• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Numerical Simulation of Collapse Pressure and Boundary of the Cavity Cloud in Venturi*

    2009-05-15 01:40:18ZHANGXiaodong張曉冬FUYong付勇LIZhiyi李志義andZHAOZongchang趙宗昌

    ZHANG Xiaodong (張曉冬), FU Yong (付勇), LI Zhiyi (李志義) and ZHAO Zongchang (趙宗昌)

    ?

    The Numerical Simulation of Collapse Pressure and Boundary of the Cavity Cloud in Venturi*

    ZHANG Xiaodong (張曉冬)**, FU Yong (付勇), LI Zhiyi (李志義) and ZHAO Zongchang (趙宗昌)

    R&D Institute of Fluid and Powder Engineering, College of Chemical Engineering, Dalian University of Technology, Dalian 116012, China

    The idea that the collapse proceeds from the outer boundary of the cavity cloud towards its center for the ultrasonic cavitation proposed by Hasson and Morch in 1980s is further developed for calculating the collapse pressure and boundaries of cavity cloud at the collapse stage of bubbles for hydraulic cavitation flow in Venturi in present research. The numerical simulation is carried out based on Gilmore’s equations of bubble dynamics, which take account of the compressibility of fluid besides the viscosity and interfacial tension. The collapse of the cavity cloud is considered to proceed layer by layer from the outer cloud towards its inner part. The simulation results indicate that the predicted boundaries of the cavity cloud at the collapse stage agree well with the experimental ones. It is also found that the maximum collapse pressure of the cavity cloud is several times as high as the collapse pressure of outside boundary, and it is located at a point in the axis, where the cavity cloud disappears completely. This means that a cavity cloud has higher collapse pressure or strength than that of a single bubble due to the interactions of the bubbles. The effects of operation and structural parameters on the collapse pressure are also analyzed in detail.

    cavity cloud, collapsing layer by layer, hydrodynamic cavitation, collapse pressure, bubble dynamics

    1 INTRODUCTION

    High local temperature and pressure induced by the collapse of cavity bubbles causes erosion, vibration and noise in many hydraulic structures or machineries, which could result in severe damage of these installations. In the past several decades, many researchers have investigated the mechanisms of hydraulic cavitations in order to prevent the occurrence of the cavitations. However, the high local temperature and pressure due to the collapse of cavity bubbles can induce the cleavage of water molecules and yield free hydroxyl radicals, ·OH, which is an oxidizing agent in many chemical reactions. Hydrodynamic cavitation can therefore be used to enhance many industrial processes such as chemical reactions, sterilization, treatment of organic waste water, and so on. These useful effects of cavitation flow have attracted great attention of many researchers in recent years [1-6].

    Until now most of the researches have focused their study on a single bubble behavior in cavity flow. In real hydraulic structures or equipments, the cavity bubbles, however, will exist in the form of bubble cloud or bubble cluster. Therefore, it is more important to study the dynamic behavior of a bubble cloud in order to understand the mechanism of cavity erosion or enhancing processes by cavity flow.

    van Wijingaarden [7] was the first one who investigated the collapse of a group of bubbles near a flat wall and considerable increase of collapse pressure at the wall was found due to the bubble interaction. d’Agostino and Brennen [8] studied the linear dynamics of a spherical cloud of bubbles using a continuum mixture model coupled with the Rayleigh-Plesset equations. In practice, however, the dynamics of an individual bubble and bubble/bubble interaction through the surrounding liquid are highly nonlinear. Kumar and Brennen [9] found weakly nonlinear solutions to a number of cloud problems by retaining only the terms that are quadratic in the amplitude. Kubota. [10] simulated the unsteady bubbles flow passing a two-dimensional hydrofoil by solving the N-S equations of bubbly liquid mixture coupled with the Rayleigh equations. The shedding of cavitation cloud and the generation of vortex cavitation were discovered.

    Based on the energy transfer theory, Morch [11-13], Hanson. [14, 15] studied the dynamics of cavity clusters under ultrasonic radiation and pointed out that the collapse of a cavity cluster was driven by the ambient pressure and the collapse proceeded from the outer boundary of the cluster towards its center. During the collapse the pressure at the inward-moving cluster boundary increased continuously, and at the cluster center it rised significantly above the ambient pressure. The fully nonlinear solution to dynamic problem of the spherical cavity cloud was obtained by Wang and Brennen [16-18]. Their computational results manifested the shock wave phenomena and the idea proposed by Hanson[14, 15]. Reisman. [19, 20] measured very large impulsive pressures on the suction surface of an oscillating hydrofoil experiencing cloud cavitations and demonstrated that these pressure pulses were associated with the propagation of the bubbly shock waves.

    Kanthale. [21] investigated the dynamics of cavity bubbles in the cavitation flow through an orifice plate and analyzed the effects of operation and system parameters on the collapse pressure. They developed empirical correlations for predicting collapse pressure and active volume of cavitation.

    Figure 1 Schematic diagram of experimental apparatus

    1—water tank ; 2—pump; 3, 4—pressure gauge; 5—Venturi tube; 6—flow meter; 7—cooler; 8—camera; V1, V2, V3—valves

    Figure 2 Configuration of the experimental Venturi

    Figure 3 Visible configuration of the cavity cloud in expansion section of the Venturi

    The research works reviewed above are, however, based on assumptions that the bubbles inside a cavity cloud are uniformly distributed and the liquid medium is incompressible. Huang and Ni [22] studied the collapse pressure of cavity bubbles in the region of an hydrofoil based on Gilmore’s equations of bubble dynamics, which consider the compressibility of fluid as well as the viscosity and interfacial tension. In addition they adopted the assumption that the collapse of the cavity cloud is considered to proceed layer by layer from the outside layer of the cavity cloud towards its inner part. They found that the collapse pressure of the cavity bubbles in the inner part of the cavity cloud is higher than that in the outside boundary.

    In this paper the idea that the bubbles collapse layer by layer from outside layer of a cavity cloud towards its inner part has been adopted for calculating the collapse pressure and boundaries of cavity cloud in hydraulic cavitation flow in Venturi based on Gilmore’s equations of bubble dynamics. The random distribution of initial bubble radius in the cavity cloud is also considered. The boundaries of the cavity cloud at the collapse stage are successfully simulated and compared with experimental data for the first time. The effects of various parameters on the collapse pressure of cavity cloud are also analyzed in detail.

    2 EXPERIMENTAL

    In order to obtain a visual configuration of the cavity cloud or cavitation region formed in the Venturi, the experimental apparatus shown in Fig. 1 is set up. It consists of a scroll pump, a Venturi made of organic glass, the digital camera, the water tank and pressure gauge and so on. The configuration of the experimental Venturi and the visual picture of the cavity cloud in the expansion section of the Venturi are shown in Figs. 2 and 3 respectively. It is clear that the cavity zone is composed of large number of micro-bubbles instead of an individual bubble so that it is called cavity cloud. Its shape looks like a rhombus or two coaxial cones connected base against base, they represent the growth and collapse processes of bubbles in Venturi respectively. The schematic diagrams of the cavity cloud and the pressure profile in the Venturi are shown in Fig. 4.

    3 MATHEMATICAL MODEL

    3.1 Collapse model

    As shown in the Fig. 4, a thin slice of the cavity cloud adjacent to the maximum diameter,max, of the cavity cloud in the collapsed zone is taken as the object, its thickness and position in thedirection aremand0respectively.mis taken as the mean distance between the bubbles in cavity cloud, and0andmaxcan be obtained from pictures of the transparent experimental apparatus.

    In order to obtain the mathematical model for describing the behavior of the cavity cloud, the following assumptions are made.

    (a)

    (b)

    Figure 4 Schematic diagram of cavity cloud and pressure profile in Venturi

    (1) The cavity bubbles in motion are spherical.

    (2) The relative motion between the liquid and cavity cloud and the effects of the solid wall on the collapse of bubbles are neglected.

    (3) Initial vapor hold-up or void fraction,a, in the slice of cavity cloud with thickness ofmis constant.

    (4) The distribution of the initial radius of the bubbles in cavity cloud obeys the Rayleigh random distribution.

    (5) There is a definite boundary between the cavity cloud and the surrounding liquid, and the space occupied by the bubbles will be filled with liquid after these bubbles collapse.

    (6) The bubbles in cavity cloud subjected to the pulse pressure will collapse completely with no rebound effects.

    As shown in Fig. 5, the slice of cavity cloud with the thickness ofmindirection is divided into a series of layers with width of Δrin thedirection. Here the Δris taken as the mean distance between the bubbles in cavity cloud, which depends on the initial mean bubble diameter and vapor void fraction. The collapse proceeds from the outside layer indirection of this slip of cavity cloud towards its inner layers, that is, the bubbles in outer layer will collapse first and the induced pulse collapse pressures will propagate inwards with the sound velocity,c, in the compressible liquid. At the same time its magnitude will decay with 1/. The induced pulse collapse pressure together with the liquid pressure of the far flow field turn into the driving pressure acting on bubbles in the next inner layer. After these bubbles have collapsed, the space occupied by them will be filled with the liquid. The next inner layer, therefore, becomes the outer layer of the slice of cavity cloud, so the boundary of the cavity cloud will move inward continually. Meanwhile, the slice of cavity cloud moves downstream a distance with bulk liquid flow, so a tapering configuration of cavity cloud will be formed at the collapse stage.

    3.2 Gilmore’s equations of bubble dynamics

    In the present research, the following Gilmore’s equations of bubble dynamics [23] are adopted for calculating the collapse pressure, which takes account of the liquid compressibility besides viscosity and interfacial tension:

    with

    whereis the interfacial tension andthe viscosity of liquid,iis the inside pressure in bubbles, which equals to the saturated vapor pressure at operating temperature,..iv. The collapse pressure of the bubble,c, is defined as the liquid pressure on bubble surface at the moment of bubbles collapsing, namelycR.

    The driving pressure of bubbles in any layer of the cavity cloud is the sum of the liquid pressure in far field and the propagating pulse pressure generated by all those collapsed bubbles in each outside layer. For instance, the driving pressure for bubbles inth layer is given as follows:

    Figure 5 The slice of cavity cloud with the thickness ofmdivided into a series of layers in thedirection

    4 NUMERICAL METHODS

    4.1 Initial radius distribution of the cavity bubbles

    The collapse pressure of a bubble mainly depends on its initial radius,0. The sizes of initial bubbles in cavity cloud are random and they have a mean value of0mean, At the same time there is a critical bubble radius,lim, over which the cavitation will occur. The following Rayleigh random distribution for0will be adopted in present research:

    with

    4.2 The driving pressure of the bubbles

    4.2.1¥

    In this paper, the-turbulent flow model and the cavitation flow models are adopted for calculating the liquid pressure in far flow field,¥, in Venturi. Fig. 6 shows the profiles of pressure and velocity along the axis in the expansion section of Venturi, the pressure calculated in single liquid phase flow using FLUENT is used as the liquid pressure in far flow field for the Gilmore’s equations of bubble dynamics.

    Figure 6 Configurations of liquid pressure and flow velocity in expansion section of Venturi

    4.2.2

    In the polar coordinate frame the cross section of the slice of cavity cloud considered are divided into a series of layers as shown in Fig. 5. The radius and width of the ith layer arerand Δrrespectively. The bubbles in the same layer collapse the same way irrespective of. The collapse pressure of the bubbles inth layer is the pulse function of the time, which is taken from Ref. [22] as shown in Fig. 7:

    Heremaxiis the maximum value of the pulse collapse pressure of a bubble in theth layer, which is related to its initial radius0and can be obtained by solving the Gilomre’s equations of bubble dynamics. In addition,maxiis the random function of0, and() is the pulse function which takes the same form as the Ref. [22]:

    Figure 7 Sketch of pulse collapse pressure

    with

    Since all the bubbles inth layer have the same collapse characteristics, the bubble at the point (r, 0) in theth layer is considered. The pulse pressure for this bubble derived from the propagated collapse pressure of the bubble at the point (r--,) in theth layer (<) is written as follows:

    The total pulse pressure acting on the bubble at the point (r, 0) is the sum of collapse pressures propagated from all of the collapsed bubbles beyond theth layer:

    4.3 Solution procedure

    The bubble dynamic Eq. (1) is a second-order nonlinear ordinary differential equation. It can be turned into a group of first-order differential equations as Eq. (11) and solved by using the fourth-order Runge-Kutta method [24]:

    5 RESULTS AND DISCUSSION

    5.1 The boundary of cavity cloud at the stage of bubbles collapse

    The evolvement of the cavity bubbles involves the growth and collapse stages. The visualized boundary of the cavity cloud can exhibit the growth and collapse processes and can be used to calculate the area of cavity cloud and the strength of cavity flow. Meanwhile, by comparing the predicted boundary with the experimental one, the mathematical model can be validated.

    As mentioned above, the evolution of the cavity bubble is very complex, since the mechanism of the interaction between the cavity bubbles is not very clear by now. Only the boundary of the cavity cloud at the collapse stage is simulated in the present study.

    5.2 Effects of operating and structure parameters on the collapse pressure

    5.2.1

    : 1—0.005; 2—0.01; 3—0.03; 4—0.05

    5.2.2

    1/MPa: 1—0.4; 2—0.5; 3—0.6; 4—0.7; 5—0.8

    Figure 12 shows the variation of the maximum radius of the cavity cloud measured experimentally with the inlet pressure. It is clearly shown that the maximum radius of the cavity cloud increases with the increase of the inlet pressure, which means more cavity bubbles are formed. When the inlet pressure reaches about 0.8-0.9 MPa, the radius of the cavity cloud increases rapidly and the cavity flow goes into the super cavitation stage at which the Venturi is filled with a large number of bubbles.

    5.2.3

    /mm: 1—180; 2—150; 3—120; 4—80

    5.2.4

    : 1—0.28; 2—0.24; 3—0.20; 4—0.16; 5—0.12

    5.2.5

    The average relative error is 4.8% in the operating and structure parameters range for the present work.

    6 CONCLUSIONS

    The present simulation study leads to the following conclusions.

    (1) The collapse of the cavity cloud proceeds from its the outer layer towards its inner ones. The driving pressures acting on bubbles in the inner layer equals to the sum of all pulse collapse pressures propagated from collapsed bubbles in each outside layer and the liquid pressure in the far flow field. This results in significant increase of collapse pressure for those inner cavity bubbles.

    (2) The simulation indicated that the maximum collapse pressure is as high as several times that at the outside boundary, and it is located at a point on the axial line, where the cavity cloud disappears finally. This means that a cavity cloud has higher collapse pressure or strength than that of a single bubble due to the interactions of the bubbles.

    (3) The boundaries of the cavity cloud at the collapse stage in Venturi are successfully simulated for the first time and compared with experimental data. The results obtained using the proposed model can explain not only the geometrical characteristics of the cavity cloud but also why the inner cavity bubbles having higher collapse pressures.

    (4) It is also found that the collapse pressure increases with the inlet pressure and initial vapor void fraction, and decreases with the length of expending section and the ratio of throat diameter to pipe diameter. The inlet pressure and the ratio of throat diameter to pipe diameter have more influence on the collapse pressure.

    NOMENCLATURE

    liquid constant, Pa

    local sound velocity in the liquid, m·s-1

    ¥sound velocity in far field of liquid, m·s-1

    mmean distance of the bubbles in cavity cloud, mm

    0diameter of the Venturi throat, mm

    1diameter of the pipe, mm

    liquid enthalpy difference at pressureRandd, kJ·kg-1

    length of expansion section, mm

    liquid constant

    ccollapse pressure, MPa

    ddriving pressure on the bubble, MPa

    ipressure in the bubble, MPa

    maxmaximum of the pulse collapse pressure, MPa

    Rliquid pressure on the wall of the bubble, MPa

    ∞liquid pressure in far field, MPa

    1inlet pressure, MPa

    radius of the cavity cloud, mm

    () bubble radius at time, μm

    limcritical radius of the bubble, μm

    minfinal radius of collapsed bubble, μm

    0initial radius of the bubble, μm

    0meanmean initial radius of the bubble, μm

    0axial position of maximum diameter of cavity cloud, m

    initial vapor void fraction

    ratio of Venturi throat diameter to pipe diameter

    0number of bubbles in unit volume

    viscosity of liquid, Pa·s

    surface tension of liquid, N·m-1

    1 Suslick, K.S., Mdleleni, M.M., Ries, J.T., “Chemistry induced by hydrodynamic cavitation”,...., 119, 9303-9304 (1997) .

    2 Jyoti, K.K., Pandit, A.B., “Effect of cavitation on chemical disinfection efficiency”,., 38, 2249-2258 (2004).

    3 Sivakumar, M., Pandit, A.B., “Wastewater treatment: A novel energy efficient hydrodynamic cavitational technique”,.,9, 123-131 (2002).

    4 Zhang, X.D., Li, Z.Y., Wu, J., Liu, X.W., Liu, D.X., Xia, Y.J., “Enhancement of chemical reactions by hydrodynamic cavitation”,.... (), 56 (2), 262-265 (2005). (in Chinese)

    5 Zhang, X.D., Yang, H.Z., Li, Z.Y., “Relationship between strength of hydrodynamic cavitations and amount of induced hydroxyl radical”,.... (), 58 (1), 27-32 (2007). (in Chinese)

    6 Zhang, X.D., Fu, Y., Li, Z.Y., Zhao, Z.C., “The collapse intensity of cavities and the concentration of free hydroxyl radical released in cavitation flow”,...., 16 (4), 547-551 (2008).

    7 van Wijngaarden, L., “On the collective collapse of a large number of gas bubbles in water”, In: Proceedings of 11th International Congress of Applied Mechanics, Springer-Verlag, Berlin, 854-861 (1964).

    8 d’Agostino, L., Brennen, C.E., “Linearized dynamics of spherical bubble clouds”,.., 199, 155-176 (1989).

    9 Kumar, S., Brennen, C.E., “Non-linear effects in the dynamic of clouds of bubbles”,...., 89, 707-714 (1991).

    10 Kubota, A., Kato, H., Yamaguchi, H., “A new modelling of cavitating flows: A numerical study of unsteady cavitation on a hydrofoil section”,.., 240, 59-96 (1992).

    11 Morch, K.A., “On the collapse of cavity cluster in flow cavitation”, In: Proceedings of the 1st International Conference on Cavitation and Inhomogeneities in Underwater Acoustics, Springer Series in Electrophysics, Springer, Berlin, 95-100 (1980).

    12 Morch, K.A., “Cavity cluster dynamics and cavitation erosion”, In: Proceedings of ASME Cavitation and Polyphase Flow Forum, Hoyt, J.W., ed., ASME, New York, 1–10 (1981).

    13 Morch, K.A., “Energy considerations on the collapse of cavity cluster”,..., 38, 313-321 (1982).

    14 Hanson, I., Kedrinskii, V.K., Morch, K.A., “On the dynamics of cavity clusters”,.., 15, 1725-1734 (1981).

    15 Hanson, I., Morch, K.A., “The dynamics of cavity clusters in ultrasonic (vibratory) cavitation erosion”,..., 9, 4651-4658 (1980).

    16 Wang, Y.C., Brennen, C.E., “Shock wave development in the collapse of a cloud of bubbles”, ASME Cavitation and Multiphase Flow Forum, FED, 194, 15-20 (1994).

    17 Wang, Y.C., Brennen, C.E., “The noise generated by the collapse of a cloud of cavitation bubbles”, ASME/JSME Symposium on Cavitation and Gas-Liquid Flow in Fluid Machinery and Devices, FED, 226, 17-29 (1995).

    18 Wang, Y.C., Brennen, C.E., “Numerical computation of shock waves in a spherical cloud of cavitation bubbles”,.., 121, 872-880 (1999).

    19 Reisman, G.E., Brennen, C.E., “Pressure pulse generated by cloud cavitation”, ASME Symposium on Cavitation and Gas-Liquid Flows in Fluid Machinery and Devices, FED, 236, 319-328 (1996).

    20 Reisman, G.E., Wang, C., Brennen, C.E., “Observation of shock waves in cloud cavitation”,.., 355, 255-283 (1998).

    21 Kanthale, P.M., Gogate, P.R., Pandit, A.B., Wilhelm, A.M., “Dynamics of cavitational bubbles and design of a hydrodynamic cavitational reactor: Cluster approach”,.., 12, 441-452 (2005).

    22 Huang, J.B., Ni, H.G., “On the pressure generation by the collapse of a travelling cavitation bubble cluster in a compressible liquid”,.., 2 (3), 1-11 (1987).

    23 Huang, J.T., Fundamental and Application of Cavitation and Cavitation Erosion, Tsinghua University Press, Beijing (1991). (in Chinese)

    24 Li, R.H., Feng, G.C., Numerical Solution of Differential Equations, Chinese Higher Education Press, Beijing (1996). (in Chinese)

    25 Kanthale, P.M., Gogate, P.R., Pandit, A.B., Wilhelm, A.M., “Cavity cluster approach for quantification of cavitational intensity in sonochemical reactors”,.., 10, 181-189 (2003).

    2009-02-17,

    2009-09-25.

    the National Natural Science Foundation of China (10472024).

    ** To whom correspondence should be addressed. E-mail: zhangxd56@163.com

    亚洲精品一区蜜桃| 一区二区三区乱码不卡18| 一本久久精品| 亚洲av.av天堂| 我要看日韩黄色一级片| 午夜爱爱视频在线播放| 极品教师在线视频| 小蜜桃在线观看免费完整版高清| 一个人看的www免费观看视频| 亚洲第一区二区三区不卡| 日韩av不卡免费在线播放| 日本色播在线视频| 97在线视频观看| 久久6这里有精品| av卡一久久| 国产精品一区www在线观看| 久久久久精品性色| 建设人人有责人人尽责人人享有的 | 一级爰片在线观看| 一个人看视频在线观看www免费| 大香蕉久久网| 少妇人妻一区二区三区视频| 亚洲av福利一区| 日本午夜av视频| 精品人妻视频免费看| 国产精品久久久久久精品电影| 国产成年人精品一区二区| 亚洲自偷自拍三级| 婷婷色综合www| av国产久精品久网站免费入址| 好男人在线观看高清免费视频| 超碰97精品在线观看| 国产一区有黄有色的免费视频 | 亚洲图色成人| 国产黄色视频一区二区在线观看| av线在线观看网站| 毛片女人毛片| 国产v大片淫在线免费观看| 国产精品麻豆人妻色哟哟久久 | 高清午夜精品一区二区三区| 深夜a级毛片| 我的女老师完整版在线观看| 一级毛片久久久久久久久女| 51国产日韩欧美| 午夜精品国产一区二区电影 | 国产亚洲5aaaaa淫片| 日本熟妇午夜| 欧美三级亚洲精品| 看黄色毛片网站| 久久精品国产鲁丝片午夜精品| 精品国内亚洲2022精品成人| 午夜久久久久精精品| 少妇熟女欧美另类| 性色avwww在线观看| 色视频www国产| 亚洲人成网站高清观看| 大陆偷拍与自拍| 免费高清在线观看视频在线观看| 99热网站在线观看| 舔av片在线| 男人和女人高潮做爰伦理| 欧美成人精品欧美一级黄| 日韩视频在线欧美| 99久国产av精品国产电影| 99热这里只有是精品在线观看| 欧美日韩亚洲高清精品| 欧美变态另类bdsm刘玥| 精品一区二区三区人妻视频| 国产精品综合久久久久久久免费| 亚洲自偷自拍三级| 大片免费播放器 马上看| 三级国产精品片| 亚洲国产日韩欧美精品在线观看| 22中文网久久字幕| 亚洲av福利一区| 午夜福利视频精品| 99热6这里只有精品| 十八禁国产超污无遮挡网站| 三级男女做爰猛烈吃奶摸视频| 亚洲av中文av极速乱| 久久久久久久久久黄片| 欧美激情在线99| 国产亚洲一区二区精品| 欧美潮喷喷水| .国产精品久久| 亚洲精品乱码久久久久久按摩| 久久久久久久久大av| 国产精品三级大全| 久久久久九九精品影院| 免费人成在线观看视频色| 我的老师免费观看完整版| 亚洲av福利一区| 亚洲国产色片| 80岁老熟妇乱子伦牲交| 1000部很黄的大片| 久久久久久久久久黄片| 大香蕉97超碰在线| 观看免费一级毛片| av.在线天堂| 少妇被粗大猛烈的视频| 美女国产视频在线观看| 国产亚洲91精品色在线| 婷婷色综合www| 国产在线一区二区三区精| 亚洲在线观看片| 亚洲最大成人中文| 国产成人精品福利久久| 最近最新中文字幕免费大全7| 日本爱情动作片www.在线观看| 久久精品国产亚洲网站| 精品亚洲乱码少妇综合久久| 国产一区二区三区综合在线观看 | 街头女战士在线观看网站| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 亚洲精品一区蜜桃| 日本熟妇午夜| 亚洲av中文字字幕乱码综合| av天堂中文字幕网| 国内精品美女久久久久久| 看十八女毛片水多多多| 亚洲色图av天堂| av在线蜜桃| 国产精品久久久久久精品电影| 亚洲aⅴ乱码一区二区在线播放| 免费观看性生交大片5| 性插视频无遮挡在线免费观看| 一级二级三级毛片免费看| 欧美xxxx黑人xx丫x性爽| 99re6热这里在线精品视频| 男的添女的下面高潮视频| 蜜桃亚洲精品一区二区三区| 嫩草影院精品99| av天堂中文字幕网| 亚洲av日韩在线播放| 国产av在哪里看| a级毛片免费高清观看在线播放| 春色校园在线视频观看| 国产69精品久久久久777片| 日韩欧美一区视频在线观看 | 天堂影院成人在线观看| 大香蕉久久网| 三级经典国产精品| 久久精品久久久久久噜噜老黄| 五月玫瑰六月丁香| 一二三四中文在线观看免费高清| 免费看av在线观看网站| 欧美日本视频| 欧美97在线视频| 国产av码专区亚洲av| 亚洲精品视频女| 2018国产大陆天天弄谢| 男人舔女人下体高潮全视频| 国产精品一及| 好男人视频免费观看在线| 韩国av在线不卡| 亚洲丝袜综合中文字幕| 一夜夜www| 啦啦啦啦在线视频资源| 日韩欧美国产在线观看| 欧美三级亚洲精品| av又黄又爽大尺度在线免费看| 天堂av国产一区二区熟女人妻| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 国产女主播在线喷水免费视频网站 | 永久网站在线| 亚洲国产欧美人成| 午夜老司机福利剧场| 免费观看的影片在线观看| 亚洲av不卡在线观看| av黄色大香蕉| 十八禁国产超污无遮挡网站| 国产高清三级在线| 精品少妇黑人巨大在线播放| 国产黄片美女视频| 夫妻性生交免费视频一级片| 日韩不卡一区二区三区视频在线| 国产av国产精品国产| 久久久久久久大尺度免费视频| 精品少妇黑人巨大在线播放| 日本午夜av视频| 国精品久久久久久国模美| 国产片特级美女逼逼视频| 亚洲图色成人| 国内精品一区二区在线观看| 久久99蜜桃精品久久| 色综合亚洲欧美另类图片| 亚洲av一区综合| 最新中文字幕久久久久| 男人舔奶头视频| 激情 狠狠 欧美| 视频中文字幕在线观看| 国产永久视频网站| 2021天堂中文幕一二区在线观| 久久99热这里只有精品18| 我的老师免费观看完整版| 国产国拍精品亚洲av在线观看| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 精品久久久久久久人妻蜜臀av| 91午夜精品亚洲一区二区三区| 国产成人精品婷婷| 国产高清有码在线观看视频| 国产精品久久久久久精品电影小说 | 一本久久精品| 国产色婷婷99| 欧美日韩在线观看h| 国产一区二区在线观看日韩| 久久精品久久精品一区二区三区| av黄色大香蕉| 欧美日本视频| 自拍偷自拍亚洲精品老妇| 综合色丁香网| 亚洲图色成人| 国产乱人视频| 国产成人福利小说| 亚洲欧美日韩卡通动漫| 男女那种视频在线观看| h日本视频在线播放| eeuss影院久久| 中文乱码字字幕精品一区二区三区 | 国产伦精品一区二区三区视频9| 久久久久精品性色| 国产熟女欧美一区二区| 色播亚洲综合网| 亚洲丝袜综合中文字幕| 日韩大片免费观看网站| 极品教师在线视频| 免费高清在线观看视频在线观看| 成人无遮挡网站| 亚洲精品一二三| 色综合亚洲欧美另类图片| 免费在线观看成人毛片| 精品一区二区三区人妻视频| 能在线免费看毛片的网站| 国产又色又爽无遮挡免| 久久人人爽人人爽人人片va| 色尼玛亚洲综合影院| 亚洲精品亚洲一区二区| 老司机影院成人| 熟妇人妻久久中文字幕3abv| 国产一区二区亚洲精品在线观看| 精品久久久久久成人av| 中文欧美无线码| 亚洲精品日本国产第一区| 免费看光身美女| 亚洲内射少妇av| 中文字幕免费在线视频6| 男的添女的下面高潮视频| 六月丁香七月| www.av在线官网国产| 亚洲内射少妇av| 久久久久久久久久久丰满| 免费观看在线日韩| 欧美性感艳星| 少妇猛男粗大的猛烈进出视频 | or卡值多少钱| 国产精品蜜桃在线观看| 国产 一区 欧美 日韩| 国产老妇女一区| 久久精品夜夜夜夜夜久久蜜豆| 日韩欧美精品免费久久| 一级爰片在线观看| 欧美不卡视频在线免费观看| 国产av不卡久久| 一级黄片播放器| 精品少妇黑人巨大在线播放| 五月玫瑰六月丁香| 久久草成人影院| 欧美变态另类bdsm刘玥| 九九久久精品国产亚洲av麻豆| 久久韩国三级中文字幕| 亚洲不卡免费看| 精品熟女少妇av免费看| 我的女老师完整版在线观看| 深爱激情五月婷婷| 性插视频无遮挡在线免费观看| 天美传媒精品一区二区| 精品久久久久久成人av| 永久网站在线| 日本免费a在线| 精品久久久久久成人av| 全区人妻精品视频| 久久久久久久午夜电影| 亚洲成人一二三区av| 看十八女毛片水多多多| 精品久久国产蜜桃| 老女人水多毛片| av网站免费在线观看视频 | 免费看a级黄色片| 一个人免费在线观看电影| 午夜激情欧美在线| 免费大片黄手机在线观看| 99久久精品热视频| 一区二区三区乱码不卡18| 女人被狂操c到高潮| 99re6热这里在线精品视频| 国产 亚洲一区二区三区 | 高清av免费在线| 久久人人爽人人片av| 国产成人一区二区在线| 日本wwww免费看| 91久久精品国产一区二区三区| 床上黄色一级片| 嫩草影院入口| 亚洲在线自拍视频| 男人舔奶头视频| 国产黄片视频在线免费观看| 国产综合懂色| 汤姆久久久久久久影院中文字幕 | 亚洲人与动物交配视频| 国产黄片美女视频| 日韩制服骚丝袜av| 国内精品宾馆在线| 欧美激情国产日韩精品一区| 国产成年人精品一区二区| 天堂俺去俺来也www色官网 | 国产精品99久久久久久久久| 男女下面进入的视频免费午夜| 国精品久久久久久国模美| 老女人水多毛片| 久久99蜜桃精品久久| 一区二区三区乱码不卡18| 国产伦在线观看视频一区| 九九久久精品国产亚洲av麻豆| 狂野欧美白嫩少妇大欣赏| 99久久九九国产精品国产免费| 色哟哟·www| 晚上一个人看的免费电影| 麻豆久久精品国产亚洲av| 日本av手机在线免费观看| 亚洲人成网站高清观看| 精品熟女少妇av免费看| 免费观看无遮挡的男女| 午夜视频国产福利| 一级毛片 在线播放| 日本黄色片子视频| 高清午夜精品一区二区三区| 日本av手机在线免费观看| 日韩视频在线欧美| 国产黄a三级三级三级人| 男女那种视频在线观看| 国产亚洲5aaaaa淫片| 亚洲av免费高清在线观看| 国产成人freesex在线| 国产一区亚洲一区在线观看| 亚洲一区高清亚洲精品| 国产黄频视频在线观看| 简卡轻食公司| 中文字幕av成人在线电影| 精品一区二区三区视频在线| 永久网站在线| 一级毛片久久久久久久久女| 欧美97在线视频| 婷婷六月久久综合丁香| 日日啪夜夜爽| 97超视频在线观看视频| 最近最新中文字幕大全电影3| 国产精品av视频在线免费观看| 晚上一个人看的免费电影| 亚洲真实伦在线观看| 午夜爱爱视频在线播放| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 亚洲精品日韩在线中文字幕| 日本黄色片子视频| 婷婷色综合大香蕉| 午夜精品国产一区二区电影 | 黄片无遮挡物在线观看| 婷婷色av中文字幕| 亚洲欧美日韩无卡精品| 欧美极品一区二区三区四区| 亚洲怡红院男人天堂| 色尼玛亚洲综合影院| www.色视频.com| 蜜桃久久精品国产亚洲av| 免费观看a级毛片全部| 又爽又黄无遮挡网站| 国产真实伦视频高清在线观看| 婷婷色av中文字幕| 国内揄拍国产精品人妻在线| 国产久久久一区二区三区| 亚洲国产av新网站| 亚洲天堂国产精品一区在线| 亚洲怡红院男人天堂| 极品教师在线视频| av国产免费在线观看| 久久草成人影院| 黄片wwwwww| 国产精品伦人一区二区| 黄片无遮挡物在线观看| 国产一级毛片在线| 欧美日韩在线观看h| 中文乱码字字幕精品一区二区三区 | 七月丁香在线播放| 午夜久久久久精精品| 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 26uuu在线亚洲综合色| 免费黄色在线免费观看| 欧美xxⅹ黑人| 日韩亚洲欧美综合| 欧美日韩综合久久久久久| 人体艺术视频欧美日本| 亚洲欧美日韩卡通动漫| 亚洲,欧美,日韩| 爱豆传媒免费全集在线观看| 青春草视频在线免费观看| 国产精品久久久久久精品电影| 国产v大片淫在线免费观看| 又大又黄又爽视频免费| 婷婷色av中文字幕| 蜜臀久久99精品久久宅男| 国产精品美女特级片免费视频播放器| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 高清午夜精品一区二区三区| videossex国产| 九草在线视频观看| 成人午夜高清在线视频| 麻豆成人av视频| 色综合站精品国产| 日韩视频在线欧美| 国产一区亚洲一区在线观看| av线在线观看网站| 少妇丰满av| 成年免费大片在线观看| 日本与韩国留学比较| 在线免费十八禁| 人体艺术视频欧美日本| 国精品久久久久久国模美| 免费av观看视频| 午夜激情久久久久久久| 黄色欧美视频在线观看| xxx大片免费视频| 成年av动漫网址| 国产精品福利在线免费观看| 亚洲欧美一区二区三区国产| 成人毛片60女人毛片免费| 成人无遮挡网站| 久久久久久久久久久免费av| 色播亚洲综合网| 不卡视频在线观看欧美| 中国国产av一级| 联通29元200g的流量卡| 亚洲av男天堂| 伊人久久国产一区二区| 亚洲欧洲国产日韩| 精品亚洲乱码少妇综合久久| 婷婷六月久久综合丁香| 高清毛片免费看| 国产一区二区在线观看日韩| 特大巨黑吊av在线直播| 人人妻人人澡欧美一区二区| 中文字幕制服av| 日本色播在线视频| 欧美成人精品欧美一级黄| 亚洲欧美日韩无卡精品| 国产乱来视频区| 精品不卡国产一区二区三区| 天天躁日日操中文字幕| 国内精品一区二区在线观看| 久久精品久久精品一区二区三区| 不卡视频在线观看欧美| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 麻豆国产97在线/欧美| 国产色婷婷99| 一级片'在线观看视频| 日韩,欧美,国产一区二区三区| 欧美精品国产亚洲| 国产亚洲精品av在线| 久久6这里有精品| 自拍偷自拍亚洲精品老妇| 国产精品伦人一区二区| 美女黄网站色视频| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩卡通动漫| 身体一侧抽搐| 国产亚洲一区二区精品| 久久久成人免费电影| 美女被艹到高潮喷水动态| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 国产美女午夜福利| av国产免费在线观看| 又黄又爽又刺激的免费视频.| 男女边吃奶边做爰视频| 国产成人精品福利久久| 国产老妇伦熟女老妇高清| av播播在线观看一区| 日日啪夜夜爽| 国产精品爽爽va在线观看网站| 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 亚洲激情五月婷婷啪啪| 亚洲精品国产av蜜桃| 中文精品一卡2卡3卡4更新| 亚洲性久久影院| 午夜老司机福利剧场| 日韩av在线免费看完整版不卡| 国产单亲对白刺激| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| 国产av国产精品国产| 国产成人精品久久久久久| 免费在线观看成人毛片| 久久久久久久久大av| 久久久久久久久中文| av卡一久久| 久久久久久九九精品二区国产| 干丝袜人妻中文字幕| 日韩大片免费观看网站| 色5月婷婷丁香| 好男人视频免费观看在线| 男女啪啪激烈高潮av片| 亚洲精品国产av蜜桃| 久久久国产一区二区| 麻豆成人av视频| 春色校园在线视频观看| 亚洲自拍偷在线| 国产色爽女视频免费观看| 18禁在线播放成人免费| av.在线天堂| 人妻系列 视频| 亚洲怡红院男人天堂| 赤兔流量卡办理| 欧美zozozo另类| 成人毛片a级毛片在线播放| 国产精品蜜桃在线观看| 少妇的逼好多水| 黄色一级大片看看| 国产人妻一区二区三区在| 免费观看a级毛片全部| 欧美一级a爱片免费观看看| 深爱激情五月婷婷| 亚洲第一区二区三区不卡| 婷婷色av中文字幕| 欧美精品国产亚洲| 岛国毛片在线播放| 国产精品久久久久久精品电影小说 | 看黄色毛片网站| 18禁在线无遮挡免费观看视频| 日韩av在线免费看完整版不卡| 色尼玛亚洲综合影院| or卡值多少钱| 一级毛片黄色毛片免费观看视频| 成人鲁丝片一二三区免费| 丰满人妻一区二区三区视频av| kizo精华| 亚洲国产最新在线播放| 婷婷色麻豆天堂久久| 午夜久久久久精精品| 久久综合国产亚洲精品| 寂寞人妻少妇视频99o| 晚上一个人看的免费电影| 有码 亚洲区| 国产精品一区二区在线观看99 | 精品熟女少妇av免费看| 99久国产av精品| 精品久久国产蜜桃| 老司机影院毛片| 色视频www国产| 丰满人妻一区二区三区视频av| 特级一级黄色大片| 国产淫片久久久久久久久| 美女主播在线视频| 久久久精品免费免费高清| 久久午夜福利片| 2022亚洲国产成人精品| 亚洲人成网站高清观看| 久久6这里有精品| 男女啪啪激烈高潮av片| 老师上课跳d突然被开到最大视频| 一级毛片久久久久久久久女| 精品一区二区三区人妻视频| 亚洲久久久久久中文字幕| 色综合站精品国产| 国产熟女欧美一区二区| 国产v大片淫在线免费观看| 精品久久久久久久久av| 一个人看的www免费观看视频| 国产乱来视频区| av又黄又爽大尺度在线免费看| 国产毛片a区久久久久| 在线免费观看不下载黄p国产| 日韩大片免费观看网站| 久久久久国产网址| 能在线免费观看的黄片| 亚洲av.av天堂| 国产伦一二天堂av在线观看| 国产精品嫩草影院av在线观看| 3wmmmm亚洲av在线观看| 亚洲国产av新网站| 亚洲精品一二三| 99久国产av精品国产电影| 久久精品国产自在天天线| 精品久久久久久久人妻蜜臀av| 亚洲国产最新在线播放| 日韩欧美精品v在线| 欧美一级a爱片免费观看看| 日韩av在线大香蕉| 男女啪啪激烈高潮av片| 中文在线观看免费www的网站| 18禁在线播放成人免费| 1000部很黄的大片| 丝瓜视频免费看黄片| 噜噜噜噜噜久久久久久91| 欧美日韩一区二区视频在线观看视频在线 | 一区二区三区乱码不卡18| 深夜a级毛片| a级一级毛片免费在线观看| 一区二区三区乱码不卡18|