above complex flow state, the size of added water droplets can be hardly measured. However, it is sure that the added water droplets can decrease the supersaturation degree for the activation of condensation [20-22] and enlarge the size of final droplets from condensation [11], which is helpful for the improvement of SGS device performance.

    3.3 Measurement system

    The system consists of instruments measuring the flow rate, pressure, temperature and content.

    3.3.1

    (1) Flow rate of gas mixture

    The mass flow rates of the gas mixture are investigated by those of inlet and wet outlet. Because the mass flow rate of ethanol in the gas mixture is really small compared to that of air, the inlet mass flow rate of gas mixture can be considered as that of air flow, which is obtained by an orifice meter in the upper steam of device with the minimum diameter of 9 mm. The mass flow rate of the wet outlet is calculated from the volume flow rate measured by a suspended body flowmeter with a range of 50-300 m3·h-1.

    (2) Flow rate of liquid ethanol and water

    Since ethanol vapor in the gas mixture is produced by the evaporation of ethanol liquid, the flow rate of ethanol liquid should be controlled to ensure that the added ethanol liquid is completely evaporated by the heater. This flow rate is measured by a suspended body flowmeter with a range of 6-60 L·h-1.

    In this paper, micro water droplets are added into the SGS device to promote the condensation of ethanol vapor and enlarge the size of condensed droplets, for improving the separation performance of SGS device. The quantity of added water droplets represented by volume flow rate may affect the separation performance, which will be discussed in the following part. This volume flow rate is measured with a suspended body flowmeter with a range of 10-100 ml·min-1.

    Figure 2 Schematic diagram of the experimental process and apparatus

    1—low pressure air; 2—high pressure air; 3—ethanol liquid; 4—ethanol vapor; 5—mixture of air and ethanol vapor; 6—micro droplets of water; 7—wet outlet flow; 8—dry outlet flow

    3.3.2

    3.3.3

    To determine the content of each component of gas mixture from the inlet and two outlets of SGS device, sampling ports are set at these positions. During the experimental process, after the operating conditions become stable, gas samples are taken and then gas component and content are determined by gas chromatographyanalysis (Agilent 6890N Series Gas Chromatograph). The chromatographic column and detector employ FFAP capillary column 30 m×0.53 mm×1.0 μm and TCD detector, respectively. Fig. 3 shows an arbitrary chromatogram of each component obtained in the experiment. The retention time of air, ethanol and water on the chromatographic column are 1.512, 2.211 and 3.011 min, respectively. The resolutions of all chromatographic peaks are more than 1, indicating that every component can be effectively separated. Based on the area of chromatographic peak, the mole fraction of each component is obtained using external standard method.

    Figure 3 Chromatogram of each component in gas mixture

    3.4 Evaluation indexes of performance

    In order to investigate the separation performance of the designed structure and proposed method, experiments are carried out under various conditions. As the technology is for separating the heavy component (ethanol) from the gas mixture (mixture of air and ethanol vapor), the removal efficiency of heavy component is the most important index for the evaluation of separation performance. Since extra substance such as water is added and may pollute the basic flow system, the pollution extent should also be evaluated.

    Table 1 Comparison of ethanol saturation pressurebetween calculation results of Antoine equation andexperimental data

    Another important index may be used to evaluate the processing capacity of SGS device,.., the recovery rate of dry outlet gas, which is defined as

    wherein,dryandwetrepresent the mass flow rate of SGS device at inlet, dry outlet and wet outlet, respectively.

    4 RESULTS AND DISCUSSION

    4.1 Static pressure profile

    To obtain the low-pressure and -temperature environment for the condensation of heavy component, the gas flow should be maintained in the supersonic state in the diverging part of supersonic nozzle. In this study, the flow state is investigated by the static pressure measurement.

    Table 2 Measurement results of the static pressure profile and mass flow rate

    According to the energy balance law and structure of inner-core SGS device, highercauses weaker swirling intensity of gas flow, leading to less energy loss, and higherinsupplies more inlet energy. Thus the increase inandinsupplies more energy available to maintain high speed flow in the diverging nozzle, so that the required supersonic flow field can be obtained.

    4.2 Recovery rate

    Table 2 also shows the mass flow rate of SGS device at the inlet and wet outlet (inandwet). The recovery rate of dry outlet gasis calculated using Eq. (4). In the present SGS device,can be maintained above 80%, so that more than 80% of the inlet gas can be effectively treated.

    4.3 Separation performance

    Effects of some important parameters on the separation performance of SGS device with the droplet enlargement method will be discussed in this section, including inlet pressurein, inlet temperaturein, inlet relative saturation of ethanolin, volume flow rate of added waterw, and swirling intensity. The definition of the inlet relative saturation of ethanolinis defined as

    4.3.1in

    4.3.2in

    4.3.3in

    4.3.4

    4.3.5w

    5 CONCLUSIONS

    NOMENCLATURE

    carea of nozzle throat, mm2

    minimum distance between two blades of swirling generator, mm

    height of swirling generator, mm

    length of diverging nozzle, mm

    bblade number of swirling generator

    ininlet pressure, MPa

    tpressure of nozzle throat, MPa

    1,2,3pressure values along the flow direction on the wall of diverging nozzle, MPa

    inmass flow rate of gas mixture at inlet, kg·h-1

    wetmass flow rate of wet outlet flow, kg·h-1

    wmass flow rate of added water, kg·h-1

    relative humidity with similar definition for moist gas, %

    ccritical radius of nucleus, mm

    saturation ratio

    static temperature, K

    ddew point, K

    gtemperature of gas phase, K

    ininlet temperature of SGS device, K

    0stagnation temperature, K

    Δddew point depression between inlet and dry outlet, K

    mole fraction, %

    residual gas rate, %

    ρliquid density, kg·m-3

    surface tension, N·m-1

    Superscripts

    in inlet of SGS device

    dry dry outlet of SGS device

    wet wet outlet of SGS device

    Subscripts

    C2ethanol

    H2O water

    in inlet of SGS device

    1 Betting, M., “Nozzle for supersonic gas flow and an inertial separator”, US Pat., 6513345 B1 (2003).

    2 Brouwer, J.M., Epsom, H.D., Twister, B.V., “Twister supersonic gas conditioning for unmanned platforms and subsea gas processing”, In: Offshore Europe, Society of Petroleum Engineers Inc., United Kingdom (2003).

    3 Cao, X.W., Chen, L., Lin, Z.H., Du, Y.J., “Supersonic swirling separators”,, 27 (7), 1-3 (2008). (in Chinese)

    4 Tu, H., Jiang, H., Liu, X.Q., “Application of supersonic separator to natural gas dehydration”,.., (3), 109-111 (2007). (in Chinese)

    5 Okimoto, F., Brouwer, J.M., “Supersonic gas conditioning”,, 223 (8), 1170-1178 (2002).

    6 Betting, M., Epsom, H., “Supersonic separator gains market acceptance”,, 228 (4), 197-200 (2007).

    7 Schinkelshoek, P., Epsom, H.D., “Supersonic gas conditioning—commercialization of TwisterTMtechnology”, In: 5th GPA Annual Coference, Texas (2008).

    8 Alfyorov, V., Bagirov, L., Dmitriev, L., Feygin, V., Imayev, S., Lacey, J.R., “Supersonic nozzle efficiently separates natural gas components”,, 103 (20), 53-58 (2005).

    9 Liu, H.W., Liu, Z.L., Feng, Y.X., Gu, K.Y., Yan, T.M., “Characteristics of a supersonic swirling dehydration system of natural gas”,...., 13 (1), 9-12 (2005).

    10 Oxtoby, D.W., “Homogeneous nucleation: theory and experiment”,..:., 4, 7627-7650 (1992).

    11 Gerber, A.G., “Two-phase Eulerian/Lagrangian model for nucleating steam flow”,..., 124, 465-475 (2002).

    12 Harstad, K., Bellan, J., “Modeling of multicomponent homogeneous nucleation using continuous thermodynamics”,, 139, 252-262 (2004).

    13 Ma, Q.F., Hu, D.P., Qiu, Z.H., “Analysis of influence parameter on spontaneous nucleation during supersonic condensing separation”,, 37 (9), 920-925 (2008). (in Chinese)

    14 Heidenreich, S., Vogt, U., Bittner, H., “A novel process to separate submicron particles from gases—A cascade of packed columns”,..., 55 (15), 2895-2905 (2000).

    15 Bologa, A., Paur, H.R., W?scher, T., “Electrostatic charging of aerosol as a mechanism of gas cleaning from submicron particles”,, 38 (10), 26-30 (2001).

    16 Mansur, E.A., Wang, Y.D., Dai, Y.Y., “Separation of fine particles by using colloidal gas aphrons”,...., 12 (2), 286-289 (2004).

    17 Huang, C.H., Tsai, C., Wang, Y.M., “Control efficiency of submicron particles by an efficient venture scrubber system”,..., 133 (4), 454-461 (2007).

    18 Yan, J.P., Yang, L.J., Zhang, X., Sun, L.J., Zhang, Y., Shen, X.L., “Separation of PM2.5from combustion based on vapor condensation and scrubbing”,.., 36 (3), 267-272 (2008).

    19 Hinds, W.C., Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles, John Wiley & Sons, New York (1982).

    20 Gorbunov, B., Hamilton, R., “Water nucleation on aerosol particles containing both soluble and insoluble substances”,.., 28, 239-248 (1997).

    21 Petersen, D., Ortner, R., Vrtala, A., Wagner, P.E., “Soluble-insoluble transition in binary heterogeneous nucleation”,..., 87 (22), 225703 (2001).

    22 Jurski, K., Géhin, E., “Heterogeneous condensation process in an air water vapour expansion through a nozzle-experimental aspect”,.., 29, 1137-1152 (2003).

    23 Hu, D.P., Dai, Y.Q., Zou, J.P., Zhu, C., Ma, Q.F., Qiu, Z.H., “Inner-conesupersonic gas separator”, CN Pat., 200820012508.3 (2008). (in Chinese)

    24 Cheng, N.L., Handbook of Solvents, Chemical Industry Press, Beijing (2002). (in Chinese)

    25 Wu, Z.N., Gas Dynamics, Tsinghua University Press, Beijing (2008). (in Chinese)

    2008-11-17,

    2009-08-18.

    the Natural Science Foundation of Liaoning Province, China (20052193) and Ph.D. Programs Foundation of Ministry of Education of China (20070141045).

    ** To whom correspondence should be addressed. E-mail: hdphxp@163.com

    猜你喜歡
    大鵬
    周鵬飛:大鵬展翅 跨界高飛
    Beating standard quantum limit via two-axis magnetic susceptibility measurement
    看圖紙
    三棱錐中的一個(gè)不等式
    Vorticity vector-potential method based on time-dependent curvilinear coordinates for two-dimensional rotating flows in closed configurations *
    Proton Beam Generated by Multi-Lasers Interaction with Rear-Holed Target
    李大鵬:打造縱向、橫向全域發(fā)展的蘇交科
    中國公路(2017年14期)2017-09-26 11:51:42
    劉業(yè)偉、王大鵬設(shè)計(jì)作品
    非誠勿擾
    AComparingandContrastingAnalysisofCooperationandPoliteness
    色吧在线观看| 小蜜桃在线观看免费完整版高清| 麻豆精品久久久久久蜜桃| 亚洲国产精品成人综合色| 国产探花极品一区二区| 日韩一区二区视频免费看| 亚洲av不卡在线观看| 在线免费观看不下载黄p国产| 性色avwww在线观看| 一级二级三级毛片免费看| 看非洲黑人一级黄片| 天天躁夜夜躁狠狠久久av| 免费无遮挡裸体视频| 中文字幕免费在线视频6| 99热6这里只有精品| 少妇裸体淫交视频免费看高清| 国产精品一区二区三区四区久久| 又大又黄又爽视频免费| 男人舔奶头视频| 亚洲av二区三区四区| 九草在线视频观看| 成人午夜精彩视频在线观看| 黄色欧美视频在线观看| 亚洲天堂国产精品一区在线| 久久久久久久大尺度免费视频| 久久久久性生活片| 黄片wwwwww| 亚洲欧美一区二区三区黑人 | 高清毛片免费看| 国产 亚洲一区二区三区 | 亚洲欧美成人精品一区二区| 黄色欧美视频在线观看| 亚洲在线自拍视频| 精品99又大又爽又粗少妇毛片| 午夜激情福利司机影院| 18禁在线无遮挡免费观看视频| 99九九线精品视频在线观看视频| 亚洲国产精品专区欧美| 亚洲av国产av综合av卡| 免费观看av网站的网址| 夜夜看夜夜爽夜夜摸| 成人亚洲欧美一区二区av| 人人妻人人澡人人爽人人夜夜 | 亚洲无线观看免费| 免费观看精品视频网站| 亚洲在线自拍视频| 国产亚洲av片在线观看秒播厂 | 久久6这里有精品| 国产精品爽爽va在线观看网站| 亚洲精品乱久久久久久| 26uuu在线亚洲综合色| 美女主播在线视频| 2022亚洲国产成人精品| 国产黄色免费在线视频| 国产一级毛片七仙女欲春2| 黄色配什么色好看| 免费av观看视频| 国产激情偷乱视频一区二区| a级一级毛片免费在线观看| 内地一区二区视频在线| 国产精品蜜桃在线观看| 99热全是精品| 国产黄色视频一区二区在线观看| 国产精品嫩草影院av在线观看| 最近手机中文字幕大全| videossex国产| 插阴视频在线观看视频| 性插视频无遮挡在线免费观看| 国产黄片视频在线免费观看| av在线天堂中文字幕| 中国国产av一级| av一本久久久久| 色吧在线观看| 国产爱豆传媒在线观看| 国产女主播在线喷水免费视频网站 | 日韩欧美国产在线观看| 国产色爽女视频免费观看| 精品亚洲乱码少妇综合久久| 久久精品国产亚洲av天美| 免费看av在线观看网站| 成人鲁丝片一二三区免费| a级毛色黄片| 韩国av在线不卡| 午夜福利视频1000在线观看| 18禁在线播放成人免费| 乱人视频在线观看| 激情五月婷婷亚洲| 精品久久国产蜜桃| 精品久久国产蜜桃| 亚洲精品色激情综合| 久久精品国产自在天天线| 国产午夜精品久久久久久一区二区三区| 国产爱豆传媒在线观看| 免费观看在线日韩| 伦理电影大哥的女人| 日韩欧美一区视频在线观看 | 啦啦啦中文免费视频观看日本| av一本久久久久| 中文精品一卡2卡3卡4更新| 精品人妻视频免费看| 久久久亚洲精品成人影院| 免费av观看视频| 亚洲三级黄色毛片| 青春草视频在线免费观看| 国产 一区 欧美 日韩| 内地一区二区视频在线| 欧美日韩亚洲高清精品| 国产亚洲一区二区精品| 熟女人妻精品中文字幕| 好男人在线观看高清免费视频| 超碰av人人做人人爽久久| 九色成人免费人妻av| 最近最新中文字幕免费大全7| 国内揄拍国产精品人妻在线| 国产极品天堂在线| av.在线天堂| 亚洲成人av在线免费| 成人亚洲精品一区在线观看 | 午夜久久久久精精品| 高清欧美精品videossex| 毛片女人毛片| 午夜老司机福利剧场| 大片免费播放器 马上看| 国模一区二区三区四区视频| 青春草亚洲视频在线观看| 最近中文字幕高清免费大全6| av一本久久久久| 丰满乱子伦码专区| 亚洲av男天堂| 日韩精品有码人妻一区| 美女大奶头视频| 久久精品国产自在天天线| 精品国产三级普通话版| 久久这里只有精品中国| 国产一区二区在线观看日韩| 亚洲美女视频黄频| 日本午夜av视频| 91午夜精品亚洲一区二区三区| 国产成人精品久久久久久| 人体艺术视频欧美日本| 成人亚洲精品一区在线观看 | 99热这里只有精品一区| 免费黄色在线免费观看| 人妻系列 视频| 婷婷色av中文字幕| 99热这里只有是精品在线观看| 国产视频内射| 少妇人妻精品综合一区二区| av女优亚洲男人天堂| 久久国内精品自在自线图片| 午夜爱爱视频在线播放| 亚洲综合精品二区| 亚洲va在线va天堂va国产| 亚洲欧美清纯卡通| 亚洲精品日本国产第一区| 久久99热6这里只有精品| 久久草成人影院| 国产v大片淫在线免费观看| 国产视频内射| 午夜福利成人在线免费观看| 色尼玛亚洲综合影院| 亚洲av不卡在线观看| 又爽又黄无遮挡网站| 久久99热6这里只有精品| 少妇熟女欧美另类| 韩国av在线不卡| 超碰97精品在线观看| 建设人人有责人人尽责人人享有的 | 亚洲国产高清在线一区二区三| 亚洲av二区三区四区| 国产伦一二天堂av在线观看| 亚洲精华国产精华液的使用体验| 亚洲av成人精品一区久久| av在线老鸭窝| 久久这里有精品视频免费| 中国国产av一级| 亚洲一级一片aⅴ在线观看| 国产精品一及| 搡女人真爽免费视频火全软件| 国内揄拍国产精品人妻在线| 2022亚洲国产成人精品| 深夜a级毛片| 中文欧美无线码| 国内少妇人妻偷人精品xxx网站| eeuss影院久久| 欧美日韩一区二区视频在线观看视频在线 | 麻豆久久精品国产亚洲av| 精品一区二区三区人妻视频| 国产高潮美女av| 国产永久视频网站| freevideosex欧美| 91aial.com中文字幕在线观看| 欧美日韩在线观看h| 日韩强制内射视频| 啦啦啦中文免费视频观看日本| 亚洲欧美日韩卡通动漫| 亚洲精品影视一区二区三区av| 一本久久精品| 成人av在线播放网站| a级毛色黄片| 中文字幕免费在线视频6| 久久久久久久亚洲中文字幕| 国产极品天堂在线| 精品人妻偷拍中文字幕| 亚洲欧美精品专区久久| 精品午夜福利在线看| 免费黄网站久久成人精品| 久久久欧美国产精品| 成人高潮视频无遮挡免费网站| 国产精品一区二区在线观看99 | 欧美zozozo另类| 国产综合精华液| 最近中文字幕高清免费大全6| 97热精品久久久久久| 国产精品美女特级片免费视频播放器| 精品欧美国产一区二区三| 日韩一区二区三区影片| 亚洲国产精品国产精品| 十八禁国产超污无遮挡网站| 亚洲av中文字字幕乱码综合| 看十八女毛片水多多多| 纵有疾风起免费观看全集完整版 | 成人鲁丝片一二三区免费| 国产精品一区www在线观看| 亚洲一区高清亚洲精品| 欧美成人精品欧美一级黄| 尤物成人国产欧美一区二区三区| 夜夜爽夜夜爽视频| 日韩在线高清观看一区二区三区| 国内精品一区二区在线观看| 肉色欧美久久久久久久蜜桃 | 国产色婷婷99| 99热这里只有精品一区| 精品一区二区三卡| 日韩电影二区| 一个人看视频在线观看www免费| 免费av不卡在线播放| 国产免费福利视频在线观看| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 26uuu在线亚洲综合色| 久久久久久久久大av| 欧美性感艳星| 欧美成人一区二区免费高清观看| 最近视频中文字幕2019在线8| 欧美zozozo另类| 99久国产av精品国产电影| 麻豆av噜噜一区二区三区| 精品99又大又爽又粗少妇毛片| 国产免费又黄又爽又色| 免费看不卡的av| 日本-黄色视频高清免费观看| 国产成人精品久久久久久| 精华霜和精华液先用哪个| 亚洲av成人av| 亚洲国产精品成人综合色| 午夜福利视频1000在线观看| 三级毛片av免费| 色视频www国产| 国产高清三级在线| 欧美激情久久久久久爽电影| 国产成人精品久久久久久| 国产av在哪里看| 午夜福利在线在线| 日韩强制内射视频| 久久午夜福利片| 日韩人妻高清精品专区| 国产精品久久久久久av不卡| 国产黄色视频一区二区在线观看| 91久久精品国产一区二区成人| 性色avwww在线观看| 亚洲四区av| 亚洲国产精品国产精品| 搞女人的毛片| 在线观看av片永久免费下载| 久久精品夜夜夜夜夜久久蜜豆| 国产精品日韩av在线免费观看| 激情五月婷婷亚洲| 亚洲精品国产av成人精品| 欧美成人精品欧美一级黄| 一级毛片aaaaaa免费看小| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 日韩一本色道免费dvd| 精品国产三级普通话版| 91久久精品国产一区二区三区| 国产精品久久视频播放| 国产亚洲一区二区精品| 中文字幕久久专区| 大又大粗又爽又黄少妇毛片口| 精品酒店卫生间| 自拍偷自拍亚洲精品老妇| 777米奇影视久久| 亚洲国产最新在线播放| 欧美xxxx性猛交bbbb| 极品少妇高潮喷水抽搐| 女人久久www免费人成看片| 精品人妻视频免费看| 国产国拍精品亚洲av在线观看| 国产成人福利小说| 久久久久久国产a免费观看| 日韩av免费高清视频| 久99久视频精品免费| 好男人在线观看高清免费视频| 成人亚洲精品av一区二区| 免费看不卡的av| 亚洲第一区二区三区不卡| 看非洲黑人一级黄片| 免费无遮挡裸体视频| 亚洲av日韩在线播放| 久久久成人免费电影| 免费观看性生交大片5| 在现免费观看毛片| 亚洲不卡免费看| 搞女人的毛片| 亚洲av日韩在线播放| 精品人妻偷拍中文字幕| 国产精品福利在线免费观看| 免费播放大片免费观看视频在线观看| 三级国产精品片| 亚洲精品亚洲一区二区| 国产精品无大码| av又黄又爽大尺度在线免费看| 综合色丁香网| 国产精品久久久久久精品电影小说 | 男女视频在线观看网站免费| 嫩草影院入口| 99热全是精品| 九九爱精品视频在线观看| 可以在线观看毛片的网站| 国产白丝娇喘喷水9色精品| 日产精品乱码卡一卡2卡三| 亚洲综合色惰| 搡老乐熟女国产| 午夜老司机福利剧场| 狠狠精品人妻久久久久久综合| 亚洲三级黄色毛片| 91狼人影院| 日韩av在线免费看完整版不卡| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本爱情动作片www.在线观看| 99热全是精品| 亚洲在线观看片| 永久网站在线| 又大又黄又爽视频免费| 久久久久久国产a免费观看| 国语对白做爰xxxⅹ性视频网站| 日韩 亚洲 欧美在线| av在线老鸭窝| 国产精品一区二区在线观看99 | 三级经典国产精品| 亚洲真实伦在线观看| 亚洲内射少妇av| 国产亚洲精品久久久com| 久久久久久久大尺度免费视频| 尾随美女入室| 日韩欧美 国产精品| 免费电影在线观看免费观看| av国产久精品久网站免费入址| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 亚洲国产av新网站| 欧美成人一区二区免费高清观看| 直男gayav资源| 国产高清不卡午夜福利| 又大又黄又爽视频免费| 卡戴珊不雅视频在线播放| 99久久人妻综合| 亚洲成色77777| 男人舔女人下体高潮全视频| 中文精品一卡2卡3卡4更新| 亚洲av免费在线观看| 熟女人妻精品中文字幕| 麻豆成人av视频| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| 久久99精品国语久久久| 卡戴珊不雅视频在线播放| 免费黄频网站在线观看国产| 亚洲av中文av极速乱| 亚洲国产精品成人综合色| 国产在视频线在精品| 91午夜精品亚洲一区二区三区| 视频中文字幕在线观看| 观看免费一级毛片| 日韩av不卡免费在线播放| 在线观看美女被高潮喷水网站| 老师上课跳d突然被开到最大视频| av在线蜜桃| 青青草视频在线视频观看| 国产在视频线在精品| 亚洲激情五月婷婷啪啪| 观看美女的网站| 亚洲av成人精品一区久久| 男女啪啪激烈高潮av片| 一个人观看的视频www高清免费观看| 高清毛片免费看| 日韩人妻高清精品专区| 成人午夜高清在线视频| 国产在线一区二区三区精| 精品人妻偷拍中文字幕| av在线播放精品| 久久精品熟女亚洲av麻豆精品 | 久久久久精品久久久久真实原创| 国产亚洲av嫩草精品影院| 久久久久久久久久久丰满| 中文天堂在线官网| 青青草视频在线视频观看| av线在线观看网站| 插逼视频在线观看| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式| 久久精品人妻少妇| 日日摸夜夜添夜夜爱| 联通29元200g的流量卡| 久久久亚洲精品成人影院| 插阴视频在线观看视频| 伦精品一区二区三区| 又粗又硬又长又爽又黄的视频| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| 国产亚洲最大av| 乱码一卡2卡4卡精品| 男女边摸边吃奶| 久久久久九九精品影院| 国产午夜精品论理片| 最近最新中文字幕免费大全7| 在线免费观看不下载黄p国产| 在线a可以看的网站| 美女xxoo啪啪120秒动态图| 亚洲人成网站高清观看| 日本色播在线视频| 亚洲最大成人手机在线| 成人一区二区视频在线观看| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 免费看光身美女| 日本猛色少妇xxxxx猛交久久| 成年av动漫网址| 日本黄大片高清| 国产亚洲最大av| 亚洲av成人精品一区久久| av免费观看日本| 亚洲欧美一区二区三区国产| 99视频精品全部免费 在线| 观看美女的网站| 少妇的逼水好多| 一级毛片 在线播放| 99热这里只有是精品在线观看| 三级国产精品欧美在线观看| 日本av手机在线免费观看| av专区在线播放| 精华霜和精华液先用哪个| 国产成人a区在线观看| 色网站视频免费| 听说在线观看完整版免费高清| 国产高清三级在线| 26uuu在线亚洲综合色| 在线免费观看不下载黄p国产| 欧美区成人在线视频| 最近中文字幕高清免费大全6| 秋霞伦理黄片| 亚洲一级一片aⅴ在线观看| 如何舔出高潮| 亚洲精品乱码久久久久久按摩| 国产精品久久视频播放| 欧美人与善性xxx| 国产亚洲最大av| 真实男女啪啪啪动态图| 3wmmmm亚洲av在线观看| av女优亚洲男人天堂| .国产精品久久| 综合色丁香网| 少妇的逼水好多| 美女国产视频在线观看| 国产v大片淫在线免费观看| 男人舔奶头视频| 久久久久网色| 国产精品一区二区三区四区免费观看| 丰满乱子伦码专区| 久久久久久久国产电影| freevideosex欧美| 日本一二三区视频观看| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 国产伦精品一区二区三区四那| 亚洲av免费在线观看| 欧美成人午夜免费资源| 日韩欧美精品v在线| 最近的中文字幕免费完整| 国内精品美女久久久久久| 大片免费播放器 马上看| 日本熟妇午夜| 亚洲最大成人av| 免费少妇av软件| 七月丁香在线播放| 高清毛片免费看| 3wmmmm亚洲av在线观看| 建设人人有责人人尽责人人享有的 | 亚洲av日韩在线播放| 亚洲精品影视一区二区三区av| 亚洲,欧美,日韩| 乱人视频在线观看| 久久久精品免费免费高清| 亚洲自偷自拍三级| videos熟女内射| 97人妻精品一区二区三区麻豆| 人妻系列 视频| 国产爱豆传媒在线观看| 久久久久九九精品影院| 老司机影院毛片| 嫩草影院入口| h日本视频在线播放| 毛片一级片免费看久久久久| 亚洲色图av天堂| 97在线视频观看| 日本一本二区三区精品| 国产成人免费观看mmmm| 尤物成人国产欧美一区二区三区| 精品久久久久久久久亚洲| 美女高潮的动态| 蜜臀久久99精品久久宅男| 午夜激情欧美在线| av黄色大香蕉| 搡女人真爽免费视频火全软件| 18禁动态无遮挡网站| 蜜臀久久99精品久久宅男| 亚洲精品成人av观看孕妇| 午夜日本视频在线| 国产中年淑女户外野战色| 国产女主播在线喷水免费视频网站 | 成人二区视频| 久久99蜜桃精品久久| a级毛色黄片| 亚洲乱码一区二区免费版| 久久精品夜色国产| 中文字幕av成人在线电影| 亚洲成人久久爱视频| 国产免费福利视频在线观看| 一本一本综合久久| 1000部很黄的大片| 简卡轻食公司| 精品一区二区三区人妻视频| 久久久久九九精品影院| 在线天堂最新版资源| 一级毛片我不卡| 国产精品一区二区在线观看99 | 精品人妻熟女av久视频| 亚洲国产高清在线一区二区三| 国语对白做爰xxxⅹ性视频网站| 国产有黄有色有爽视频| 国内精品宾馆在线| 免费观看在线日韩| 日本欧美国产在线视频| 欧美日韩一区二区视频在线观看视频在线 | 精品久久久噜噜| 亚洲av成人av| 成人欧美大片| 激情五月婷婷亚洲| 中国美白少妇内射xxxbb| 精品一区在线观看国产| 中文资源天堂在线| 中国国产av一级| 欧美人与善性xxx| 国精品久久久久久国模美| 一个人看的www免费观看视频| 精品久久久久久久末码| 国产熟女欧美一区二区| 亚洲欧美清纯卡通| 国内精品美女久久久久久| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 日本黄色片子视频| 美女主播在线视频| 欧美高清性xxxxhd video| 亚洲av男天堂| 亚洲在线自拍视频| 国产av不卡久久| 国产在线男女| 免费大片18禁| 国产成人freesex在线| 亚洲国产精品成人综合色| 在线a可以看的网站| 国产精品熟女久久久久浪| 91午夜精品亚洲一区二区三区| 麻豆乱淫一区二区| 免费观看a级毛片全部| 国产久久久一区二区三区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产亚洲av嫩草精品影院| 国产免费一级a男人的天堂| 国产麻豆成人av免费视频| 亚洲乱码一区二区免费版| 亚洲国产成人一精品久久久| 国产 亚洲一区二区三区 | 午夜久久久久精精品| 亚洲国产欧美在线一区| 18+在线观看网站| 综合色丁香网| 免费无遮挡裸体视频| 午夜老司机福利剧场| 亚洲精品aⅴ在线观看| a级毛色黄片| 国内揄拍国产精品人妻在线| av在线老鸭窝| 亚洲精品国产成人久久av| 日本熟妇午夜| 一区二区三区乱码不卡18| 1000部很黄的大片| 麻豆av噜噜一区二区三区| 在线观看一区二区三区| 男女那种视频在线观看| 国产亚洲午夜精品一区二区久久 | 国产黄片美女视频| 成年人午夜在线观看视频 |