• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of COD Removal in a Biological Aerated Filter in thePresence of 2,4,6-Trinitrophenol (Picric Acid)*

    2009-05-15 01:40:14SHENJinyou沈錦優(yōu)HERui何銳WANGLianjun王連軍HANWeiqing韓衛(wèi)清LIJiansheng李健生andSUNXiuyun孫秀云

    SHEN Jinyou (沈錦優(yōu)), HE Rui (何銳), WANG Lianjun (王連軍), HAN Weiqing (韓衛(wèi)清), LI Jiansheng (李健生) and SUN Xiuyun (孫秀云)

    ?

    Kinetics of COD Removal in a Biological Aerated Filter in thePresence of 2,4,6-Trinitrophenol (Picric Acid)*

    SHEN Jinyou (沈錦優(yōu)), HE Rui (何銳), WANG Lianjun (王連軍)**, HAN Weiqing (韓衛(wèi)清), LI Jiansheng (李健生) and SUN Xiuyun (孫秀云)

    School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

    biological aerated filter, empirical model, picric acid, biodegradation

    1 INTRODUCTION

    The biological aerated filter (BAF) is an immobilization reactor developed in the late 1980s. It has been widely applied because of its advantages over the conventional biological processes, such as small footprint and excellent performance at much higher loading rates. High removal efficiencies and capacities for carbonaceous organic substances, total nitrogen (TN), ammonia and suspended solids (SS) can be obtained [1, 2]. In addition, the removal of organic materials and nitrogen-containing compounds can be carried out in a single unit.

    In order to improve the performance and understand BAF, some kinetic models have been proposed, which may be generally divided into two categories: theoretical models and empirical models [3]. The theoretical models deal with individual phenomenon with the application of kinetics and principles from reaction engineering. Since many variables are involved in the analysis for a granular-media fixed-film reactor, its modeling is extremely complex. Many assumptions are made and some of the parameters in the model are usually unavailable. In empirical models, only input and output variables of a process are needed to relate nutrient removal efficiency to hydraulic and organic loading rates, so the measurement of parameters such as oxygen utilization rate and mass transfer coefficients is not required [2, 3]. However, most of the literature about the empirical models is on the reactors initially inoculated with activated sludge for treating substrates that are readily to be degraded [2-4], and few papers are on those initially inoculated with pure culture for treating substrates difficult to degrade.

    2,4,6-trinitrophenol (TNP, also known as picric acid) is truly xenobiotic. Numerous military and industrial sites are highly contaminated with the substance. For the bioremediation of TNP, many papers focus mainly on the degradation pathway [5-10], and only a few are available on the engineering aspects in continuous reactors.

    We have isolated a strain ofsp. from the site contaminated by TNP at Nanjing Taowu Chemical Factory in China [11] and utilized it for biodegradation of TNP in the biological aerated filter reactor [12]. This paper reports an empirical model relating effluent COD to influent chemical oxygen demand (COD) concentrations or hydraulic loading rates along the height in the BAF, to provide a simple method for design, selection and sizing of BAF.

    2 MATERIALS AND METHODS

    2.1 Influent feed composition

    The influent feed composition is as follows [12]: phosphate buffer (Na2HPO4and KH2PO4, 14 mmol·L-1, pH 7.5), MgSO4·7H2O (0.2 g·L-1), CaCl2(0.05 g·L-1), SL-4 (10 ml·L-1), supplemented with a certain amount of TNP stock solution. No other carbon sources and nitrogen sources were present in the influent. The composition of SL-4 was described previously [11]. The TNP stock solution contained 4000 mg·L-1TNP, and was adjusted to pH 7.0 with 1 mol·L-1of NaOH.

    Figure 1 Experiment installation

    1—feed tank; 2—manual valve; 3—rotameter or water flowmeter; 4—air compressor; 5—electrically operated valve; 6—peristaltic pump; 7—polishing tank; 8—storage tank; 9—biological aerated filter; 10—thermostatic bath; 11—pump

    Table 1 The parameters of ceramic particles

    2.2 Experimental system and conditions

    The pilot-scale biological aerated filter system was a polymethyl methacrylate column with 0.15 m inner diameter and a length of 2 m, filled with 1.0 m of ceramic particles (Fig. 1). From the base of the reactor, 11 sampling ports were set and the distance between two ports was 0.1 m. The COD concentrations of each effluent sample taken from each sampling port were measured. In order to achieve the stable state conditions, the reactor was operated for 7 days under each operation condition. The porous ceramic particles were used as the medium for biofilm development. The parameters of the ceramics are listed in Table 1.

    In this study, the air flow rate was 68.16 m3·m-2·d-1.The thermostatic bath was used to keep the cultivation temperature at 30°C. The BAF was operated without recirculation. During the operation period, head loss was monitored by measurement of water lamina height, which indicated the need for biofilter backwashing. In this process, the ceramic particles was loosened first by a flow of air (about 1920 m3·m-2·d-1) for 1 min, and then by a combined flow of water (about 960 m3·m-2·d-1) and air (about 960 m3·m-2·d-1) for 1 min. Finally, a flow of water (about 480 m3·m-2·d-1) was applied for 2 min to eliminate the remaining biomass. The reactor was initially inoculated with pure culture ofsp. NJUST16. The characteristics of the inocula and the start-up procedure of the BAF were described previously [12].

    2.3 Theory

    At steady state, the sorption of TNP on the packing material (adsorption on the solid and absorption in the water retained in the pores of solid) is in equilibriumand is not taken into consideration in the mass balances.

    With the assumption of pseudo first-order kinetics and plug flow, the substrate removal rate can be described as follows [13]:

    in which1is the reaction rate constant with VSS included [4].

    Integrating Eq. (2) yields

    whereand0are the contact time and the influent COD concentration, respectively.

    The mean residence time of the fluid in the reactor,, is related to the filter depth, the hydraulic loading rate and the nature of the support [13]:

    whereis the medium height,is the hydraulic loading rate,andare constants related to the medium and its specific surface.

    Substitution of Eq. (4) into Eq. (3), leads to [4]

    On the other hand, the mean residence timecan be related to the volumetric load of mediaw[3],

    where′ is the biomass constant, which depends on the hydraulic characteristics of the reactor, andwcan be expressed as [3]:

    whereis the volumetric flow rate, andis the cross-sectional area of the reactor.

    With Eqs. (6) and (7), Eq. (3) becomes [3]

    Equation (8) may be written as [2]

    2.4 Analytical methods

    TNP concentration and COD were determined by the method described previously [11]. The pH was measured with a pH meter (PHS-3B, Shanghai Precision & Scientific Instrument Co. Ltd, China). After inoculation, biofilm formation in the BAF reactor was confirmed by scanning electron microscopy (SEM, JEOLJSM-6380LV, JEOL Ltd, Japan). Support materials were collected from the bottom of the column. The microorganisms were fixed with 4% glutaraldehyde and 1% osmic acid, and then dehydrated in an ethanol gradient. Subsequently, the specimens were dried in a critical drying apparatus (HCP-2, HITACHI, Japan) and given a metal coating with gold.

    3 RESULTS AND DISCUSSION

    3.1 BAF performance and biomass formation

    The start-up process took about 3 weeks [12]. The reactor performance was checked by measuring TNP and COD concentrations. After operated for about 60 d, the TNP and COD were degraded in the BAF rapidly. At the bottom of the reactor, a thin biofilm covering the particles could be observed. The biofilm formation was confirmed by the SEM analysis (Fig. 2). The ceramic particles presented a rugged surface that is ideal for biofilm formation [Fig. 2 (a)]. The cell morphology and space arrangement are clearly visible [Fig. 2 (b)]. The result indicates that the support material is suitable.

    Figure 2 Scanning electron microscopy: (a) support material before inoculation; (b) support material with biofilm formed after inoculation

    During the experimental period, the maximum apparent TNP volumetric removal rate was 2.53 kg·m-3·d-1, with the TNP removal rate of 98.7%. Accordingly, the maximum COD volumetric removal rate was as high as 2.3 kg·m-3·d-1(1 kg·m-3of TNP corresponded to 0.978 kg·m-3), with the removal rate of 93.0% [12], showing that the BAF reactor initially inoculated withsp. NJUST16 was highly efficient for removing organic material from wastewater containing high concentration of TNP. In addition, the maximum influent TNP concentration of 1.5 kg·m-3was rather high compared to the aerobic sequencing batch reactor [14] and the hollow-fiber membrane biofilm reactor [15].

    3.2 Kinetic behavior as a function of influent COD concentration

    The COD removal at different media height was investigated when the volumetric flow rate was controlled at 0.03 m3·d-1. COD concentrations () as a function of the column height () for various COD concentrations of influent are presented in Table 2. The largest increment of removal efficiency appears at the bottom of the reactor, where enough nutrition is provided for heterotrophic bacteria growth. For the influent COD concentration of 0.587, 0.783, 0.978, 1.174 and 1.369 kg·m-3, the effective height for COD removal is 0.4, 0.5, 0.6, 0.8 and 0.9 m, respectively. Above the effective height, the COD declines slowly, with about 0.04 kg·m-3residual COD, which is rather difficult to degrade.

    Table 2 COD concentration (kg·m-3) as a function of thefilter height (H) for different influent CODconcentration (C0)

    Figure 3 The relationship between ln(0/) and the reactor heightat different influent COD concentrations

    Table 3 Values of K as a function of influent CODconcentration (C0)

    which may be used to predict the COD concentration and COD removal at different influent COD concentrations in the biological aerated filter.

    3.3 Kinetic behavior as a function of hydraulic loading rate

    Table 4 presents the COD concentration (C) as a function of the column depth (H) at various hydraulic loading rate. The influent COD concentration was 1.174 kg·m-3 (corresponding to the influent TNP concentration of 1.2 kg·m-3). Higher values of inlet velocity decrease the residence time and thus inadequate for mass transfer. For example, at the hydraulic loading rate of 2.841 m3·m-2·d-1, the effluent TNP was relatively high. Therefore, the hydraulic loading rates studied were lower, as shown in Table 4.

    Under these conditions, the effluent COD concentration is

    which may be used to predict the COD concentration and COD removal along the reactor height with different hydraulic loading rates in the biological aerated filter.

    Figure 5 The relationship between ln (0/) and the reactor heightas a function of hydraulic loading rates

    Table 5 Values of K2/Ln as a function of L

    Figure 6 Linear regression for determination of model parameterand2

    3.4 Simulations with the models

    With the process parameters in the empirical Eqs. (5) and (9), Fig. 7 shows the COD profile along the reactor height. The removal of COD is in agreement with the experimental data at influent COD concentration of 1.174 kg·m-3, and the COD removal rate is only slightly different.

    Figure 7 Comparison of predicted COD profiles along the reactor with experimental data

    4 CONCLUSIONS

    NOMENCLATURE

    cross-sectional area of the reactor, m2

    COD concentration, kg·m-3

    0influent COD concentration, kg·m-3

    medium height, m

    rate constant, m3·kg-1·d-1

    iHaldane’s growth kinetics inhibition coefficient, mg·L-1

    shalf saturation coefficient, mg·L-1

    1reaction rate constant with VSS included, d-1

    ′ biomass constant, kg·m-3

    hydraulic loading rate, m3·m-2·d-1

    wvolumetric load, kg·m-3·d-1

    volumetric flow rate, m3·d-1

    time, d

    microbial biomass concentration expressed as volatile suspended solids, kg·m-3

    maxmaximum specific growth rate, h-1

    1 Allan, M., Leopoldo, M.E., Tom, S., “A comparison of floating and sunken media biological aerated filters for nitrification”,...., 72, 273-279 (1998).

    2 Wang, C., Li, J., Wang, B., Zhang, G., “Development of an empirical model for domestic wastewater treatment by biological aerated filter”,., 41, 778-782 (2006).

    3 Mann, A.T., Stephenson, T., “Modeling biological aerated filters for wastewater treatment”,., 31, 2443-2448 (1997).

    4 Su, D., Wang, J., Liu, K., Zhou, D., “Kinetic performance of oil-field produced water treatment by biological aerated filter”,...., 15 (4), 591-594 (2007).

    5 Heiss, G., Knackmuss, H.J., “Bioelimination of trinitroaromatic compounds: immobilizationmineralization”,..., 5, 282-287 (2002).

    6 Hofmann, K.W., Knackmuss, H.J., Heiss, G., “Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation”,..., 70, 2854-2860 (2004).

    7 Nga, D.P., Altenbuchner, J., Heiss, G.S., “NpdR, a repressor involved in 2,4,6-trinitrophenol degradation inHL PM-1”,.., 186, 98-103 (2004).

    8 Ramos, J.L., González-Pérez, M.M., Caballero, A., van Dillewijn, P., “Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight”,..., 16, 275-281 (2005).

    9 Rieger, P.G., Sinnwell, V., Preuβ, A., Francke, W., Knackmuss, H.J., “Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation byerythropolis”,.., 181, 1189-1195 (1999).

    10 Rieger, P.G., Meier, H.M., Gerle, M., Vogt, U., Groth, T., Knackmuss, H.J., “Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence”,.., 94, 101-123 (2002).

    11 Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., He, R., “Biodegradation of 2,4,6-trinitrophenol bysp. isolated from a picric acid-contaminated soil”,..., 163, 1199-1206 (2009).

    12 Shen, J., He, R., Yu, H., Wang, L., Zhang, J., Sun, X., Li, J., Han, W., Xu, L., “Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF)”,.., 100, 1922-1930 (2009).

    13 Sá, C.S.A., Boaventura, R.A.R., “Biodegradation of phenol byDSM 548 in a trickling bed reactor”,..., 9, 211-219 (2001).

    14 Weidhaas, J.L., Schroeder, E.D., Chang, D.P., “An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation”,.., 97, 1408-1414 (2007).

    15 Grimberg, S.J., Rury, M.J., Jimenez, K.M., Zander, A.K., “Trinitrophenol treatment in a hollow fiber membrane biofilm reactor”,..., 41, 235-238 (2000).

    16 Shen, J., He, R., Wang, L., Zhang, J., Zuo, Y., Li, Y., Sun, X., Li, J., Han, W., “Biodegradation kinetics of picric acid bysp. NJUST16 in batch reactors”,..., 167, 193-198 (2009).

    17 Anthonisen, A.C., Loehr, R.C., Prakasam, T., Srinarh, E.G., “Inhibition of nitrification by ammonia and nitrous acid”,...., 48 (5), 835-852 (1976).

    18 Aslan, S., Dahab, M., “Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors”,..., 156, 56-63 (2008).

    19 Glass, C., Silverstein, J., “Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation”,., 32, 831-839 (1998).

    20 Glass, C., Silverstein, J., “Denitrification of high-nitrate, high-salinity wastewater”,., 33, 223-229 (1999).

    21 Weon, S.Y., Lee, C.W., Lee, S.I., Koopman, B., “Nitrite inhibition of aerobic growth ofsp”,., 36, 4471-4476 (2002).

    22 Behrend, C., Heesche-Wanger, K., “Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid bysp. strain CB 22-2”,..., 65, 1372-1377 (1999).

    2008-11-21,

    2009-09-07.

    Innovation Grant for Graduate of Jiangsu Province (AD20246).

    ** To whom correspondence should be addressed. E-mail: wanglj@mail.njust.edu.cn

    久久热在线av| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 91精品国产国语对白视频| 国产一区二区三区av在线| 国产伦理片在线播放av一区| 大片免费播放器 马上看| 涩涩av久久男人的天堂| 777米奇影视久久| 青春草视频在线免费观看| 精品少妇久久久久久888优播| 午夜福利网站1000一区二区三区| 精品人妻在线不人妻| 亚洲精品av麻豆狂野| 母亲3免费完整高清在线观看| 日韩 欧美 亚洲 中文字幕| 国产成人av激情在线播放| 母亲3免费完整高清在线观看| 久久精品aⅴ一区二区三区四区| 国产精品一区二区在线不卡| 欧美日韩视频精品一区| 91成人精品电影| 久久 成人 亚洲| 人人妻人人澡人人看| 考比视频在线观看| 久久久久久免费高清国产稀缺| 爱豆传媒免费全集在线观看| 一级片免费观看大全| 亚洲中文av在线| 91精品三级在线观看| 在线亚洲精品国产二区图片欧美| 99久久综合免费| 国产精品亚洲av一区麻豆 | 香蕉国产在线看| 免费女性裸体啪啪无遮挡网站| 国产精品二区激情视频| 三上悠亚av全集在线观看| 欧美人与性动交α欧美软件| 久久人人爽av亚洲精品天堂| 成人手机av| 日韩精品免费视频一区二区三区| av国产久精品久网站免费入址| 美女主播在线视频| 亚洲精华国产精华液的使用体验| 2021少妇久久久久久久久久久| 成人国产av品久久久| 久久人人爽av亚洲精品天堂| 超碰成人久久| 日韩精品有码人妻一区| 美女高潮到喷水免费观看| 亚洲精品久久成人aⅴ小说| 热99国产精品久久久久久7| 国产免费视频播放在线视频| 大话2 男鬼变身卡| 搡老岳熟女国产| 又黄又粗又硬又大视频| 日本午夜av视频| 熟妇人妻不卡中文字幕| 国产精品 欧美亚洲| 欧美激情 高清一区二区三区| 大片免费播放器 马上看| 在线观看免费日韩欧美大片| 国产成人精品福利久久| 欧美日韩精品网址| 国产成人欧美在线观看 | 中文欧美无线码| 亚洲精品一二三| 丝瓜视频免费看黄片| 国产人伦9x9x在线观看| 黄频高清免费视频| 亚洲av成人不卡在线观看播放网 | 色婷婷av一区二区三区视频| 国产欧美亚洲国产| 女人被躁到高潮嗷嗷叫费观| 午夜免费鲁丝| 最近中文字幕2019免费版| 纯流量卡能插随身wifi吗| 日韩精品有码人妻一区| 涩涩av久久男人的天堂| 国产精品久久久久成人av| 又粗又硬又长又爽又黄的视频| 国产精品国产三级专区第一集| 如何舔出高潮| 久久午夜综合久久蜜桃| 成人毛片60女人毛片免费| 久热这里只有精品99| 亚洲欧美精品综合一区二区三区| 最新在线观看一区二区三区 | 各种免费的搞黄视频| 成人午夜精彩视频在线观看| 嫩草影院入口| 少妇人妻 视频| 肉色欧美久久久久久久蜜桃| 午夜影院在线不卡| 久久韩国三级中文字幕| 十分钟在线观看高清视频www| 亚洲一码二码三码区别大吗| avwww免费| 天堂俺去俺来也www色官网| 美国免费a级毛片| 亚洲伊人久久精品综合| 久久性视频一级片| 一本色道久久久久久精品综合| 国产色婷婷99| 熟妇人妻不卡中文字幕| 99久久人妻综合| 亚洲国产精品国产精品| 国产精品久久久久久精品电影小说| 9色porny在线观看| 久久ye,这里只有精品| svipshipincom国产片| xxx大片免费视频| 十分钟在线观看高清视频www| 日韩制服骚丝袜av| 1024视频免费在线观看| 美女脱内裤让男人舔精品视频| 色94色欧美一区二区| 日韩 欧美 亚洲 中文字幕| 久久久久久久国产电影| 韩国av在线不卡| 久久久久网色| 亚洲综合精品二区| 91精品国产国语对白视频| 亚洲情色 制服丝袜| av网站在线播放免费| 国产成人91sexporn| 国产极品粉嫩免费观看在线| 哪个播放器可以免费观看大片| 欧美日韩成人在线一区二区| 亚洲精品aⅴ在线观看| 欧美日韩一区二区视频在线观看视频在线| 伦理电影大哥的女人| 捣出白浆h1v1| 国产成人一区二区在线| 美女中出高潮动态图| 国产欧美日韩一区二区三区在线| 久久久久久久大尺度免费视频| 午夜精品国产一区二区电影| 欧美日韩国产mv在线观看视频| 日韩成人av中文字幕在线观看| 熟女少妇亚洲综合色aaa.| 国产亚洲午夜精品一区二区久久| 中国国产av一级| 亚洲精品av麻豆狂野| 国产男女内射视频| 各种免费的搞黄视频| 在线观看国产h片| 中文字幕av电影在线播放| 嫩草影院入口| 天堂8中文在线网| 成人国产麻豆网| 99国产综合亚洲精品| 成年美女黄网站色视频大全免费| 精品福利永久在线观看| 久久国产精品大桥未久av| 国产av一区二区精品久久| 天天影视国产精品| 啦啦啦中文免费视频观看日本| 亚洲欧美成人综合另类久久久| 欧美xxⅹ黑人| 精品免费久久久久久久清纯 | 久久影院123| 国产高清国产精品国产三级| 国产成人免费无遮挡视频| 国语对白做爰xxxⅹ性视频网站| 国精品久久久久久国模美| 丁香六月欧美| 不卡av一区二区三区| 国产乱来视频区| 亚洲精品国产av蜜桃| 天天躁日日躁夜夜躁夜夜| 免费久久久久久久精品成人欧美视频| 啦啦啦在线观看免费高清www| 欧美精品av麻豆av| 色视频在线一区二区三区| 啦啦啦在线观看免费高清www| 亚洲成国产人片在线观看| 大码成人一级视频| 熟女少妇亚洲综合色aaa.| 久久久久精品国产欧美久久久 | 在线观看免费高清a一片| 青春草亚洲视频在线观看| 精品卡一卡二卡四卡免费| 国产1区2区3区精品| 国精品久久久久久国模美| 日日爽夜夜爽网站| 卡戴珊不雅视频在线播放| 丰满少妇做爰视频| 王馨瑶露胸无遮挡在线观看| 91精品伊人久久大香线蕉| 嫩草影院入口| 久久久久精品性色| 狂野欧美激情性bbbbbb| 一边摸一边抽搐一进一出视频| 色播在线永久视频| 国产精品国产三级国产专区5o| 欧美日韩精品网址| av女优亚洲男人天堂| 在线免费观看不下载黄p国产| 国产精品免费视频内射| 国产一区有黄有色的免费视频| 国产成人一区二区在线| 免费观看av网站的网址| 成年人免费黄色播放视频| videosex国产| 精品福利永久在线观看| 亚洲欧美成人综合另类久久久| 欧美日韩亚洲国产一区二区在线观看 | 久久毛片免费看一区二区三区| 久久鲁丝午夜福利片| 亚洲一码二码三码区别大吗| 久久久久精品久久久久真实原创| 日韩伦理黄色片| av在线观看视频网站免费| 免费高清在线观看视频在线观看| av福利片在线| 国产亚洲欧美精品永久| 日本爱情动作片www.在线观看| 777久久人妻少妇嫩草av网站| 自线自在国产av| 黄片小视频在线播放| 久久鲁丝午夜福利片| 国产伦人伦偷精品视频| 精品国产乱码久久久久久小说| √禁漫天堂资源中文www| 久久人人爽av亚洲精品天堂| 夫妻午夜视频| 中文字幕精品免费在线观看视频| 嫩草影视91久久| 久久久欧美国产精品| 亚洲第一区二区三区不卡| 日韩av在线免费看完整版不卡| 考比视频在线观看| 一级爰片在线观看| 久久精品aⅴ一区二区三区四区| 国产伦理片在线播放av一区| 赤兔流量卡办理| 一区福利在线观看| 免费看不卡的av| 色94色欧美一区二区| 男女之事视频高清在线观看 | 精品亚洲乱码少妇综合久久| 国产乱人偷精品视频| 女的被弄到高潮叫床怎么办| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 五月开心婷婷网| 99国产综合亚洲精品| 视频在线观看一区二区三区| 街头女战士在线观看网站| 亚洲国产av新网站| 精品午夜福利在线看| 人成视频在线观看免费观看| 18禁观看日本| 男人添女人高潮全过程视频| 宅男免费午夜| 老司机影院毛片| 中文天堂在线官网| 各种免费的搞黄视频| 男女午夜视频在线观看| 女性生殖器流出的白浆| 免费观看人在逋| 最新的欧美精品一区二区| 最新在线观看一区二区三区 | 久久久精品免费免费高清| 国产一区二区激情短视频 | 欧美精品av麻豆av| 亚洲精品av麻豆狂野| 一边摸一边抽搐一进一出视频| 亚洲国产欧美日韩在线播放| 天天影视国产精品| 在线天堂中文资源库| av网站免费在线观看视频| 这个男人来自地球电影免费观看 | 精品少妇一区二区三区视频日本电影 | 超碰成人久久| 女人被躁到高潮嗷嗷叫费观| 人妻 亚洲 视频| 欧美日韩综合久久久久久| 国产精品国产三级专区第一集| 一级毛片 在线播放| 综合色丁香网| 少妇 在线观看| 黄色毛片三级朝国网站| 精品一区二区三区av网在线观看 | 亚洲中文av在线| 久久99精品国语久久久| 七月丁香在线播放| 国产精品女同一区二区软件| 毛片一级片免费看久久久久| 天天躁夜夜躁狠狠躁躁| 精品一区二区三卡| 最近最新中文字幕大全免费视频 | 亚洲成色77777| 人人妻人人澡人人爽人人夜夜| 黄色视频不卡| 亚洲一码二码三码区别大吗| 极品人妻少妇av视频| 最黄视频免费看| 99精品久久久久人妻精品| 男女国产视频网站| 亚洲一区中文字幕在线| 搡老岳熟女国产| 亚洲一卡2卡3卡4卡5卡精品中文| 免费女性裸体啪啪无遮挡网站| 99久久精品国产亚洲精品| 午夜91福利影院| 精品亚洲成a人片在线观看| 在线天堂中文资源库| 1024视频免费在线观看| 一边亲一边摸免费视频| 在线 av 中文字幕| 人人妻,人人澡人人爽秒播 | 美女福利国产在线| 亚洲精品中文字幕在线视频| 午夜免费观看性视频| 90打野战视频偷拍视频| 99精国产麻豆久久婷婷| 亚洲精品自拍成人| 国产男人的电影天堂91| 美国免费a级毛片| 久久精品国产a三级三级三级| 人人妻,人人澡人人爽秒播 | 免费在线观看视频国产中文字幕亚洲 | 精品视频人人做人人爽| 国产成人精品在线电影| 亚洲天堂av无毛| 国产精品免费大片| 亚洲,一卡二卡三卡| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 1024香蕉在线观看| 国产成人精品无人区| 性少妇av在线| 亚洲精品av麻豆狂野| 免费看av在线观看网站| 热99久久久久精品小说推荐| 亚洲av日韩在线播放| 色吧在线观看| 一二三四中文在线观看免费高清| 国产日韩欧美视频二区| 国产精品香港三级国产av潘金莲 | 久久av网站| 一级,二级,三级黄色视频| 2018国产大陆天天弄谢| 亚洲精品国产av成人精品| av线在线观看网站| 五月开心婷婷网| 欧美日韩一级在线毛片| 久久久久久久精品精品| 国产亚洲一区二区精品| 亚洲第一青青草原| 婷婷色麻豆天堂久久| 亚洲av男天堂| 一本久久精品| 一区福利在线观看| 超色免费av| 亚洲欧洲国产日韩| 精品久久久久久电影网| 中文字幕人妻熟女乱码| 日本av手机在线免费观看| 晚上一个人看的免费电影| 99精国产麻豆久久婷婷| 亚洲欧洲日产国产| 亚洲,一卡二卡三卡| 亚洲欧美中文字幕日韩二区| 老汉色∧v一级毛片| 欧美人与善性xxx| 日韩不卡一区二区三区视频在线| a级毛片黄视频| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免| 日韩 欧美 亚洲 中文字幕| 国产一区二区激情短视频 | 一本大道久久a久久精品| 欧美97在线视频| 亚洲av日韩在线播放| 麻豆av在线久日| 一本—道久久a久久精品蜜桃钙片| 成人18禁高潮啪啪吃奶动态图| 男男h啪啪无遮挡| 欧美日韩av久久| 国产精品久久久人人做人人爽| 在线观看免费日韩欧美大片| 久久午夜综合久久蜜桃| 999久久久国产精品视频| av有码第一页| 国产精品无大码| 人人澡人人妻人| 一区二区三区激情视频| tube8黄色片| 啦啦啦 在线观看视频| 国产成人欧美在线观看 | 国产精品 国内视频| 久久精品久久久久久噜噜老黄| 久久热在线av| 一级黄片播放器| 啦啦啦 在线观看视频| 亚洲熟女精品中文字幕| 亚洲,一卡二卡三卡| 免费日韩欧美在线观看| 久久精品国产a三级三级三级| 大陆偷拍与自拍| 亚洲国产欧美在线一区| 亚洲欧美一区二区三区国产| 人妻 亚洲 视频| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 亚洲国产成人一精品久久久| 欧美激情 高清一区二区三区| 大香蕉久久成人网| 日日爽夜夜爽网站| 亚洲精品一区蜜桃| 免费观看av网站的网址| 午夜久久久在线观看| 制服丝袜香蕉在线| 欧美另类一区| 国产日韩欧美视频二区| 亚洲久久久国产精品| 亚洲av成人精品一二三区| 日韩免费高清中文字幕av| 国产日韩欧美在线精品| 人成视频在线观看免费观看| 中国国产av一级| 欧美日韩亚洲高清精品| 国产精品av久久久久免费| 中国三级夫妇交换| 亚洲欧美精品综合一区二区三区| 午夜福利,免费看| 亚洲美女视频黄频| 欧美 亚洲 国产 日韩一| 国产精品久久久人人做人人爽| 青草久久国产| 午夜日韩欧美国产| 丝袜喷水一区| 大话2 男鬼变身卡| 国产日韩一区二区三区精品不卡| 丝袜在线中文字幕| 丝袜美腿诱惑在线| 国产亚洲最大av| 亚洲专区中文字幕在线 | 又粗又硬又长又爽又黄的视频| 侵犯人妻中文字幕一二三四区| 看十八女毛片水多多多| 国产亚洲最大av| av在线app专区| 国产成人精品久久二区二区91 | 国产有黄有色有爽视频| 欧美日韩视频精品一区| 天天躁日日躁夜夜躁夜夜| 日韩 欧美 亚洲 中文字幕| 久久性视频一级片| 天天躁日日躁夜夜躁夜夜| 国产成人一区二区在线| 精品久久蜜臀av无| 国产精品久久久久久久久免| 人成视频在线观看免费观看| 亚洲,一卡二卡三卡| 欧美精品高潮呻吟av久久| 最新的欧美精品一区二区| 精品国产国语对白av| 亚洲精华国产精华液的使用体验| 少妇人妻 视频| 日韩中文字幕欧美一区二区 | 国产在线视频一区二区| 日本猛色少妇xxxxx猛交久久| 99久久人妻综合| 男人操女人黄网站| 最近2019中文字幕mv第一页| 欧美日韩亚洲综合一区二区三区_| 亚洲国产欧美在线一区| 亚洲精品中文字幕在线视频| 午夜福利网站1000一区二区三区| 卡戴珊不雅视频在线播放| 成人午夜精彩视频在线观看| 精品一区二区三区四区五区乱码 | 中国三级夫妇交换| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| 91精品伊人久久大香线蕉| 成年动漫av网址| 性少妇av在线| 在线免费观看不下载黄p国产| 大香蕉久久网| 搡老乐熟女国产| 日日啪夜夜爽| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 丝袜美腿诱惑在线| 制服人妻中文乱码| 无遮挡黄片免费观看| 中文欧美无线码| 亚洲一区中文字幕在线| 看十八女毛片水多多多| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 欧美精品一区二区免费开放| 不卡av一区二区三区| 女人久久www免费人成看片| www.熟女人妻精品国产| 999久久久国产精品视频| 麻豆av在线久日| 亚洲色图综合在线观看| 美女中出高潮动态图| 国产97色在线日韩免费| 老汉色∧v一级毛片| 国产女主播在线喷水免费视频网站| 最近中文字幕高清免费大全6| 巨乳人妻的诱惑在线观看| 美女主播在线视频| 亚洲欧美一区二区三区国产| 国产高清不卡午夜福利| 国产精品女同一区二区软件| 久久国产精品男人的天堂亚洲| av福利片在线| 少妇 在线观看| 狠狠婷婷综合久久久久久88av| av一本久久久久| tube8黄色片| 日本一区二区免费在线视频| 午夜激情av网站| 精品国产露脸久久av麻豆| 校园人妻丝袜中文字幕| 欧美黑人精品巨大| 亚洲免费av在线视频| 妹子高潮喷水视频| 国产成人精品无人区| 久久韩国三级中文字幕| 国产精品香港三级国产av潘金莲 | 1024视频免费在线观看| 国产精品久久久久成人av| 看免费成人av毛片| 777米奇影视久久| 日日啪夜夜爽| 99香蕉大伊视频| 国产精品一二三区在线看| 永久免费av网站大全| 日韩欧美精品免费久久| 欧美黑人欧美精品刺激| 久久久久国产一级毛片高清牌| 精品少妇一区二区三区视频日本电影 | 在线观看一区二区三区激情| 又大又黄又爽视频免费| 黄色 视频免费看| 亚洲精品,欧美精品| 欧美成人午夜精品| 亚洲一区二区三区欧美精品| 国产精品熟女久久久久浪| 国产男女超爽视频在线观看| 国产99久久九九免费精品| 久久天堂一区二区三区四区| 欧美中文综合在线视频| 天天躁夜夜躁狠狠久久av| 久久综合国产亚洲精品| 亚洲视频免费观看视频| √禁漫天堂资源中文www| 亚洲伊人色综图| 精品一区二区免费观看| 黑人巨大精品欧美一区二区蜜桃| 99精品久久久久人妻精品| 精品国产超薄肉色丝袜足j| 最新的欧美精品一区二区| 欧美国产精品va在线观看不卡| 人人妻人人澡人人爽人人夜夜| 美女福利国产在线| 性高湖久久久久久久久免费观看| 久久97久久精品| 啦啦啦 在线观看视频| 国产精品女同一区二区软件| 高清视频免费观看一区二区| 欧美精品av麻豆av| 久久狼人影院| 亚洲一级一片aⅴ在线观看| 亚洲国产精品国产精品| 91aial.com中文字幕在线观看| 丰满饥渴人妻一区二区三| 亚洲精品aⅴ在线观看| 国产精品嫩草影院av在线观看| 国产免费福利视频在线观看| 老司机亚洲免费影院| 国产精品久久久久久人妻精品电影 | 欧美精品一区二区免费开放| 热re99久久精品国产66热6| 在线观看免费日韩欧美大片| 蜜桃国产av成人99| 观看av在线不卡| 999久久久国产精品视频| 亚洲欧洲国产日韩| 高清在线视频一区二区三区| 成人国产av品久久久| 麻豆精品久久久久久蜜桃| 汤姆久久久久久久影院中文字幕| 日韩一区二区三区影片| 两性夫妻黄色片| 热re99久久精品国产66热6| 青草久久国产| 亚洲国产欧美日韩在线播放| 婷婷色综合大香蕉| 韩国精品一区二区三区| 国产成人免费观看mmmm| 丝袜喷水一区| 国产亚洲欧美精品永久| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| 国产一区二区三区综合在线观看| 国产99久久九九免费精品| 五月开心婷婷网| 好男人视频免费观看在线| 女性生殖器流出的白浆| 嫩草影院入口| 精品国产乱码久久久久久男人| av不卡在线播放| 日韩人妻精品一区2区三区| 亚洲精品成人av观看孕妇| 成人手机av|