• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of COD Removal in a Biological Aerated Filter in thePresence of 2,4,6-Trinitrophenol (Picric Acid)*

    2009-05-15 01:40:14SHENJinyou沈錦優(yōu)HERui何銳WANGLianjun王連軍HANWeiqing韓衛(wèi)清LIJiansheng李健生andSUNXiuyun孫秀云

    SHEN Jinyou (沈錦優(yōu)), HE Rui (何銳), WANG Lianjun (王連軍), HAN Weiqing (韓衛(wèi)清), LI Jiansheng (李健生) and SUN Xiuyun (孫秀云)

    ?

    Kinetics of COD Removal in a Biological Aerated Filter in thePresence of 2,4,6-Trinitrophenol (Picric Acid)*

    SHEN Jinyou (沈錦優(yōu)), HE Rui (何銳), WANG Lianjun (王連軍)**, HAN Weiqing (韓衛(wèi)清), LI Jiansheng (李健生) and SUN Xiuyun (孫秀云)

    School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

    biological aerated filter, empirical model, picric acid, biodegradation

    1 INTRODUCTION

    The biological aerated filter (BAF) is an immobilization reactor developed in the late 1980s. It has been widely applied because of its advantages over the conventional biological processes, such as small footprint and excellent performance at much higher loading rates. High removal efficiencies and capacities for carbonaceous organic substances, total nitrogen (TN), ammonia and suspended solids (SS) can be obtained [1, 2]. In addition, the removal of organic materials and nitrogen-containing compounds can be carried out in a single unit.

    In order to improve the performance and understand BAF, some kinetic models have been proposed, which may be generally divided into two categories: theoretical models and empirical models [3]. The theoretical models deal with individual phenomenon with the application of kinetics and principles from reaction engineering. Since many variables are involved in the analysis for a granular-media fixed-film reactor, its modeling is extremely complex. Many assumptions are made and some of the parameters in the model are usually unavailable. In empirical models, only input and output variables of a process are needed to relate nutrient removal efficiency to hydraulic and organic loading rates, so the measurement of parameters such as oxygen utilization rate and mass transfer coefficients is not required [2, 3]. However, most of the literature about the empirical models is on the reactors initially inoculated with activated sludge for treating substrates that are readily to be degraded [2-4], and few papers are on those initially inoculated with pure culture for treating substrates difficult to degrade.

    2,4,6-trinitrophenol (TNP, also known as picric acid) is truly xenobiotic. Numerous military and industrial sites are highly contaminated with the substance. For the bioremediation of TNP, many papers focus mainly on the degradation pathway [5-10], and only a few are available on the engineering aspects in continuous reactors.

    We have isolated a strain ofsp. from the site contaminated by TNP at Nanjing Taowu Chemical Factory in China [11] and utilized it for biodegradation of TNP in the biological aerated filter reactor [12]. This paper reports an empirical model relating effluent COD to influent chemical oxygen demand (COD) concentrations or hydraulic loading rates along the height in the BAF, to provide a simple method for design, selection and sizing of BAF.

    2 MATERIALS AND METHODS

    2.1 Influent feed composition

    The influent feed composition is as follows [12]: phosphate buffer (Na2HPO4and KH2PO4, 14 mmol·L-1, pH 7.5), MgSO4·7H2O (0.2 g·L-1), CaCl2(0.05 g·L-1), SL-4 (10 ml·L-1), supplemented with a certain amount of TNP stock solution. No other carbon sources and nitrogen sources were present in the influent. The composition of SL-4 was described previously [11]. The TNP stock solution contained 4000 mg·L-1TNP, and was adjusted to pH 7.0 with 1 mol·L-1of NaOH.

    Figure 1 Experiment installation

    1—feed tank; 2—manual valve; 3—rotameter or water flowmeter; 4—air compressor; 5—electrically operated valve; 6—peristaltic pump; 7—polishing tank; 8—storage tank; 9—biological aerated filter; 10—thermostatic bath; 11—pump

    Table 1 The parameters of ceramic particles

    2.2 Experimental system and conditions

    The pilot-scale biological aerated filter system was a polymethyl methacrylate column with 0.15 m inner diameter and a length of 2 m, filled with 1.0 m of ceramic particles (Fig. 1). From the base of the reactor, 11 sampling ports were set and the distance between two ports was 0.1 m. The COD concentrations of each effluent sample taken from each sampling port were measured. In order to achieve the stable state conditions, the reactor was operated for 7 days under each operation condition. The porous ceramic particles were used as the medium for biofilm development. The parameters of the ceramics are listed in Table 1.

    In this study, the air flow rate was 68.16 m3·m-2·d-1.The thermostatic bath was used to keep the cultivation temperature at 30°C. The BAF was operated without recirculation. During the operation period, head loss was monitored by measurement of water lamina height, which indicated the need for biofilter backwashing. In this process, the ceramic particles was loosened first by a flow of air (about 1920 m3·m-2·d-1) for 1 min, and then by a combined flow of water (about 960 m3·m-2·d-1) and air (about 960 m3·m-2·d-1) for 1 min. Finally, a flow of water (about 480 m3·m-2·d-1) was applied for 2 min to eliminate the remaining biomass. The reactor was initially inoculated with pure culture ofsp. NJUST16. The characteristics of the inocula and the start-up procedure of the BAF were described previously [12].

    2.3 Theory

    At steady state, the sorption of TNP on the packing material (adsorption on the solid and absorption in the water retained in the pores of solid) is in equilibriumand is not taken into consideration in the mass balances.

    With the assumption of pseudo first-order kinetics and plug flow, the substrate removal rate can be described as follows [13]:

    in which1is the reaction rate constant with VSS included [4].

    Integrating Eq. (2) yields

    whereand0are the contact time and the influent COD concentration, respectively.

    The mean residence time of the fluid in the reactor,, is related to the filter depth, the hydraulic loading rate and the nature of the support [13]:

    whereis the medium height,is the hydraulic loading rate,andare constants related to the medium and its specific surface.

    Substitution of Eq. (4) into Eq. (3), leads to [4]

    On the other hand, the mean residence timecan be related to the volumetric load of mediaw[3],

    where′ is the biomass constant, which depends on the hydraulic characteristics of the reactor, andwcan be expressed as [3]:

    whereis the volumetric flow rate, andis the cross-sectional area of the reactor.

    With Eqs. (6) and (7), Eq. (3) becomes [3]

    Equation (8) may be written as [2]

    2.4 Analytical methods

    TNP concentration and COD were determined by the method described previously [11]. The pH was measured with a pH meter (PHS-3B, Shanghai Precision & Scientific Instrument Co. Ltd, China). After inoculation, biofilm formation in the BAF reactor was confirmed by scanning electron microscopy (SEM, JEOLJSM-6380LV, JEOL Ltd, Japan). Support materials were collected from the bottom of the column. The microorganisms were fixed with 4% glutaraldehyde and 1% osmic acid, and then dehydrated in an ethanol gradient. Subsequently, the specimens were dried in a critical drying apparatus (HCP-2, HITACHI, Japan) and given a metal coating with gold.

    3 RESULTS AND DISCUSSION

    3.1 BAF performance and biomass formation

    The start-up process took about 3 weeks [12]. The reactor performance was checked by measuring TNP and COD concentrations. After operated for about 60 d, the TNP and COD were degraded in the BAF rapidly. At the bottom of the reactor, a thin biofilm covering the particles could be observed. The biofilm formation was confirmed by the SEM analysis (Fig. 2). The ceramic particles presented a rugged surface that is ideal for biofilm formation [Fig. 2 (a)]. The cell morphology and space arrangement are clearly visible [Fig. 2 (b)]. The result indicates that the support material is suitable.

    Figure 2 Scanning electron microscopy: (a) support material before inoculation; (b) support material with biofilm formed after inoculation

    During the experimental period, the maximum apparent TNP volumetric removal rate was 2.53 kg·m-3·d-1, with the TNP removal rate of 98.7%. Accordingly, the maximum COD volumetric removal rate was as high as 2.3 kg·m-3·d-1(1 kg·m-3of TNP corresponded to 0.978 kg·m-3), with the removal rate of 93.0% [12], showing that the BAF reactor initially inoculated withsp. NJUST16 was highly efficient for removing organic material from wastewater containing high concentration of TNP. In addition, the maximum influent TNP concentration of 1.5 kg·m-3was rather high compared to the aerobic sequencing batch reactor [14] and the hollow-fiber membrane biofilm reactor [15].

    3.2 Kinetic behavior as a function of influent COD concentration

    The COD removal at different media height was investigated when the volumetric flow rate was controlled at 0.03 m3·d-1. COD concentrations () as a function of the column height () for various COD concentrations of influent are presented in Table 2. The largest increment of removal efficiency appears at the bottom of the reactor, where enough nutrition is provided for heterotrophic bacteria growth. For the influent COD concentration of 0.587, 0.783, 0.978, 1.174 and 1.369 kg·m-3, the effective height for COD removal is 0.4, 0.5, 0.6, 0.8 and 0.9 m, respectively. Above the effective height, the COD declines slowly, with about 0.04 kg·m-3residual COD, which is rather difficult to degrade.

    Table 2 COD concentration (kg·m-3) as a function of thefilter height (H) for different influent CODconcentration (C0)

    Figure 3 The relationship between ln(0/) and the reactor heightat different influent COD concentrations

    Table 3 Values of K as a function of influent CODconcentration (C0)

    which may be used to predict the COD concentration and COD removal at different influent COD concentrations in the biological aerated filter.

    3.3 Kinetic behavior as a function of hydraulic loading rate

    Table 4 presents the COD concentration (C) as a function of the column depth (H) at various hydraulic loading rate. The influent COD concentration was 1.174 kg·m-3 (corresponding to the influent TNP concentration of 1.2 kg·m-3). Higher values of inlet velocity decrease the residence time and thus inadequate for mass transfer. For example, at the hydraulic loading rate of 2.841 m3·m-2·d-1, the effluent TNP was relatively high. Therefore, the hydraulic loading rates studied were lower, as shown in Table 4.

    Under these conditions, the effluent COD concentration is

    which may be used to predict the COD concentration and COD removal along the reactor height with different hydraulic loading rates in the biological aerated filter.

    Figure 5 The relationship between ln (0/) and the reactor heightas a function of hydraulic loading rates

    Table 5 Values of K2/Ln as a function of L

    Figure 6 Linear regression for determination of model parameterand2

    3.4 Simulations with the models

    With the process parameters in the empirical Eqs. (5) and (9), Fig. 7 shows the COD profile along the reactor height. The removal of COD is in agreement with the experimental data at influent COD concentration of 1.174 kg·m-3, and the COD removal rate is only slightly different.

    Figure 7 Comparison of predicted COD profiles along the reactor with experimental data

    4 CONCLUSIONS

    NOMENCLATURE

    cross-sectional area of the reactor, m2

    COD concentration, kg·m-3

    0influent COD concentration, kg·m-3

    medium height, m

    rate constant, m3·kg-1·d-1

    iHaldane’s growth kinetics inhibition coefficient, mg·L-1

    shalf saturation coefficient, mg·L-1

    1reaction rate constant with VSS included, d-1

    ′ biomass constant, kg·m-3

    hydraulic loading rate, m3·m-2·d-1

    wvolumetric load, kg·m-3·d-1

    volumetric flow rate, m3·d-1

    time, d

    microbial biomass concentration expressed as volatile suspended solids, kg·m-3

    maxmaximum specific growth rate, h-1

    1 Allan, M., Leopoldo, M.E., Tom, S., “A comparison of floating and sunken media biological aerated filters for nitrification”,...., 72, 273-279 (1998).

    2 Wang, C., Li, J., Wang, B., Zhang, G., “Development of an empirical model for domestic wastewater treatment by biological aerated filter”,., 41, 778-782 (2006).

    3 Mann, A.T., Stephenson, T., “Modeling biological aerated filters for wastewater treatment”,., 31, 2443-2448 (1997).

    4 Su, D., Wang, J., Liu, K., Zhou, D., “Kinetic performance of oil-field produced water treatment by biological aerated filter”,...., 15 (4), 591-594 (2007).

    5 Heiss, G., Knackmuss, H.J., “Bioelimination of trinitroaromatic compounds: immobilizationmineralization”,..., 5, 282-287 (2002).

    6 Hofmann, K.W., Knackmuss, H.J., Heiss, G., “Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation”,..., 70, 2854-2860 (2004).

    7 Nga, D.P., Altenbuchner, J., Heiss, G.S., “NpdR, a repressor involved in 2,4,6-trinitrophenol degradation inHL PM-1”,.., 186, 98-103 (2004).

    8 Ramos, J.L., González-Pérez, M.M., Caballero, A., van Dillewijn, P., “Bioremediation of polynitrated aromatic compounds: plants and microbes put up a fight”,..., 16, 275-281 (2005).

    9 Rieger, P.G., Sinnwell, V., Preuβ, A., Francke, W., Knackmuss, H.J., “Hydride-Meisenheimer complex formation and protonation as key reactions of 2,4,6-trinitrophenol biodegradation byerythropolis”,.., 181, 1189-1195 (1999).

    10 Rieger, P.G., Meier, H.M., Gerle, M., Vogt, U., Groth, T., Knackmuss, H.J., “Xenobiotics in the environment: present and future strategies to obviate the problem of biological persistence”,.., 94, 101-123 (2002).

    11 Shen, J., Zhang, J., Zuo, Y., Wang, L., Sun, X., Li, J., Han, W., He, R., “Biodegradation of 2,4,6-trinitrophenol bysp. isolated from a picric acid-contaminated soil”,..., 163, 1199-1206 (2009).

    12 Shen, J., He, R., Yu, H., Wang, L., Zhang, J., Sun, X., Li, J., Han, W., Xu, L., “Biodegradation of 2,4,6-trinitrophenol (picric acid) in a biological aerated filter (BAF)”,.., 100, 1922-1930 (2009).

    13 Sá, C.S.A., Boaventura, R.A.R., “Biodegradation of phenol byDSM 548 in a trickling bed reactor”,..., 9, 211-219 (2001).

    14 Weidhaas, J.L., Schroeder, E.D., Chang, D.P., “An aerobic sequencing batch reactor for 2,4,6-trinitrophenol (picric acid) biodegradation”,.., 97, 1408-1414 (2007).

    15 Grimberg, S.J., Rury, M.J., Jimenez, K.M., Zander, A.K., “Trinitrophenol treatment in a hollow fiber membrane biofilm reactor”,..., 41, 235-238 (2000).

    16 Shen, J., He, R., Wang, L., Zhang, J., Zuo, Y., Li, Y., Sun, X., Li, J., Han, W., “Biodegradation kinetics of picric acid bysp. NJUST16 in batch reactors”,..., 167, 193-198 (2009).

    17 Anthonisen, A.C., Loehr, R.C., Prakasam, T., Srinarh, E.G., “Inhibition of nitrification by ammonia and nitrous acid”,...., 48 (5), 835-852 (1976).

    18 Aslan, S., Dahab, M., “Nitritation and denitritation of ammonium-rich wastewater using fluidized-bed biofilm reactors”,..., 156, 56-63 (2008).

    19 Glass, C., Silverstein, J., “Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation”,., 32, 831-839 (1998).

    20 Glass, C., Silverstein, J., “Denitrification of high-nitrate, high-salinity wastewater”,., 33, 223-229 (1999).

    21 Weon, S.Y., Lee, C.W., Lee, S.I., Koopman, B., “Nitrite inhibition of aerobic growth ofsp”,., 36, 4471-4476 (2002).

    22 Behrend, C., Heesche-Wanger, K., “Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid bysp. strain CB 22-2”,..., 65, 1372-1377 (1999).

    2008-11-21,

    2009-09-07.

    Innovation Grant for Graduate of Jiangsu Province (AD20246).

    ** To whom correspondence should be addressed. E-mail: wanglj@mail.njust.edu.cn

    精品久久久久久久久av| 少妇人妻精品综合一区二区| 午夜精品国产一区二区电影 | 网址你懂的国产日韩在线| 91午夜精品亚洲一区二区三区| 久久久成人免费电影| 国产黄片视频在线免费观看| 狂野欧美激情性bbbbbb| 日韩欧美一区视频在线观看 | 精品少妇黑人巨大在线播放| av免费观看日本| 成人漫画全彩无遮挡| av女优亚洲男人天堂| 直男gayav资源| 午夜免费男女啪啪视频观看| 国产乱人视频| 在线观看国产h片| 亚洲在线观看片| 亚洲色图av天堂| 成人黄色视频免费在线看| 激情 狠狠 欧美| 国产精品99久久99久久久不卡 | 国产男女内射视频| 99热6这里只有精品| 国产色婷婷99| 久久精品人妻少妇| 在线观看国产h片| 99热全是精品| 色5月婷婷丁香| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 免费在线观看成人毛片| 人人妻人人爽人人添夜夜欢视频 | 人人妻人人看人人澡| 中文天堂在线官网| 亚洲最大成人av| 97精品久久久久久久久久精品| 欧美潮喷喷水| 免费高清在线观看视频在线观看| 校园人妻丝袜中文字幕| 欧美成人午夜免费资源| 夫妻性生交免费视频一级片| 色吧在线观看| 久久久久精品性色| 尾随美女入室| 美女主播在线视频| 日日摸夜夜添夜夜爱| 香蕉精品网在线| 精品少妇黑人巨大在线播放| 美女主播在线视频| 欧美激情在线99| 亚洲国产成人一精品久久久| 一个人看的www免费观看视频| 最新中文字幕久久久久| 插阴视频在线观看视频| 男人添女人高潮全过程视频| 亚洲精品自拍成人| 校园人妻丝袜中文字幕| av线在线观看网站| 色网站视频免费| 亚洲国产av新网站| 亚洲四区av| 久久久久久久亚洲中文字幕| av在线蜜桃| 国产av不卡久久| 久久久久网色| av专区在线播放| 男女啪啪激烈高潮av片| 久久人人爽av亚洲精品天堂 | 久久久久久久久久成人| 亚洲欧洲国产日韩| 毛片女人毛片| 波多野结衣巨乳人妻| 22中文网久久字幕| 久久ye,这里只有精品| 免费在线观看成人毛片| 黄色配什么色好看| 精华霜和精华液先用哪个| 亚洲精品久久午夜乱码| 中文字幕制服av| 97超碰精品成人国产| 免费大片黄手机在线观看| 大话2 男鬼变身卡| 国产精品成人在线| 久久99热这里只有精品18| av又黄又爽大尺度在线免费看| 九色成人免费人妻av| 亚洲最大成人av| 女人十人毛片免费观看3o分钟| 性插视频无遮挡在线免费观看| 青青草视频在线视频观看| 欧美变态另类bdsm刘玥| 人人妻人人看人人澡| 黄色配什么色好看| 97超碰精品成人国产| 国产午夜福利久久久久久| 少妇丰满av| 最近最新中文字幕免费大全7| 久久97久久精品| 狂野欧美白嫩少妇大欣赏| 国产探花在线观看一区二区| 色网站视频免费| 少妇人妻一区二区三区视频| 丰满乱子伦码专区| 大香蕉97超碰在线| 女的被弄到高潮叫床怎么办| 亚洲欧美成人精品一区二区| 成人毛片60女人毛片免费| 国产成人91sexporn| 国产综合精华液| 日韩欧美精品免费久久| 婷婷色av中文字幕| 真实男女啪啪啪动态图| 天天一区二区日本电影三级| 午夜福利高清视频| 久久久久久久久大av| 国产成人精品婷婷| 国产高清国产精品国产三级 | 国产成人免费观看mmmm| 激情 狠狠 欧美| 亚洲av免费高清在线观看| 亚洲精品第二区| 麻豆成人午夜福利视频| 国产69精品久久久久777片| 成年女人在线观看亚洲视频 | 国产成人精品婷婷| 国产高清有码在线观看视频| 国产成人aa在线观看| 国产一区有黄有色的免费视频| 日韩,欧美,国产一区二区三区| 交换朋友夫妻互换小说| 中国三级夫妇交换| 精品久久久久久久末码| 嘟嘟电影网在线观看| 国产成人午夜福利电影在线观看| 啦啦啦在线观看免费高清www| 国产成人免费无遮挡视频| 亚洲欧美中文字幕日韩二区| 极品少妇高潮喷水抽搐| 免费看光身美女| 亚洲av中文av极速乱| 亚洲欧洲日产国产| 日韩亚洲欧美综合| 精品人妻熟女av久视频| 国产中年淑女户外野战色| 亚洲精品乱码久久久v下载方式| 亚洲不卡免费看| 国产精品一二三区在线看| 免费观看的影片在线观看| 午夜老司机福利剧场| 欧美zozozo另类| 五月天丁香电影| 热re99久久精品国产66热6| 成人二区视频| 亚洲精品乱码久久久v下载方式| 欧美+日韩+精品| 男人舔奶头视频| 欧美精品国产亚洲| 亚洲欧美清纯卡通| 国产乱人偷精品视频| 成人免费观看视频高清| 午夜日本视频在线| 亚洲精品成人久久久久久| 亚洲一区二区三区欧美精品 | 国产精品久久久久久av不卡| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 成人一区二区视频在线观看| 成人免费观看视频高清| 纵有疾风起免费观看全集完整版| 国内少妇人妻偷人精品xxx网站| 亚洲欧洲国产日韩| 最近中文字幕高清免费大全6| 黄色视频在线播放观看不卡| 国产 一区 欧美 日韩| 国产成人精品福利久久| 国产黄频视频在线观看| 激情五月婷婷亚洲| 日韩亚洲欧美综合| 又爽又黄无遮挡网站| 亚洲不卡免费看| 另类亚洲欧美激情| 国产黄片美女视频| 少妇的逼好多水| 国产69精品久久久久777片| 三级男女做爰猛烈吃奶摸视频| 国产黄a三级三级三级人| 超碰97精品在线观看| 老司机影院毛片| 久久久久久久午夜电影| 国产 一区 欧美 日韩| 亚洲精品久久久久久婷婷小说| 午夜福利视频精品| 欧美老熟妇乱子伦牲交| 大码成人一级视频| 精品99又大又爽又粗少妇毛片| 国内精品美女久久久久久| 深爱激情五月婷婷| 亚洲丝袜综合中文字幕| 美女国产视频在线观看| 国产乱来视频区| 国产高清不卡午夜福利| av一本久久久久| 国产爽快片一区二区三区| 国产女主播在线喷水免费视频网站| 久久综合国产亚洲精品| 成年女人在线观看亚洲视频 | 久久久久久久久久久丰满| 永久免费av网站大全| 一区二区三区四区激情视频| 99久久精品一区二区三区| 在线观看一区二区三区| 国产亚洲一区二区精品| 久久久久久九九精品二区国产| 亚洲,一卡二卡三卡| 男人添女人高潮全过程视频| 久久久成人免费电影| 免费黄色在线免费观看| av在线蜜桃| 久久6这里有精品| 日韩电影二区| 色吧在线观看| 国产一级毛片在线| 午夜福利网站1000一区二区三区| videossex国产| 91精品一卡2卡3卡4卡| 少妇人妻久久综合中文| 亚洲精品456在线播放app| 在线看a的网站| 啦啦啦中文免费视频观看日本| 国产色婷婷99| 一级毛片 在线播放| 美女高潮的动态| 国产免费福利视频在线观看| 久久午夜福利片| 人人妻人人看人人澡| 久久久久久久久大av| 国产69精品久久久久777片| 日本-黄色视频高清免费观看| 免费大片18禁| 小蜜桃在线观看免费完整版高清| 我的女老师完整版在线观看| 国产91av在线免费观看| 成人黄色视频免费在线看| av女优亚洲男人天堂| 亚洲色图av天堂| 一级毛片电影观看| 少妇人妻精品综合一区二区| 久久亚洲国产成人精品v| 身体一侧抽搐| 2018国产大陆天天弄谢| 美女cb高潮喷水在线观看| 国产色婷婷99| 日韩一本色道免费dvd| 男女国产视频网站| a级毛色黄片| 国产毛片a区久久久久| 国产精品av视频在线免费观看| 国产免费一区二区三区四区乱码| 国产色爽女视频免费观看| 国产免费一级a男人的天堂| 亚洲欧洲日产国产| 女人被狂操c到高潮| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 久久久久网色| 欧美日本视频| eeuss影院久久| 97热精品久久久久久| 联通29元200g的流量卡| 汤姆久久久久久久影院中文字幕| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 最后的刺客免费高清国语| 国产一区二区三区综合在线观看 | av女优亚洲男人天堂| 波野结衣二区三区在线| 卡戴珊不雅视频在线播放| 免费看不卡的av| 亚州av有码| 内地一区二区视频在线| 免费观看a级毛片全部| 国产成人aa在线观看| 你懂的网址亚洲精品在线观看| 69人妻影院| 亚洲av中文字字幕乱码综合| 一级片'在线观看视频| av黄色大香蕉| 国产伦精品一区二区三区视频9| 欧美丝袜亚洲另类| 亚洲av欧美aⅴ国产| 亚洲国产最新在线播放| av天堂中文字幕网| 蜜臀久久99精品久久宅男| 欧美xxxx黑人xx丫x性爽| 日韩国内少妇激情av| 综合色av麻豆| 少妇的逼水好多| 国产一区亚洲一区在线观看| 99热这里只有精品一区| 免费观看a级毛片全部| 秋霞在线观看毛片| 男女边摸边吃奶| 毛片女人毛片| 成人免费观看视频高清| 国产精品三级大全| 中国三级夫妇交换| 一级a做视频免费观看| 大片免费播放器 马上看| 久久精品国产亚洲av天美| 亚洲在久久综合| 少妇人妻一区二区三区视频| 日本爱情动作片www.在线观看| 久久久久久久国产电影| 大话2 男鬼变身卡| 国产精品爽爽va在线观看网站| a级毛色黄片| 精品酒店卫生间| 中国三级夫妇交换| 亚洲精品第二区| 伦理电影大哥的女人| 日韩三级伦理在线观看| 国产乱来视频区| 国产精品一区二区在线观看99| 中文精品一卡2卡3卡4更新| 国产精品一二三区在线看| 久久久久久久久久人人人人人人| 国产亚洲91精品色在线| 成人鲁丝片一二三区免费| 国产老妇女一区| 日本午夜av视频| 亚洲精品久久午夜乱码| 夜夜爽夜夜爽视频| 国产精品偷伦视频观看了| 热99国产精品久久久久久7| 国产av码专区亚洲av| 女人十人毛片免费观看3o分钟| 精品久久久久久久人妻蜜臀av| 又粗又硬又长又爽又黄的视频| 免费黄频网站在线观看国产| 亚洲精品乱久久久久久| 欧美一级a爱片免费观看看| 亚洲精品乱久久久久久| 夜夜爽夜夜爽视频| 国产成人福利小说| 波多野结衣巨乳人妻| 一级a做视频免费观看| 成人综合一区亚洲| 久久久成人免费电影| 亚洲图色成人| 亚洲欧美成人综合另类久久久| 国产精品蜜桃在线观看| 欧美bdsm另类| 欧美高清性xxxxhd video| av国产免费在线观看| 国产一级毛片在线| 又大又黄又爽视频免费| 久久久久久久久久久丰满| 国产伦精品一区二区三区视频9| 亚洲人成网站在线播| 3wmmmm亚洲av在线观看| 日本三级黄在线观看| 亚洲av成人精品一二三区| 99热这里只有精品一区| 99热网站在线观看| 国产精品麻豆人妻色哟哟久久| 久久久成人免费电影| 久久精品国产a三级三级三级| 国产精品av视频在线免费观看| 成年av动漫网址| 少妇人妻 视频| 日本三级黄在线观看| 九九久久精品国产亚洲av麻豆| 亚洲图色成人| 国产精品国产三级国产av玫瑰| 日日啪夜夜爽| 亚州av有码| 国产色婷婷99| 激情五月婷婷亚洲| 伦精品一区二区三区| 午夜亚洲福利在线播放| 五月开心婷婷网| 国产成人a∨麻豆精品| 看十八女毛片水多多多| 欧美成人一区二区免费高清观看| 日本-黄色视频高清免费观看| 99久国产av精品国产电影| 免费观看在线日韩| 男人和女人高潮做爰伦理| 欧美xxⅹ黑人| 最近2019中文字幕mv第一页| 自拍偷自拍亚洲精品老妇| 国产亚洲一区二区精品| 精品国产乱码久久久久久小说| 亚洲久久久久久中文字幕| 亚洲怡红院男人天堂| 尤物成人国产欧美一区二区三区| 亚州av有码| 大又大粗又爽又黄少妇毛片口| 国产亚洲91精品色在线| 免费看不卡的av| 免费大片18禁| 五月开心婷婷网| 欧美xxxx黑人xx丫x性爽| 国产av码专区亚洲av| 亚洲四区av| 亚洲av欧美aⅴ国产| 亚洲欧美日韩另类电影网站 | 男女啪啪激烈高潮av片| 欧美3d第一页| 美女主播在线视频| 日韩 亚洲 欧美在线| 肉色欧美久久久久久久蜜桃 | 亚洲成人av在线免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产欧美日韩一区二区三区在线 | 国产成人福利小说| 蜜桃久久精品国产亚洲av| 国产极品天堂在线| 亚洲av免费高清在线观看| 五月开心婷婷网| 少妇裸体淫交视频免费看高清| 国产色婷婷99| 久久久久久久久大av| 女的被弄到高潮叫床怎么办| 亚洲精品日韩在线中文字幕| 免费观看的影片在线观看| 国产精品.久久久| 免费大片18禁| 赤兔流量卡办理| 亚洲av.av天堂| 欧美极品一区二区三区四区| 国产午夜精品久久久久久一区二区三区| 亚洲成人久久爱视频| 亚洲三级黄色毛片| 久久久久久久午夜电影| 国产伦理片在线播放av一区| 久久99热这里只频精品6学生| 网址你懂的国产日韩在线| 国产在视频线精品| 日韩人妻高清精品专区| 成人二区视频| 日日撸夜夜添| 国产在线男女| 久久精品久久精品一区二区三区| 在线a可以看的网站| 国产精品嫩草影院av在线观看| 亚洲精品亚洲一区二区| 国产精品久久久久久久久免| 美女国产视频在线观看| a级一级毛片免费在线观看| 丰满乱子伦码专区| 黄色一级大片看看| 国产免费视频播放在线视频| h日本视频在线播放| 亚洲最大成人手机在线| 欧美亚洲 丝袜 人妻 在线| 欧美 日韩 精品 国产| 亚洲国产精品专区欧美| 男人添女人高潮全过程视频| 免费大片18禁| 久久久久久久久久人人人人人人| 黄色视频在线播放观看不卡| av国产免费在线观看| videos熟女内射| 夫妻午夜视频| 看免费成人av毛片| 午夜福利视频1000在线观看| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 亚洲av男天堂| 99久久精品一区二区三区| 欧美日韩视频高清一区二区三区二| 黄色日韩在线| 毛片女人毛片| 亚洲精品久久久久久婷婷小说| 成人亚洲精品av一区二区| 丰满人妻一区二区三区视频av| 午夜福利视频1000在线观看| 人人妻人人澡人人爽人人夜夜| 一本久久精品| 国产黄色免费在线视频| 成年av动漫网址| 中文精品一卡2卡3卡4更新| 中国美白少妇内射xxxbb| 国产免费视频播放在线视频| 人体艺术视频欧美日本| 久久精品夜色国产| 亚洲欧美成人综合另类久久久| 成人美女网站在线观看视频| 亚洲内射少妇av| 人人妻人人爽人人添夜夜欢视频 | 在线播放无遮挡| 青春草亚洲视频在线观看| 亚洲欧美成人精品一区二区| 综合色av麻豆| 日韩成人伦理影院| 国产综合精华液| 中国美白少妇内射xxxbb| 久久综合国产亚洲精品| 国产伦在线观看视频一区| 久久综合国产亚洲精品| 色5月婷婷丁香| 99九九线精品视频在线观看视频| av在线老鸭窝| 亚洲欧美精品专区久久| 人妻少妇偷人精品九色| 亚洲第一区二区三区不卡| 少妇裸体淫交视频免费看高清| 国产探花在线观看一区二区| 五月玫瑰六月丁香| 成人综合一区亚洲| 日韩av免费高清视频| 亚洲丝袜综合中文字幕| 亚洲内射少妇av| 可以在线观看毛片的网站| 少妇的逼好多水| 午夜免费观看性视频| a级毛片免费高清观看在线播放| 小蜜桃在线观看免费完整版高清| 日韩强制内射视频| 亚洲无线观看免费| 久久久久久久精品精品| 九草在线视频观看| 欧美激情在线99| 成年版毛片免费区| 午夜福利视频精品| 岛国毛片在线播放| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 欧美成人一区二区免费高清观看| 九九在线视频观看精品| 日韩免费高清中文字幕av| 亚洲国产高清在线一区二区三| 美女cb高潮喷水在线观看| 日本黄大片高清| 最近2019中文字幕mv第一页| 久久久午夜欧美精品| 久久99热6这里只有精品| 国产 一区精品| 亚洲精品一区蜜桃| 欧美亚洲 丝袜 人妻 在线| 国产日韩欧美亚洲二区| 欧美一区二区亚洲| 天堂中文最新版在线下载 | 十八禁网站网址无遮挡 | 在线观看免费高清a一片| 精品人妻偷拍中文字幕| 国产欧美日韩一区二区三区在线 | 人妻制服诱惑在线中文字幕| 亚洲国产精品成人久久小说| 在线观看一区二区三区| 欧美变态另类bdsm刘玥| 午夜老司机福利剧场| 自拍偷自拍亚洲精品老妇| 观看免费一级毛片| 嫩草影院新地址| 国产女主播在线喷水免费视频网站| 在线亚洲精品国产二区图片欧美 | 日韩国内少妇激情av| 国产老妇伦熟女老妇高清| 婷婷色综合大香蕉| av专区在线播放| 少妇人妻 视频| 欧美变态另类bdsm刘玥| 一级毛片我不卡| 免费看a级黄色片| 男女那种视频在线观看| 欧美少妇被猛烈插入视频| 国产伦在线观看视频一区| 免费观看无遮挡的男女| 在线天堂最新版资源| 国产亚洲精品久久久com| 成人毛片a级毛片在线播放| 51国产日韩欧美| 街头女战士在线观看网站| 99热这里只有精品一区| 丰满人妻一区二区三区视频av| 联通29元200g的流量卡| 久久影院123| 国产成人精品福利久久| 久久久久九九精品影院| 国产爱豆传媒在线观看| 欧美丝袜亚洲另类| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 中文精品一卡2卡3卡4更新| 亚洲精品一二三| 久久6这里有精品| 全区人妻精品视频| 国产精品久久久久久精品电影小说 | 99热全是精品| 看非洲黑人一级黄片| 又黄又爽又刺激的免费视频.| 少妇的逼好多水| 国产毛片在线视频| 亚洲国产精品成人综合色| 99视频精品全部免费 在线| 99久久精品国产国产毛片| 亚洲精品aⅴ在线观看| 麻豆精品久久久久久蜜桃| 亚洲欧美日韩无卡精品| 亚洲av不卡在线观看| 七月丁香在线播放| 久久这里有精品视频免费| 观看美女的网站| 亚洲成人av在线免费| 乱系列少妇在线播放| 亚洲天堂av无毛| 国产乱来视频区| 亚洲欧洲国产日韩| 精品一区二区三卡| 观看美女的网站| 肉色欧美久久久久久久蜜桃 | 久久久亚洲精品成人影院|