• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Cascading failures of overload behaviors using a new coupled network model between edges

    2022-01-23 06:38:06YuWeiYan嚴(yán)玉為YuanJiang蔣沅RongBinYu余榮斌
    Chinese Physics B 2022年1期

    Yu-Wei Yan(嚴(yán)玉為), Yuan Jiang(蔣沅), Rong-Bin Yu(余榮斌),

    Song-Qing Yang(楊松青), and Cheng Hong(洪成)

    School of Information Engineering,Nanchang Hangkong University,Nanchang 330063,China

    Keywords: cascade failure,overload,load distribution,edge-based

    1. Introduction

    Cascading failure,[1]also known as avalanche reaction,refers to the large-scale failure of one or more damaged nodes in a network due to the coupling relationship. There are many cascading failures in real life. The occurrences of these cascading failures have a negative impact on lives. For example,in 2003, a large-scale power failure took place in the United States.[2]The blackout caused huge losses to local production and life. What is worse, economic losses amounted to hundreds of millions of dollars. This blackout is listed as the most serious accident in the United States. Therefore,it is of great necessity for relevant researchers to study the robustness and vulnerability of networks.[3-16]

    In previous studies,the researchers studied the robustness of a single network, such as aviation network,[17]transportation network[18]and power grid.[19]However, with the development of network science, researchers have realized that no network exists in isolation. There is a relationship between different networks, such as power-aviation networks,power-computer networks, communication-transmission networks. In 2010, Buldyrewet al.[20]first proposed the coupling node model. They pointed out that when a node is attacked,the impact will be transmitted to the adjacent network through the coupling relationship. After that, many models based on coupling network have been proposed. First of all,Shaoet al.[21]established the multiple dependent relationship,and analyzed the cascading failure of networks with numerical analysis methods. They assumed that as long as the coupling edge of the node fails completely,the node will fail. Multiple interdependencies make the network transform from the first stage to the second stage. Dobsonet al.[22]established the adjacency relationship of networks according to the similarity of networks. They noted that the dependency relationship between two kinds of nodes. One is to establish the dependency relationship between the nodes with large degrees in two networks, the other to establish the dependency relationship between the nodes with large clusters in two networks.The research shows that the connection according to the similarity of the networks can improve the networks resistance to random attacks. Muroet al.[23]proposed a recovery model and pointed out that the failure process and recovery process can be alternated with each other. By detecting the boundary nodes and recovering them with a certain proportion, the robustness of the networks can be effectively improved.

    In a real network, the edges are also important, such as Internet lines, power lines, and transportation lines. Therefore, it is of great significance to study the cascade failure caused by edge collapse. In 2002, Kimet al.[24]studied cascading failures caused by edge collapse in a single network.In 2008,Chenet al.[25]proposed a single network load distribution model, and obtained the threshold conditions leading to cascading failures. The load of the edge is defined as(KiKj)θ,whereKiandKjare the degrees of the nodes connected by edgeEi,jandθis a variable parameter. Motteret al.[26]found that by deleting some edges in scale-free networks in advance,the impact of cascading failures can be effectively reduced.

    All the cited studies do not consider the coupling relationship between edges in two or more networks. Nevertheless,the coupling between edges is very common in real networks.For example, in a railway network, when one of two closely related sides is damaged, the other will be damaged as well.However, the failure mode of the edge is different from that of the node. When a node fails,all the edges of the node will fail. At the same time,when a node in the network leaves the most important connection block, it will also fail. The node failure is shown in Fig. 1(a). When node A1 fails, node A2 also fails because it is separated from the most important connector. However,when the edge between nodes A1 and A5 in Fig. 1(b) fails, it will not damage the overall structure of the network. Therefore,it is of great significance to study the correlation of edges in two-layer networks. In this paper, a new edge network model is proposed to study cascading failures in two-layer networks. Moreover,a more flexible load capacity strategy is adopted to verify the model. The results show that this model is feasible. By changing the load parameters,capacity parameters,overload parameters and distribution parameters reasonably, the robustness of the system can be significantly improved.

    This paper is arranged as follows:In Section 2,the special model of between edges is described in detail,including load distribution process,overload behavior,residual load distribution strategy and robustness evaluation. In Section 3,analyses and simulations are presented. Finally,the conclusion is made in Section 4.

    Fig. 1. Network failure diagram: (a) node failure diagram, (b) edge failure diagram.

    2. Special network model between edges

    In this paper,a two-layer network is established with two subnetworks denoted as networks A and B. The nodes are numbered asNAandNB, respectively. Therefore, the size of the network isN=NA=NB. A random method is adopted to connect the edges of networks A and B.Considering that the number of edges is different in networks with the same number of nodes,the minimum number of edges in the two networks is taken as the number of dependencies in the two networks.In order to verify the applicability of the proposed model,scale-free network,[27]small-world network[28]and random network model are taken as the subnetworks of the two-layer network in this research.

    Figure 2(a) is a simplified diagram of the model. In Fig.2(a),{A1,A2,A3,...}represent the nodes of subnetwork A and{B1,B2,B3,...}represent the nodes of subnetwork B.The solid lines represent the connection between the nodes within the subnetworks, and the dashed lines represent the connection between the edges. When an edge in subnetwork A or subnetwork B is attacked, it is the edges belonging to the maximum component of subnetwork A/B that can maintain their functions while other edges will fail. Assuming that some edges in subnetwork A fail due to the initial attack, the failed edges in subnetwork A will be transferred to the edges of subnetwork B through the coupling relationship, resulting in the failure of subnetwork B.Likewise,the invalid edges in subnetwork B will also be transferred to subnetwork A through the coupling relationship.The iteration does not end until subnetwork A and subnetwork B reach stability. For example,supposing that edgesE2,3in subnetwork A is deliberately attacked,the failure ofE2,3will cause the failure ofE2,3in subnetwork B. Concurrently, the failure of edgesE2,3in subnetwork B will cause the failure in its internal edgesE1,2,which breaks away from the giant connecting piece. The first step is shown in Fig.2(b). The failure of edgesE1,2in subnetwork B will cause the failure of edgesE4,5in subnetwork A and the failure of edgesE4,5in subnetwork A will cause the failure in its internal edgesE2,4. The second step is shown in Fig.2(c).The failure of edgeE2,4in subnetwork A will cause the failure of edgeE3,5of subnetwork B.The final network is stable,and the final steady state of the overall system is shown in Fig.2(d).

    Fig.2. The failure process of the new model between edges: (a)initial state of the network,(b)failure of the first step,(c)failure of the second step,(d)stable state of the network.

    2.1. Load distribution process

    In this study,it is assumed that the edge carries the load,such as the flow of road in the transportation and the electrical load in power. Based on the literature,[29]it is assumed that edgeEi,j(0)carries initial load in the following formula:

    whereα ≥0,β ≥0. Whenα=1, the model is transformed into the ML model.

    As is shown in Fig.3,the load of one edgeEi,jthat is attacked will be transferred to its adjacent edgeEi,m. Then edgeEi,jtransfers its load to edgeEi,maccording to the following formula:

    whereLEi,mis the load of the edgeEi,m,Zis the neighbor nodes of nodei,andKis the neighbor nodes of nodej.

    Fig.3. The load distribution strategy when an edge fails.

    As the real network has elasticity, the edge may not immediately fail when an edge exceeds the capacity. Only when the edge exceeds the maximum capacity, it will fail immediately. Therefore,the overload coefficientδis used to express the processing ability of edgeEi,mfor additional load. When the load of edgeEi,mexceedsδCEi,m, edgeEi,mimmediately fails.When edgeEi,mis greater thanCEi,mand less thanδCEi,m,edgeEi,mwill fail with a certain probability.We judge the state of edgeEi,mby the following formula:

    wherenrandomis a random number from 0 to 1,andPEi,mis the failure probability of edgeEi,m.

    In the actual network, the edge processing capacity for the additional load is also different. Sometimes a small-scale overload may cause the edge to fail. To describe this character, the parameterωis introduced to characterize it.PEi,mis calculated by the following formula:

    2.2. Robustness of the network

    To trigger the cascading failure,we attack the most loaded edge in subnet A and the most loaded edge in subnet B simultaneously. Since the largest connected piece of a network is an important indicator to measure the robustness of the network,the size of the largest connected piece is recorded asG,

    whereNEAis the initial number of edges in subnetwork A,NEBrepresents the initial number of edges in subnetwork B,N′EArepresents the number of edges after the failure in subnetwork A,andN′EBrepresents the number of edges after the failure in subnetwork B.The more edges the network has after being attacked,the more robust the network is.

    3. Analyses of simulations

    Different topologies of the network have different effects on its dynamics. In order to understand and control the effects of cascading failures on the network, we choose different topologies of the network(ER-ER edge-coupling network,WS-WS edge-coupling network, BA-BA edge-coupling network,BA-ER edge-coupling network,BA-WS edge-coupling network and WS-ER edge-coupling network) to conduct this research. At the same time, the influence of load parameter,capacity parameter,overload parameter,and distribution coefficient on the robustness of the network are investigated. Parameters about the network are listed in Table 1. The simulations run independently 500 times on average.

    Table 1. Network parameters.

    3.1. Influence of overload parameter δ on the model

    To study the influence of overload coefficientδon the model,other parameters should not exert a massive impact on the robustness of the network. Assuming the distribution coefficientω=1,α=0.6,load coefficientθ=1,theG-βcurves with different values of the overload coefficientδare shown in Fig.4. As can be seen in Fig.4,with theβparameter increasing,the robustness of the model gradually increases.However,in the BA-WS edge-coupling network and the BA-ER edgecoupling network,the robustness is weaker than those in other networks, which indicates that different structures will lead to different robustness in the edge-coupling network. Meanwhile,it is found that the span fromδ=1.3 toδ=1.4 is not as large as the span fromδ=1.0 toδ=1.1 in this model.

    Fig. 4. Robustness of network under different overload parameters δ: (a) BA-BA network of coupled edge, (b) ER-ER network of coupled edge,(c)WS-WS network of coupled edge,(d)BA-WS network of coupled edge,(e)BA-ER network of coupled edge,(f)WS-ER network of coupled edge.

    In brief,it can be found that when the overload parameterδincreases in a small range, the robustness can be improved obviously. However, whenδis increased to a certain extent,the robustness changes little. Moreover,the robustness of the BA-WS and BA-ER edge-coupling network is weak.

    3.2. Influence of load coefficient θ on the model

    In order to study the influence of the load coefficientθon this model, other parameters do not have an excessive influence. Therefore,the overload coefficientδ=1.15,the distribution coefficientω=1,andα=0.6. DifferentG-βcurves for the load parameterθare shown in Fig.5.

    Fig. 5. Network robustness under different load coefficients θ: (a) BA-BA network of coupled edge, (b) ER-ER network of coupled edge, (c)WS-WS network of coupled edge,(d)BA-WS network of coupled edge,(e)BA-ER network of coupled edge,(f)WS-ER network of coupled edge.

    Firstly,whenθ<1,the robustness of different networks behaves differently with the increase ofβ. It can be seen that the BA-BA edge-coupling network is more sensitive to theβparameter in Fig. 5(a). The robustness of the BA-BA edgecoupling network increases in the range ofβfrom 0 to 0.4.Whenβ=0.8,the network robustness is the strongest.

    In Fig.5(b),the robustness of ER-ER edge-coupling network increases in the range ofβ=0.4-1.2. Whenβ=2,the network robustness is the strongest. In Fig. 5(c), the robustness of the WS-WS edge-coupling network becomes obvious in the range ofβ=0-1.6. Whenβ=2.8,the network robustness is strongest. In Fig. 5(d), the robustness of the BA-WS edge-coupling network is enhanced in the range ofβ=0-1.2.Whenβ= 2.4, the network robustness is the strongest. In Fig.5(e),the robustness of the BA-ER edge-coupling network becomes clear in the range ofβ=0-0.8. Whenβ=1.8,the network robustness is supreme. In Fig. 5(f), the robustness of the WS-ER edge-coupling network turns remarkable in the range ofβ=0-1. Whenβ=1,the network robustness is notable.

    Whenθ=1,the robustness of ER-ER,BA-BA,and WSWS edge-coupling networks rises slowly. Furthermore,it can be seen that the robustness of the BA-WS network is lower than 0.2 in Fig. 5(d). In Fig. 5(e), it can be seen that the robustness of the BA-ER edge-coupling network shows a clear upward trend,starting atβ=1.6. However,the robustness of the WS-ER edge-coupling network is the strongest.

    Whenθ=1.5, only the robustness of the WS-WS and ER-ER edge-coupling networks shows a more obvious upward trend.

    Whenθ=2,the robustness of all networks is terrible. It can be seen that whenθ>1,its load parameterθhas a massive impact on the robustness of the networks.

    3.3. Influence of the distribution coefficient ω on the model

    In order to study the influence of the distribution coefficientωon the model, it is assumed that the overload coefficientδ=1.15,α=0.6,and the load coefficientθ=0.5. TheG-Bcurves with different values of the distribution coefficientωare shown in Fig.6.

    It can be seen in Fig. 6 that the robustness of the networks with different structures will gradually increase with the increase of parameterβ. However, as theβvalue increases to a certain extent (turning pointβc), the change of distribution parameterωwill not cause any change in the robustness of the model. The turning pointβcis different for networks with different structures, including the BA-BA edge-coupling networksβc=1,the ER-ER edge-coupling networksβc=0.9,the WS-WS edge-coupling networksβc=1.7,the BA-WS edge-coupling networksβc=1.2, BA-ER edgecoupling networksβc=1.1, and the WS-ER edge-coupling networksβc=0.9. Therefore, finding a suitableωis significant for controlling cascade failure in real networks.

    Fig.6. Network robustness under different distribution coefficients ω (insets are the enlarged pictures): (a)BA-BA network of coupled edge,(b) ER-ER network of coupled edge, (c) WS-WS network of coupled edge, (d) BA-WS network of coupled edge, (e) BA-ER network of coupled edge,(f)WS-ER network of coupled edge.

    3.4. Influence of capacity parameters α and β on the model

    To study the influence of capacity parametersαandβon the model,this research is carried out with the distribution coefficientsω=1,overload coefficientδ=1.15,and load coefficientθ=0.6. The simulation results are shown in Fig.7.

    It can be seen in Fig.7(a)that the robustness of the model gradually increases with the increase ofα. However, when the critical valueα=1, the networks of different structures show the strongest robustness. Similarly, in Fig. 7(b), when the critical valueβ=1.4,the networks show the strongest robustness. It can be observed that the robustness of the BA-BA edge-interdependence networks is stronger than those in other networks. In general, by adjusting theαandβparameters,the networks can obtain maximum robustness more quickly.Therefore,it is unwise to adjust a single parameter ofαorβparameters in a real network.

    Fig. 7. Robustness of different networks under capacity parameters:(a)robustness under the condition of β =0.8,(b)robustness under the condition of α =0.6.

    4. Conclusion

    The edge in the network not only has the function of maintaining the overall structure of the network but also serves as the medium of information dissemination. Therefore,studying the coupling on edges of the network is of great significance for studying the robustness of the network. Considering multiple parameters and apply them to BA-BA,ER-ER,WS-WS,BA-WS,BA-ER,WS-ER networks,we construct an edge-to-edge coupling model of different two-layer networks.It is found that difference in the structure of the model will lead to difference in robustness,and the span fromδ=1.3 toδ=1.4 is not as large as the span fromδ=1.0 toδ=1.1.Meanwhile,whenθ>1,its load parameterθleads to poor robustness of the network. In distribution parameterω,the critical thresholdβcis explored.The turning pointβcis different in different structures. As to the capacity parameters,it is found that adjusting the capacity parametersαandβsimultaneously can improve the robustness of the network significantly.

    In general, this model provides a new reference for controlling and avoiding cascade failure. For further studies, we will explore the robustness of networks from the perspective of the coupling relationship between edges and that between nodes simultaneously in the future.

    Acknowledgements

    This work is supported by the National Natural Science Foundation of China (Grant No. 61663030), the Natural Science Foundation of Jiangxi Province, China (Grant No.20142BAB207021),and the Innovation Fund Designated for Graduate Students of Jiangxi Province, China (Grant No.YC2021-S680).

    亚洲狠狠婷婷综合久久图片| 18+在线观看网站| 国产69精品久久久久777片| 在现免费观看毛片| 国产男人的电影天堂91| 村上凉子中文字幕在线| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 97人妻精品一区二区三区麻豆| av在线蜜桃| 99久久九九国产精品国产免费| 日韩欧美在线乱码| 联通29元200g的流量卡| 欧美另类亚洲清纯唯美| 99在线视频只有这里精品首页| 最近中文字幕高清免费大全6 | 琪琪午夜伦伦电影理论片6080| 中文亚洲av片在线观看爽| 国产白丝娇喘喷水9色精品| 国产精品野战在线观看| 国产精品久久久久久久久免| 午夜精品在线福利| 久久亚洲真实| 日韩av在线大香蕉| 亚洲无线在线观看| 亚洲精品日韩av片在线观看| 亚洲 国产 在线| 亚洲成av人片在线播放无| 久久久久久久亚洲中文字幕| 欧美3d第一页| 可以在线观看的亚洲视频| 国内揄拍国产精品人妻在线| 国产极品精品免费视频能看的| 少妇熟女aⅴ在线视频| 中文字幕av在线有码专区| 免费黄网站久久成人精品| 亚洲五月天丁香| 久久6这里有精品| 国产精品女同一区二区软件 | 在线看三级毛片| 国产亚洲精品久久久com| 性插视频无遮挡在线免费观看| 我要搜黄色片| www.色视频.com| 午夜免费男女啪啪视频观看 | 春色校园在线视频观看| 97超视频在线观看视频| 久久久成人免费电影| 在线天堂最新版资源| 亚洲va日本ⅴa欧美va伊人久久| 免费在线观看日本一区| 啦啦啦韩国在线观看视频| 成熟少妇高潮喷水视频| 久久久久性生活片| 最新在线观看一区二区三区| 成年女人毛片免费观看观看9| 成年免费大片在线观看| 免费观看的影片在线观看| 最近中文字幕高清免费大全6 | eeuss影院久久| 日韩一区二区视频免费看| 午夜精品一区二区三区免费看| 一本精品99久久精品77| 国产精品一区二区免费欧美| 久久久久久久久久久丰满 | 999久久久精品免费观看国产| 999久久久精品免费观看国产| 亚洲av中文av极速乱 | 日韩亚洲欧美综合| av女优亚洲男人天堂| 很黄的视频免费| 91麻豆av在线| 国产精品永久免费网站| 级片在线观看| 国产色爽女视频免费观看| 国产精品不卡视频一区二区| 成年版毛片免费区| 国产视频一区二区在线看| 午夜福利在线观看免费完整高清在 | 成人综合一区亚洲| 久久国产精品人妻蜜桃| 级片在线观看| 中文字幕久久专区| 天堂网av新在线| 亚洲美女搞黄在线观看 | 高清毛片免费观看视频网站| 啪啪无遮挡十八禁网站| 亚洲av免费高清在线观看| 欧美xxxx性猛交bbbb| 在线看三级毛片| 欧美bdsm另类| ponron亚洲| 人人妻,人人澡人人爽秒播| 亚洲欧美日韩无卡精品| 成人国产麻豆网| 久久99热这里只有精品18| 亚洲内射少妇av| 我要看日韩黄色一级片| 国产精品三级大全| 亚洲熟妇熟女久久| 天美传媒精品一区二区| www.www免费av| 国内精品久久久久久久电影| 99久国产av精品| 精品久久久久久成人av| 免费人成在线观看视频色| 在线播放无遮挡| 国产精品1区2区在线观看.| 亚洲中文字幕一区二区三区有码在线看| 此物有八面人人有两片| 少妇被粗大猛烈的视频| 亚洲精品色激情综合| 嫩草影院精品99| 99久久精品国产国产毛片| 国产亚洲欧美98| 亚洲不卡免费看| 窝窝影院91人妻| 亚洲最大成人中文| 亚洲一区二区三区色噜噜| 国产午夜精品久久久久久一区二区三区 | 麻豆成人午夜福利视频| 色视频www国产| 中文在线观看免费www的网站| 国产激情偷乱视频一区二区| 在线观看66精品国产| 老熟妇仑乱视频hdxx| 亚洲经典国产精华液单| 中文字幕人妻熟人妻熟丝袜美| 免费搜索国产男女视频| 国产一区二区激情短视频| 又粗又爽又猛毛片免费看| 欧美日本视频| 国产精品久久久久久久久免| 午夜精品在线福利| 免费观看人在逋| 99热只有精品国产| 久久精品人妻少妇| 日本成人三级电影网站| 啦啦啦观看免费观看视频高清| 国产亚洲欧美98| 亚洲七黄色美女视频| 色吧在线观看| av天堂在线播放| 亚洲午夜理论影院| 久久国产精品人妻蜜桃| 男人狂女人下面高潮的视频| 91久久精品国产一区二区成人| 国产精品国产三级国产av玫瑰| 他把我摸到了高潮在线观看| 亚洲精品粉嫩美女一区| 免费大片18禁| 欧美xxxx黑人xx丫x性爽| 99热6这里只有精品| 国产精品永久免费网站| 亚洲午夜理论影院| 免费观看在线日韩| 少妇人妻一区二区三区视频| www.色视频.com| 久久久精品欧美日韩精品| 久久天躁狠狠躁夜夜2o2o| 韩国av在线不卡| av在线老鸭窝| 国产精品乱码一区二三区的特点| 我的老师免费观看完整版| 精华霜和精华液先用哪个| 97超视频在线观看视频| 国产精品女同一区二区软件 | 99久久九九国产精品国产免费| 成人特级黄色片久久久久久久| 婷婷精品国产亚洲av在线| 午夜a级毛片| 中文字幕熟女人妻在线| 国产高清有码在线观看视频| 亚洲av免费高清在线观看| 又爽又黄无遮挡网站| 欧洲精品卡2卡3卡4卡5卡区| 久久久精品大字幕| 日本熟妇午夜| 免费在线观看影片大全网站| 18禁黄网站禁片免费观看直播| 变态另类丝袜制服| 欧美zozozo另类| 少妇人妻精品综合一区二区 | 又紧又爽又黄一区二区| 成人国产一区最新在线观看| 亚洲精品日韩av片在线观看| 国产成人福利小说| 欧美在线一区亚洲| 能在线免费观看的黄片| av黄色大香蕉| 国产成人aa在线观看| 九九爱精品视频在线观看| 人人妻人人看人人澡| 中文亚洲av片在线观看爽| eeuss影院久久| 免费大片18禁| 51国产日韩欧美| 天堂影院成人在线观看| 欧美日韩国产亚洲二区| 日韩欧美 国产精品| 他把我摸到了高潮在线观看| 丝袜美腿在线中文| 美女高潮的动态| 日日夜夜操网爽| 免费av不卡在线播放| 久久欧美精品欧美久久欧美| 国产不卡一卡二| 欧美性猛交╳xxx乱大交人| 久久久久九九精品影院| 国产精品伦人一区二区| 看片在线看免费视频| 国产黄片美女视频| 久久久午夜欧美精品| 国产精品免费一区二区三区在线| 久久久久久久精品吃奶| 国产人妻一区二区三区在| 国产在视频线在精品| 亚洲成av人片在线播放无| 日本-黄色视频高清免费观看| 久久这里只有精品中国| 在线观看美女被高潮喷水网站| 97热精品久久久久久| 特大巨黑吊av在线直播| 国产大屁股一区二区在线视频| 亚洲色图av天堂| 日日啪夜夜撸| 国产国拍精品亚洲av在线观看| 成人无遮挡网站| 在线播放国产精品三级| 人妻丰满熟妇av一区二区三区| 欧美区成人在线视频| www.色视频.com| 嫩草影院入口| 亚洲男人的天堂狠狠| 两性午夜刺激爽爽歪歪视频在线观看| 神马国产精品三级电影在线观看| 国产欧美日韩精品亚洲av| 日本 欧美在线| 国产精品久久电影中文字幕| 伦精品一区二区三区| 国产三级中文精品| 美女高潮喷水抽搐中文字幕| 精品久久久久久久末码| 免费看日本二区| 欧美高清成人免费视频www| 国产亚洲精品久久久久久毛片| 一级a爱片免费观看的视频| a级毛片a级免费在线| 精品欧美国产一区二区三| 国产久久久一区二区三区| 国产伦在线观看视频一区| 午夜免费成人在线视频| 一进一出好大好爽视频| 精品午夜福利在线看| 一边摸一边抽搐一进一小说| 蜜桃久久精品国产亚洲av| 色综合色国产| 亚洲成人精品中文字幕电影| 九九热线精品视视频播放| 亚洲欧美清纯卡通| 色尼玛亚洲综合影院| 国产亚洲精品av在线| 日本黄色视频三级网站网址| 男人舔女人下体高潮全视频| 我要搜黄色片| bbb黄色大片| a级一级毛片免费在线观看| 精品一区二区三区视频在线观看免费| 我的女老师完整版在线观看| 国产精品精品国产色婷婷| 精品一区二区三区视频在线| 十八禁国产超污无遮挡网站| 成年版毛片免费区| 色噜噜av男人的天堂激情| 舔av片在线| 男人和女人高潮做爰伦理| 欧洲精品卡2卡3卡4卡5卡区| 国产伦在线观看视频一区| 在线观看av片永久免费下载| 欧美精品国产亚洲| 午夜精品久久久久久毛片777| 啦啦啦韩国在线观看视频| 国产高潮美女av| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 淫妇啪啪啪对白视频| 悠悠久久av| 搡女人真爽免费视频火全软件 | 亚洲av中文av极速乱 | 黄色丝袜av网址大全| 白带黄色成豆腐渣| 国内揄拍国产精品人妻在线| 日本爱情动作片www.在线观看 | 国内精品久久久久久久电影| 欧美高清成人免费视频www| 身体一侧抽搐| 变态另类丝袜制服| 午夜精品在线福利| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站| 欧美黑人欧美精品刺激| 亚洲四区av| 啦啦啦韩国在线观看视频| 身体一侧抽搐| 亚洲精品亚洲一区二区| 嫩草影院精品99| 免费观看的影片在线观看| 日本免费a在线| 亚洲人与动物交配视频| 久久婷婷人人爽人人干人人爱| 极品教师在线视频| 国产又黄又爽又无遮挡在线| 99热这里只有是精品在线观看| 黄色丝袜av网址大全| 动漫黄色视频在线观看| 亚洲av日韩精品久久久久久密| 国产69精品久久久久777片| 色综合婷婷激情| 亚洲美女黄片视频| 日本免费a在线| 日本三级黄在线观看| 国产精品久久久久久久电影| АⅤ资源中文在线天堂| 国产中年淑女户外野战色| 熟妇人妻久久中文字幕3abv| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 国产在线精品亚洲第一网站| 国产精品一区二区性色av| 女生性感内裤真人,穿戴方法视频| 国产中年淑女户外野战色| 尾随美女入室| 精品国产三级普通话版| 亚洲五月天丁香| 男女那种视频在线观看| 国产免费一级a男人的天堂| 国产精品日韩av在线免费观看| 成年女人毛片免费观看观看9| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 久久精品国产亚洲网站| 欧美人与善性xxx| av在线观看视频网站免费| 精品久久久久久久末码| 联通29元200g的流量卡| 此物有八面人人有两片| 俄罗斯特黄特色一大片| 精品99又大又爽又粗少妇毛片 | 亚洲精品影视一区二区三区av| 九色国产91popny在线| 午夜福利高清视频| 一级毛片久久久久久久久女| 中文字幕免费在线视频6| 成人特级黄色片久久久久久久| 色哟哟·www| 免费看日本二区| 欧美最新免费一区二区三区| 99热只有精品国产| 国产麻豆成人av免费视频| 亚洲,欧美,日韩| eeuss影院久久| 久久久国产成人免费| 伊人久久精品亚洲午夜| 久久精品久久久久久噜噜老黄 | 精品午夜福利在线看| 真人一进一出gif抽搐免费| 极品教师在线视频| 欧美不卡视频在线免费观看| 自拍偷自拍亚洲精品老妇| 十八禁网站免费在线| 成人av在线播放网站| 国产探花极品一区二区| 丰满人妻一区二区三区视频av| 亚洲五月天丁香| 精品久久久久久久人妻蜜臀av| 婷婷精品国产亚洲av在线| 亚洲av第一区精品v没综合| 在线播放国产精品三级| 久久精品91蜜桃| 成人特级av手机在线观看| 欧美另类亚洲清纯唯美| 免费观看在线日韩| 国产精品爽爽va在线观看网站| 人妻久久中文字幕网| 熟女电影av网| 极品教师在线免费播放| 极品教师在线视频| 精品一区二区三区视频在线观看免费| 国产一区二区三区在线臀色熟女| 日本在线视频免费播放| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 久久人妻av系列| 自拍偷自拍亚洲精品老妇| 毛片一级片免费看久久久久 | 国产精品99久久久久久久久| 国产精品av视频在线免费观看| 毛片女人毛片| 欧美日韩国产亚洲二区| 久久久久久久久大av| 狂野欧美白嫩少妇大欣赏| 欧美人与善性xxx| 在线免费观看的www视频| 成年免费大片在线观看| 亚洲第一区二区三区不卡| 91久久精品国产一区二区三区| 欧美中文日本在线观看视频| 国产亚洲精品久久久久久毛片| a级毛片免费高清观看在线播放| 免费看av在线观看网站| 女同久久另类99精品国产91| 舔av片在线| 亚洲天堂国产精品一区在线| 国产三级在线视频| 男插女下体视频免费在线播放| 麻豆一二三区av精品| 欧美日本亚洲视频在线播放| 欧美黑人巨大hd| 午夜免费男女啪啪视频观看 | eeuss影院久久| 在现免费观看毛片| 不卡视频在线观看欧美| 有码 亚洲区| 蜜桃亚洲精品一区二区三区| 不卡一级毛片| 欧美在线一区亚洲| 黄色欧美视频在线观看| 91av网一区二区| 亚洲av免费高清在线观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲一级一片aⅴ在线观看| 国产69精品久久久久777片| 亚洲第一区二区三区不卡| 国产高清有码在线观看视频| 亚洲在线观看片| av国产免费在线观看| 中亚洲国语对白在线视频| 午夜视频国产福利| 热99在线观看视频| 久久久久性生活片| 国产一级毛片七仙女欲春2| 狠狠狠狠99中文字幕| 99热精品在线国产| 成人国产麻豆网| 亚洲欧美激情综合另类| 亚洲国产精品sss在线观看| 高清毛片免费观看视频网站| 成人永久免费在线观看视频| 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 丝袜美腿在线中文| 三级国产精品欧美在线观看| 69人妻影院| 国产精品人妻久久久久久| 我的女老师完整版在线观看| 麻豆av噜噜一区二区三区| 麻豆久久精品国产亚洲av| 中国美女看黄片| 欧美绝顶高潮抽搐喷水| 亚洲精品色激情综合| 亚洲男人的天堂狠狠| 精品人妻1区二区| 国内精品宾馆在线| 老熟妇乱子伦视频在线观看| 嫩草影院精品99| 成人综合一区亚洲| 国产蜜桃级精品一区二区三区| 欧美xxxx性猛交bbbb| 夜夜看夜夜爽夜夜摸| 极品教师在线免费播放| 如何舔出高潮| 日本黄大片高清| 丝袜美腿在线中文| 搡老熟女国产l中国老女人| 久久久久久久午夜电影| 99热这里只有是精品50| 一区福利在线观看| 欧美中文日本在线观看视频| 色哟哟哟哟哟哟| 午夜福利在线观看吧| 又黄又爽又免费观看的视频| 国产一区二区三区在线臀色熟女| 免费观看精品视频网站| 久久久成人免费电影| 精品日产1卡2卡| 国产av在哪里看| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 欧美在线一区亚洲| 国产伦在线观看视频一区| 国产一区二区在线av高清观看| 在线播放国产精品三级| 国产不卡一卡二| 亚洲精品456在线播放app | 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 少妇裸体淫交视频免费看高清| av专区在线播放| 欧美黑人欧美精品刺激| 色av中文字幕| 精品人妻视频免费看| 在线免费观看不下载黄p国产 | 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 有码 亚洲区| 久久久精品大字幕| 他把我摸到了高潮在线观看| 亚洲avbb在线观看| eeuss影院久久| 美女 人体艺术 gogo| 色哟哟哟哟哟哟| 亚洲va在线va天堂va国产| 又黄又爽又免费观看的视频| 亚洲最大成人av| 真实男女啪啪啪动态图| 欧美bdsm另类| 亚洲av电影不卡..在线观看| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 亚洲专区中文字幕在线| 在线免费十八禁| 免费在线观看影片大全网站| 成年人黄色毛片网站| 日韩中文字幕欧美一区二区| 欧美激情在线99| h日本视频在线播放| 岛国在线免费视频观看| 日韩,欧美,国产一区二区三区 | 一边摸一边抽搐一进一小说| 国产精品一区二区三区四区免费观看 | 国产毛片a区久久久久| 夜夜爽天天搞| 成年版毛片免费区| 69av精品久久久久久| 亚洲精华国产精华液的使用体验 | 国产精品99久久久久久久久| 亚洲最大成人av| 免费av观看视频| 国产精品爽爽va在线观看网站| 看黄色毛片网站| 极品教师在线免费播放| 欧美激情国产日韩精品一区| 精品免费久久久久久久清纯| 黄色配什么色好看| 听说在线观看完整版免费高清| 欧洲精品卡2卡3卡4卡5卡区| 国内揄拍国产精品人妻在线| 欧美高清性xxxxhd video| 国产不卡一卡二| 欧洲精品卡2卡3卡4卡5卡区| 婷婷六月久久综合丁香| 国产大屁股一区二区在线视频| 91麻豆精品激情在线观看国产| 国产aⅴ精品一区二区三区波| 免费不卡的大黄色大毛片视频在线观看 | 国产真实伦视频高清在线观看 | 亚洲成人精品中文字幕电影| 美女高潮的动态| 少妇人妻一区二区三区视频| 亚洲欧美精品综合久久99| 男女下面进入的视频免费午夜| 中文字幕免费在线视频6| 精品国产三级普通话版| 蜜桃久久精品国产亚洲av| 色综合亚洲欧美另类图片| 日韩欧美国产在线观看| 亚洲av免费在线观看| 精品久久久久久久久久免费视频| 国产高清视频在线观看网站| a级一级毛片免费在线观看| 成人特级av手机在线观看| 免费av观看视频| 一个人免费在线观看电影| 欧美不卡视频在线免费观看| 性插视频无遮挡在线免费观看| av福利片在线观看| 禁无遮挡网站| 国产高清视频在线播放一区| bbb黄色大片| 亚洲精品一区av在线观看| 又爽又黄无遮挡网站| 成人国产麻豆网| av黄色大香蕉| 亚洲精品色激情综合| 免费一级毛片在线播放高清视频| 丰满乱子伦码专区| 国产精品人妻久久久久久| 深夜精品福利| 中文字幕久久专区| 狂野欧美激情性xxxx在线观看| 少妇的逼水好多| 亚洲av第一区精品v没综合| 国产白丝娇喘喷水9色精品| 午夜福利在线观看吧| 欧美日韩综合久久久久久 | 最近最新中文字幕大全电影3| 国产精品一区二区三区四区久久| 国产av麻豆久久久久久久| 欧美性猛交╳xxx乱大交人| 欧美激情国产日韩精品一区| 日韩av在线大香蕉| av天堂中文字幕网| 日韩亚洲欧美综合| 久久欧美精品欧美久久欧美| 久久久国产成人精品二区| 色噜噜av男人的天堂激情| 老女人水多毛片| 色哟哟·www| 国产精品99久久久久久久久| 欧美黑人巨大hd| 欧美日韩黄片免| 一级黄片播放器| 久久精品久久久久久噜噜老黄 | 欧美日本视频| 一个人观看的视频www高清免费观看|