• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Information flow between stock markets:A Koopman decomposition approach

    2022-01-23 06:38:12SembaShereheHuiyunWan萬(wàn)慧云
    Chinese Physics B 2022年1期

    Semba Sherehe Huiyun Wan(萬(wàn)慧云)

    Changgui Gu(顧長(zhǎng)貴)1, and Huijie Yang(楊會(huì)杰)1,?

    1Department of Systems Science,University of Shanghai for Science and Technology,Shanghai 200093,China

    2Faculty of Science,Dar es Salaam University College of Education,University of Dar es Salaam,Dar es Salaam,Tanzania

    Keywords: transfer entropy,Koopman operator,stock markets

    1. Introduction

    The stock markets distributed over the world are networked by complicated and dynamical relationships into a global system. The relations are integration results of the natural disasters,the social/political/armed conflicts,and the flow of capitals. The environmental factors cover a wide time scale from several days,such as the Suez Canal Blockage[1]to several months or even more than one year, such as the novel COVID-19 pandemic.[2-5]And the flow of capitals also has a rich pattern composing of the strategic, tactical, and speculative investments from different institutions. The stock market network attracts persistent attentions of researchers from diverse fields for its potential use in theory and practice.

    The relationships between stock markets are currently detected through the cross-correlation,[6,7]the causality inference,[8]and the information flow.[9]For instance, to detect the influence stored in cross-correlations, the concept of time delay stability is designed.[10-14]The influence is realized by a successive physical process of sending signals from the influencer, receiving signals by the influenced one and its responses. The signals may be different completely,but the delay time from the sending to the response is determined by the intrinsic properties of the systems and keeps unchanged. One calculates the cross-correlation coefficients between the output series for different delays and finds the specific delay at which the absolute value of the cross-correlation coefficient reaches the maximum, called time delay for the cross-correlation.[15]The value of the cross-correlation and the time delay stability are used cooperatively to identify the influence. The Granger causality[16]of one market,for another example,implies that the history of the causal market has a significant ability to explain the present state of the explained market,which is evaluated by regressions of the structural equations.[17,18]

    The couplings between the stock markets induce to and can be represented subsequently with information flows,measured by various entropy quantifiers.[19-26]The present state of one market depends strongly on its history. Using a specified number of historical records as a condition, one can obtain the conditional probabilities and the conditional entropy.[27]Adding the historical recordings for another stock market to the condition,the conditional entropy will become smaller due to the newly introduced information. The decreasing quantity is called transfer entropy.[28]A higher value of transfer entropy implies that the added stock market has a significant explanation ability.[28-31]

    The index records for the stock markets form a multivariate time series. One separates the time series into segments with a specified length (e.g., one year) and reconstructs their corresponding stock market networks,all of which will form a temporal network.[31]The structural and evolutionary behaviors are then displayed using the curves of structural properties for the snapshot networks versus time. Fruitful findings have been reported in recent years.[32-34]For instance, the mutual entropy between successive networks for a total of 57 industry portfolios in the American stock market reaches peaks at financial crises.[17]According to the signs of components for the eigenvectors corresponding to several largest eigenvalues of stock networks, one can separate the stocks into reasonable groups consistent with that in reality.[35]And the average transfer entropy for the market network reaches peaks several months before each financial crisis.[31]But the evolutionary mechanism underlying the temporal network is still not in order.

    Recent years have witnessed a rapid development of dynamic mode decomposition (DMD).[36-40]It is built on the idea of Koopman operator approximation,i.e.,though the evolutionary process of a system is generally nonlinear, in each time step it can be mimicked by a linear one, and in a short time duration the system obeys the same law. Many works have shown its powerfulness in discovering the underlying mechanism from experimental records.It is widely used in the identification and monitoring of mobile objects,displaying the complicated dynamical patterns in turbulent fluids,diagnostics and predictions.[41]

    The present work proposes a scheme that reveals underlying dynamical law stored in the information flows between stock markets. First,we collect the monthly closing price series for many stock markets and calculate the corresponding volatility series. The volatility series are separated into segments with a specified length each. For each segment, we calculate the transfer entropies between all the markets,forming a weighted-directional information flow network used to represent the local state of the system in the corresponding time duration. The successive weighted-directional information flow networks make the dynamical process of information flow. Then the Koopman operator is adopted to model this dynamical process with eigenfunctions. The model gives the dynamical law for the entropy flow in the global stock market system. The generated dynamic model displays rich evolution patterns,e.g.,the non-normal energy growth indicating the stock market system jumps easily between different states(called flexibility of stock market system). Also,the information flows mainly from high volatility stock markets to low volatility stock markets.

    The materials and methodologies are introduced in detail in Section 2. In Section 3 we present the numerical experiments and observations. Summaries and conclusions are provided in Section 4.

    2. Materials and methodologies

    Figure 1 illustrates the methodology framework.

    Fig.1. The methodology framework:The framework shows how the complex systems with the unknown governing equation and nonlinear produce the multivariate time series data, used to generate the dynamical information model by deploying transfer entropy integrated Koopman mode decomposition.

    2.1. Data

    We collected the monthly closing prices for a total of 22 stock markets from June 1, 2002, to January 1, 2021. The stock markets distribute over five continents including, South America,North America,Asia,Europe,Australia,and Africa,as listed in Table 1. From each continent, we have chosen at least one market. The data can be downloaded freely from the website finance.yahoo.com.

    Table 1. The list of stock indices.

    Hereafter,we will useSk,k=1,2,...,200 to calculate the information flows.

    2.2. Temporal information flow network

    As an illustration, let us calculate the transfer entropy from them-th stock market to then-th stock market in thek-th time duration. The corresponding series read

    Note that we consider only the one-step memory in the series,while in reality,there exist long-term memories.The onestep memory gives us with the immediate influence, which may display the influences much more clearly. If we consider the long-term memories, there will appear complicated relationships due to the multi-step responses between stock markets. The direct influences may be merged in the complicated responses.

    2.3. Koopman mode decomposition

    Now we rewrite the dynamical process for the information flowsTEwith a matrix with 22×22 rows and 200 columns,denoted withY,whose entities read

    The dynamic modes correspond to the eigenfunctions ofK. The operatorKis a matrix with a size of 484×484, implying that we have a total of 484 eigenvalues and corresponding eigenfunctions. In reality, most of the eigenfunctions reflect the microscopic details depending on the noises and occasional events. Herein, we are interested in the eigenfunctions that can give us the intrinsic law in the information flows.

    Technically, the singular value decomposition (SVD) is used. We compute the reduced and appropriately truncated SVD ofY1,Y1≈UrΣrV*r,whererrefers to the reduced rank of the approximated operator less than min(22·22,199)=199.In most cases the intrinsic dynamical law can be captured by selecting a small value ofr. A low-rank approximation ofKis then defined to be ?K= ?K=U*r KUr=U*r Y2VrΣ-1r, whose eigendecomposition reads

    whereΦ ∈Cn×rconsists of the columns ofφi, andbis a set of weights satisfyingy0=Φb.

    3. Experimental results and observations

    Figure 2(a1) shows the volatility series for all the stock markets. The FHI stock market in the Egypt economy area(ID=8)has higher volatilities than others. The flow process is not random,i.e.,there exist spatial patterns evolving slowly along time, as shown in the heat-map for constructed information flow process in panel (a2). In panel (b1) the singular values ofY1is ranked in descending order. The ranked singular value turns out to decrease faster than an exponential law. Actually,the first nine of the square singular values dominate up to 93% of the sum of all the square singular values(see panel (b2)). The most dominant one contributes 75%,reflecting the clear demarcation of the information flows between and within the stock indices. The eigenvalues for the nine dominant modes read

    which are obtained by using the Koopman mode decomposition after truncation of the singular values. Because the step in our calculation is one month,the corresponding periods for these modes are≥1/0.111~9 months.

    Fig.2. (a1)The monthly volatilities for the 22 stock markets in Table 1, (a2)the heat map of the temporal information flow of Y, (b1)the logarithm of the singular values. (b2) The cumulative sum of the probability of the square singular values. The top nine dominate up to 93% of the sum of all the square singular values, called dominant modes. (b3)The eigenvalues of K,in which the dominant modes are marked with solid circles. (b4)The distribution of the imaginary parts of the eigenvalues of K.

    From Eq.(11)one can find that the specific characteristics for each component are determined by three factors, including the amplitude stored inΦ, the period determined by the imaginary part of the eigenvalue stored inΛ,and the decaying speed determined by the real part of the eigenvalue stored inΛ.Hence,the modes whose eigenvalues have small or even zero imaginary parts and positive real parts determine the macroscopic behavior of the information flows. The modes whose eigenvalues have large imaginary parts or negative real parts reflect the microscopic behaviors of the information flows or simply the noises, because a large imaginary part implies a rapid oscillation and a negative real part an odd-even oscillation with a period of one month. In panel (b3) we display all the 199 eigenvalues ofK(open circles), in which those corresponding to the nine dominant modes are marked with solid circles. The eigenvalues distribute mainly on a circle with several exceptions, and are symmetrical with respect to the level line imag(λ)=0. The real parts of the eigenvalues are all less than one,i.e., the system is stable. The dominant modes have smaller or even zero imaginary parts and large real parts, corresponding to the macroscopic behaviors of the information flows. From the distribution of the imaginary parts for the 199 eigenvalues(panel(b4))one can find that besides the nine dominant modes around the zero point of imaginary part, the modes distribute homogenously in the wide range of (-0.7,+0.7),i.e., the corresponding modes cover a wide range of periods from about one month to more than twenty years,without a characteristic period. The ignorable contributions for the modes can be explained by the small or negative values of the corresponding real parts.

    The dynamical model is finally constructed as

    Generally speaking,the system shows a damping behavior.As shown in Fig. 3(a), the eigen-information flows between 154-176 modes are significantly higher than that between others,i.e.,there exist strong-directional information flows from the indices with high volatilities to that with low volatilities.Also,the eigen-information reflects the exact-true information flows because in each segment, there is no information flow within the same stock indices.

    Fig. 3. The three most dominant eigenfunctions (eigen-information) of Y1.(a)Reflect the exact-true information flows because,in each segment,it has no information flows (quantified as 0) within the same stock indices. The other two (shown in panels (b) and (c)) do not show a clear demarcation between and within the stock indices since they have no information flows between the stock indices.

    Fig.4. Correlations between the eigenfunctions: The distributions of the Koopman decomposition modes are not orthonormal. They are no significant linear correlation,between most of the eigenfunctions. Panels(a),(n),and(q)display the strong correlations between the eigenfunctions with its conjugate.

    Figure 4 shows the relations between the 9 eigenfunctions. The correlations between the eigenfunction pairs numbered{1,2}, {5,6}, and{7,8}each are strong, actually their cross-correlation coefficients are all +1, as shown in the panels (a), (n), and (q). The two eigenfunctions in each pair correspond to two eigenvalues conjugating each other.The correlations between the other eigenfunctions are very weak. The Koopman mode decomposition produces nonorthonormal eigenfunctions.

    The transfer entropy eigenfunctions(eigen-informations)are presented in Figs.5(a1)-5(f1),where each 484-row eigenfunction vector is recovered to a 22×22 matrix. The directional information flows are also displayed with the networks in the panels (a2)-(f2). The broader a link, the stronger influence between the linked stock indices. For visual convenience, we filter out the weak flows less than 0.05. The panels (a3)-(f3) are the distributions of the information flows in the panels (a1)-(f1). Most of the dynamic information flows in panel (c1) are less than 0.05, resulting in the sparse directional linkages in panel (c2). And they distribute randomly(panel(c3)). Its corresponding eigenvalue is 0.8823(the least one). In panel (b1), most of the dynamic information flow values are greater or equal to 0.05, leading to a densely connected network (panel (b2)), implying the clear demarcation information flows between and within the stock indices. The corresponding eigenvalue is 0.9935(the largest one). The FHI with ID=8 has no in-flow information,while the information from this stock index flows out to all the 21 stock indices. The information flows between the remaining 21 are bidirectional(panels (b2) and (b3)). The most stronger influences occur on the linkages FHI→S&P100(8,16),TWI→NASDQ(19,12),FHI→NICKEL(8,13),and FHI→NASDQ(8,12)(panel(b1)).

    Fig. 5. Eigenfunctions: (a1)-(f1) the underlying information flows, which are displayed also with networks in panels (a2)-(f2). In the networks for which the weak information flows less than 0.05 are filtered out for visual convenience. Panels(a3)-(f3)are information flow distributions. Panels(a1)-(a3), (b1)-(b3), and (f1)-(f3) correspond to the eigenvalues of 0.9047±0.111i, 0.9935, 0.8823, 0.9182±0.0444i, 0.9563±0.0074i, and 0.9347,respectively.

    Table 2. Real modes power (Pi =〈φi,φi〉2 =||φi||22), and numbers for information flows,and mono-directional information flows.

    As shown in Table 2, the increase of mode power implies the increase of double-directional information flow,but the mono-direction flow increases with the decreasing power. When the mode power is 0.9871 the mono-directional stock is FHI,and the bi-directional stocks are AEX,BSESN,BVSP,CAC40, CRUDE OIL,DAX,DJ,GOLD,HSI,MSM,NASDQ,NICKEL,NYA,SSE,S&P100,SZIAX,TSX,TWI,XAX, FTSE, AORD. For 0.8780 mode power, the monodirectional stocks are CAC40,CRUDE OIL,DAX,FHI,HSI,MSM, NASDQ, SSE, SZIAX, TSX, TWI, and FTSE, and bi-directional are stocks AEX, BSESN, BVSP, DJ, GOLD,NICKEL, NYA, S&P100, XAX, and AORD. For 0.7870 mode power,the mono-directional stocks are CAC40,CRUDE OIL, DAX, FHI, GOLD, HSI, NASDQ, NICKEL, NYA,SSE,S&P100, SZIAX,TSX,TWI,XAX,and FTSE,and bidirectional are stocks AEX, BSESN, BVSP, DJ, MSM, and AORD. For all real power modes, FHI is mono-directional,and the bi-directional are stocks AEX,BSESN,BVSP,and DJ.

    In Fig.6,the panels(a1)-(b1)present the dynamic information flows obtained with the original definition of transfer entropy and their average. In panels (a2)-(b2) the dynamic information flows reconstructed from the Koopman mode decompositions and their average are shown, respectively. Initially the system grows then decays to the equilibrium points(see panel(b2)). This behavior in physics,specifically in fluid dynamics, is commonly known as transient energy growthdecay,[44]occurring when the eigenvalues are very close with or equal to each other with the corresponding nearly parallel eigenvectors.[45,46]The constructed model’s transient energy growth-decay property is consistent with the presence of secular term (texp(ωt)) in the dynamic system. Hence, the dynamic model for the stock market system can be approximated with

    whereω1≈ω2≈ω3≈···. The Koopman operator approximately reads

    which can be truncated to a reasonable finite-dimensional with small error,i.e.,

    Finally we reached a one decimal approximate Koopman operator

    The eigenvalues for this Koopman operator read 1, 1, 1, 0.9,0.9,0.9,0.9,0.9,0.9,i.e.,they are very close with each other,implying that the eigenfunctions parallel with each other. In the field of of complex fluid, the concept of flexibility is currently used to describe the frequently and almost freely transitions of a macro-molecule between different geometrical configurations(shapes)due to the small energy gaps between the states. Accordingly,the fact of ease transitions between stock market states is defined herein to be flexibility of the stock market system.

    Fig.6. (a1)The information flows obtained with the transfer entropy definition and their average(b1). (a2)The information flows reconstructed with the Koopman decompositions and their average(b2).

    4. Conclusion

    In this article, a novel scheme for revealing the dynamic law from the temporal network proposed. It is illustrated by using monthly volatility series for 22 stock market indices distributed over the whole world. Let a window covering two years slide along the multivariate volatility series with a step of one month to extract the segments. The segments are coarsegrained by mapping the volatilities into very low, low, high,and very high catalogues, denoted with 0 to 3, respectively.The transfer entropy is adopted to construct the information flows between all the stock markets within the segments,forming a temporal information flow network. The Koopman operator is then used to extract the evolutionary law of the entropy flows between the stock indices.

    It is found that the stocks with higher levels of volatilities send information to those with lower levels of volatilities,i.e., the influences are asymmetrical in the stock market system. The dynamic modes distribute homogenously in a wide range of periods from one month to more than twenty years.However,there exist only nine modes whose eigenvalues have large positive real parts and small or even zero imaginary parts,dominating the macroscopic patterns of the information flows.Generally speaking,there are no significant linear correlations between the eigenfunction,except between the eigenfunctions whose eigenvalues are conjugating with each other.The eigenvalues of the Koopman operator turn out to be nearly equal,and the corresponding eigenfunctions are parallel with each other,which imply high flexibility of the stock market system.And the real parts of the eigenvalues are less than one,indicating that the system is stable.

    We hope the reconstructed model (Koopman operator)can find its application in prediction, intervention, and even control of the stock market system’s evolution. The proposed scheme can also be extended straightly to find the evolutionary law in systems composing of multi-subsystems each, such as in the physiological system of a human body.

    Acknowledgements

    Project supported by the National Nature Science Foundation of China (Grant Nos. 11875042 and 11505114), the Orientational Scholar Program Sponsored by the Shanghai Education Commission, China (Grant Nos. D-USST02 and QD2015016), and the Shanghai Project for Construction of Top Disciplines,China(Grant No.USST-SYS-01).

    av中文乱码字幕在线| 直男gayav资源| 成年av动漫网址| 国产精品伦人一区二区| 久久精品夜色国产| 国产淫片久久久久久久久| 午夜免费激情av| 亚洲av免费高清在线观看| 亚洲av熟女| 国产精品久久久久久av不卡| 日韩成人av中文字幕在线观看 | 午夜福利成人在线免费观看| 中文字幕免费在线视频6| 成人鲁丝片一二三区免费| 午夜精品国产一区二区电影 | 国产一区二区三区av在线 | 色噜噜av男人的天堂激情| 国产不卡一卡二| 国产成人精品久久久久久| 成人特级黄色片久久久久久久| 大香蕉久久网| 国产精品人妻久久久久久| 亚洲av成人精品一区久久| 尤物成人国产欧美一区二区三区| 亚洲久久久久久中文字幕| 校园春色视频在线观看| 国产乱人偷精品视频| 亚洲第一电影网av| 亚洲第一电影网av| 国产高清三级在线| 亚洲人成网站高清观看| 久久人妻av系列| 国产大屁股一区二区在线视频| 国产精品久久电影中文字幕| 别揉我奶头 嗯啊视频| 欧洲精品卡2卡3卡4卡5卡区| 国产久久久一区二区三区| 内地一区二区视频在线| 老司机福利观看| 99热这里只有精品一区| 乱码一卡2卡4卡精品| av在线亚洲专区| 亚洲专区国产一区二区| 国产成人精品久久久久久| 免费看a级黄色片| 一a级毛片在线观看| 国产精品国产三级国产av玫瑰| 欧美一区二区国产精品久久精品| 91久久精品国产一区二区成人| 国产亚洲av嫩草精品影院| 熟女人妻精品中文字幕| av卡一久久| 桃色一区二区三区在线观看| 五月玫瑰六月丁香| 久久精品国产鲁丝片午夜精品| 日韩精品有码人妻一区| 日韩大尺度精品在线看网址| 日日摸夜夜添夜夜添av毛片| 波野结衣二区三区在线| 人人妻,人人澡人人爽秒播| 99久久中文字幕三级久久日本| 日韩强制内射视频| 中国国产av一级| 亚洲婷婷狠狠爱综合网| 国产精品美女特级片免费视频播放器| 国产69精品久久久久777片| 99久久成人亚洲精品观看| 在线播放国产精品三级| 欧美高清性xxxxhd video| 99热6这里只有精品| aaaaa片日本免费| 国产单亲对白刺激| 天堂网av新在线| 亚洲国产日韩欧美精品在线观看| 欧美日本视频| 亚洲电影在线观看av| a级毛色黄片| 国产在视频线在精品| 国产成人一区二区在线| 成年女人看的毛片在线观看| www日本黄色视频网| 日韩欧美精品v在线| 在线观看一区二区三区| 色综合亚洲欧美另类图片| 精品一区二区三区视频在线观看免费| 少妇人妻一区二区三区视频| 1000部很黄的大片| 男女下面进入的视频免费午夜| 美女免费视频网站| 久久精品综合一区二区三区| 午夜老司机福利剧场| 国产69精品久久久久777片| 国产亚洲91精品色在线| 黄色视频,在线免费观看| 欧美激情在线99| 亚洲欧美日韩卡通动漫| 在线免费观看不下载黄p国产| 日韩精品青青久久久久久| 51国产日韩欧美| 亚洲国产精品久久男人天堂| 久久亚洲国产成人精品v| 欧美最新免费一区二区三区| 久久人人精品亚洲av| 久久久午夜欧美精品| 3wmmmm亚洲av在线观看| 在线免费观看的www视频| 国产一区二区在线av高清观看| 亚洲国产精品成人综合色| 亚洲精品国产av成人精品 | 亚洲av二区三区四区| av在线蜜桃| 国产精品久久久久久亚洲av鲁大| 亚洲综合色惰| 最好的美女福利视频网| 精品久久国产蜜桃| 美女cb高潮喷水在线观看| 成人三级黄色视频| 麻豆国产97在线/欧美| 午夜福利在线观看吧| 中文字幕熟女人妻在线| 午夜精品在线福利| 欧美一区二区国产精品久久精品| 亚洲va在线va天堂va国产| 老司机影院成人| 成人午夜高清在线视频| 免费看日本二区| 十八禁国产超污无遮挡网站| 国产精品国产高清国产av| 成人特级黄色片久久久久久久| 久久亚洲精品不卡| 亚洲精品日韩av片在线观看| 丰满乱子伦码专区| 天美传媒精品一区二区| 亚洲av成人av| 99riav亚洲国产免费| 能在线免费观看的黄片| 免费观看的影片在线观看| 一级av片app| 中文在线观看免费www的网站| 欧美日本视频| 在线天堂最新版资源| 日本免费一区二区三区高清不卡| 深夜精品福利| 插阴视频在线观看视频| 日韩高清综合在线| 日本在线视频免费播放| 午夜精品在线福利| 俺也久久电影网| 在线播放国产精品三级| 国产激情偷乱视频一区二区| 国产午夜精品论理片| 黄色一级大片看看| 日韩一区二区视频免费看| 亚洲欧美精品自产自拍| ponron亚洲| 亚州av有码| 香蕉av资源在线| 欧美激情在线99| 夜夜夜夜夜久久久久| 观看免费一级毛片| 三级经典国产精品| 亚洲精华国产精华液的使用体验 | 免费av观看视频| 成人av一区二区三区在线看| 日韩欧美 国产精品| 亚洲自偷自拍三级| 久久午夜亚洲精品久久| 一本一本综合久久| 亚洲不卡免费看| 一本一本综合久久| 亚洲在线自拍视频| 91狼人影院| 永久网站在线| 亚洲精品日韩在线中文字幕 | 十八禁网站免费在线| 亚洲av免费在线观看| 亚洲欧美清纯卡通| 中文字幕熟女人妻在线| 男插女下体视频免费在线播放| 天堂影院成人在线观看| 欧美高清性xxxxhd video| 国产伦一二天堂av在线观看| 成人一区二区视频在线观看| 亚洲欧美日韩高清在线视频| 欧美三级亚洲精品| 亚洲av美国av| 国产精品国产三级国产av玫瑰| 久久6这里有精品| 国产蜜桃级精品一区二区三区| 亚洲精品影视一区二区三区av| 成熟少妇高潮喷水视频| 一个人看视频在线观看www免费| 两个人的视频大全免费| 精品一区二区三区av网在线观看| 国产精品一区二区三区四区免费观看 | 亚洲av五月六月丁香网| 国产免费一级a男人的天堂| 精华霜和精华液先用哪个| 中文字幕av成人在线电影| 女生性感内裤真人,穿戴方法视频| 成人无遮挡网站| 少妇猛男粗大的猛烈进出视频 | 亚洲综合色惰| 日韩欧美三级三区| 久久久色成人| 老女人水多毛片| 日韩亚洲欧美综合| 天堂网av新在线| 午夜福利在线观看免费完整高清在 | 如何舔出高潮| 欧美日本视频| 国产伦精品一区二区三区四那| 中文字幕av成人在线电影| 此物有八面人人有两片| 天堂动漫精品| 亚洲va在线va天堂va国产| 成熟少妇高潮喷水视频| 色5月婷婷丁香| 联通29元200g的流量卡| 老熟妇仑乱视频hdxx| 激情 狠狠 欧美| 欧美色视频一区免费| 午夜免费男女啪啪视频观看 | 欧美中文日本在线观看视频| 老女人水多毛片| 日韩欧美 国产精品| 亚洲精品色激情综合| 亚州av有码| 日韩 亚洲 欧美在线| 韩国av在线不卡| 又黄又爽又刺激的免费视频.| 国产精品国产高清国产av| 国产男靠女视频免费网站| 最好的美女福利视频网| 男女之事视频高清在线观看| a级毛色黄片| 日韩,欧美,国产一区二区三区 | 国产成年人精品一区二区| 亚洲七黄色美女视频| 国产一区二区在线av高清观看| 在线看三级毛片| 久久久欧美国产精品| 亚洲中文字幕日韩| 亚洲av成人av| 我要搜黄色片| 97超级碰碰碰精品色视频在线观看| 午夜精品国产一区二区电影 | 久久久久久伊人网av| 亚洲内射少妇av| 亚洲人与动物交配视频| 国产精品99久久久久久久久| 成人永久免费在线观看视频| 久久人人精品亚洲av| 久久中文看片网| 亚洲国产精品成人久久小说 | 精品久久久噜噜| 不卡一级毛片| 亚洲无线在线观看| 99久久精品国产国产毛片| 色视频www国产| 国产成人一区二区在线| 国产av在哪里看| 69人妻影院| 18禁裸乳无遮挡免费网站照片| 亚洲在线自拍视频| 内射极品少妇av片p| 久久久午夜欧美精品| 十八禁网站免费在线| 午夜激情欧美在线| 亚洲不卡免费看| 国产一级毛片七仙女欲春2| 久久精品人妻少妇| 五月玫瑰六月丁香| 午夜激情欧美在线| 国产欧美日韩一区二区精品| 日韩欧美在线乱码| 大型黄色视频在线免费观看| 国产精品女同一区二区软件| 亚洲国产精品成人久久小说 | 99热精品在线国产| 全区人妻精品视频| 香蕉av资源在线| 男人的好看免费观看在线视频| 色av中文字幕| 亚洲色图av天堂| 国产高清不卡午夜福利| 亚洲真实伦在线观看| 久久久久久久久久黄片| 精品一区二区三区视频在线| 真人做人爱边吃奶动态| 91午夜精品亚洲一区二区三区| 嫩草影院精品99| 久久精品国产99精品国产亚洲性色| 成人亚洲欧美一区二区av| 国产精品国产三级国产av玫瑰| 亚洲高清免费不卡视频| av在线老鸭窝| 婷婷精品国产亚洲av| 亚洲第一区二区三区不卡| 亚洲18禁久久av| 黑人高潮一二区| 一级黄片播放器| 国产在视频线在精品| 91午夜精品亚洲一区二区三区| 舔av片在线| 别揉我奶头 嗯啊视频| 伊人久久精品亚洲午夜| 高清日韩中文字幕在线| 天堂√8在线中文| 亚洲精品色激情综合| 97超级碰碰碰精品色视频在线观看| 国产精品国产高清国产av| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 免费看av在线观看网站| 欧美日韩一区二区视频在线观看视频在线 | 日本一二三区视频观看| 欧美高清性xxxxhd video| 12—13女人毛片做爰片一| 天堂动漫精品| 晚上一个人看的免费电影| 伦精品一区二区三区| 亚洲,欧美,日韩| 国产一区亚洲一区在线观看| 日韩亚洲欧美综合| 天美传媒精品一区二区| 国产久久久一区二区三区| 国语自产精品视频在线第100页| 免费看a级黄色片| 美女内射精品一级片tv| 亚洲人成网站在线观看播放| 最好的美女福利视频网| 嫩草影院入口| 非洲黑人性xxxx精品又粗又长| 亚洲欧美日韩东京热| 婷婷精品国产亚洲av在线| 日韩高清综合在线| 尾随美女入室| 国产免费男女视频| 日日撸夜夜添| 久久九九热精品免费| 午夜免费男女啪啪视频观看 | 亚洲精品456在线播放app| 日韩国内少妇激情av| www.色视频.com| 亚洲精品国产av成人精品 | 国产精品国产三级国产av玫瑰| 99久国产av精品国产电影| 欧美一级a爱片免费观看看| 一进一出抽搐gif免费好疼| 69人妻影院| 国产色爽女视频免费观看| 欧美又色又爽又黄视频| 国产av在哪里看| 欧美成人一区二区免费高清观看| 青春草视频在线免费观看| 色在线成人网| 嫩草影院入口| 亚洲在线观看片| 国产午夜福利久久久久久| 少妇丰满av| 午夜激情欧美在线| 一个人看视频在线观看www免费| 一级a爱片免费观看的视频| 在线观看午夜福利视频| 日韩大尺度精品在线看网址| 国产三级在线视频| 亚洲欧美中文字幕日韩二区| 亚洲三级黄色毛片| 成人国产麻豆网| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 久久热精品热| 久久午夜福利片| 中文字幕久久专区| 在线观看一区二区三区| 欧美性感艳星| 日本在线视频免费播放| 国产三级在线视频| 久久午夜福利片| 18+在线观看网站| av免费在线看不卡| 欧美成人精品欧美一级黄| 免费观看在线日韩| 一a级毛片在线观看| 免费在线观看成人毛片| 免费av不卡在线播放| 综合色丁香网| 麻豆乱淫一区二区| 精品福利观看| 国产亚洲91精品色在线| 高清毛片免费看| 日韩一本色道免费dvd| 久久6这里有精品| 国产精品人妻久久久久久| 日韩制服骚丝袜av| 午夜精品国产一区二区电影 | 18禁在线播放成人免费| 在线播放国产精品三级| 欧美日韩在线观看h| 亚洲五月天丁香| 亚洲成av人片在线播放无| 成人国产麻豆网| 亚洲人与动物交配视频| 全区人妻精品视频| 成人特级av手机在线观看| 成人鲁丝片一二三区免费| 国产精品综合久久久久久久免费| 日韩欧美免费精品| 在线国产一区二区在线| 97人妻精品一区二区三区麻豆| 亚洲欧美中文字幕日韩二区| 国产老妇女一区| 色哟哟·www| 亚洲天堂国产精品一区在线| 内射极品少妇av片p| 一级毛片电影观看 | 国产精品嫩草影院av在线观看| 男女那种视频在线观看| 一a级毛片在线观看| 亚洲va在线va天堂va国产| 黄色一级大片看看| 日韩欧美三级三区| 嫩草影院新地址| 观看免费一级毛片| 国产爱豆传媒在线观看| av视频在线观看入口| 午夜精品一区二区三区免费看| 两个人的视频大全免费| 一本久久中文字幕| 国产在线男女| 久久中文看片网| 一本一本综合久久| av福利片在线观看| 亚洲欧美日韩卡通动漫| 在线播放国产精品三级| eeuss影院久久| 欧美中文日本在线观看视频| 黄色一级大片看看| 亚洲av第一区精品v没综合| 成人精品一区二区免费| 精华霜和精华液先用哪个| 国产精品一区www在线观看| 91在线观看av| 国产一区二区在线av高清观看| 99热全是精品| 成人av一区二区三区在线看| 黄色视频,在线免费观看| 精品久久久噜噜| av天堂在线播放| 国产成人aa在线观看| 免费看av在线观看网站| 午夜福利在线在线| 午夜福利视频1000在线观看| 成人一区二区视频在线观看| 白带黄色成豆腐渣| 我要搜黄色片| 国产精品电影一区二区三区| 国产高清激情床上av| 亚洲av电影不卡..在线观看| 又黄又爽又免费观看的视频| 俄罗斯特黄特色一大片| 看黄色毛片网站| 99在线人妻在线中文字幕| 夜夜夜夜夜久久久久| 婷婷精品国产亚洲av在线| 男女视频在线观看网站免费| 伦精品一区二区三区| 国产成人福利小说| 啦啦啦观看免费观看视频高清| 最新中文字幕久久久久| 狂野欧美白嫩少妇大欣赏| 小说图片视频综合网站| 国产高清有码在线观看视频| 欧美人与善性xxx| 国产精品精品国产色婷婷| 18+在线观看网站| 久久久久久大精品| 亚洲国产精品成人久久小说 | 看片在线看免费视频| 哪里可以看免费的av片| 熟女人妻精品中文字幕| 久久久久久九九精品二区国产| 老司机影院成人| 国产视频一区二区在线看| 18禁裸乳无遮挡免费网站照片| 搡老熟女国产l中国老女人| 色噜噜av男人的天堂激情| 精品久久久久久成人av| 日韩人妻高清精品专区| 日本欧美国产在线视频| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 黄色配什么色好看| 精品国产三级普通话版| 九九爱精品视频在线观看| 一区福利在线观看| 在线免费观看不下载黄p国产| 国产三级中文精品| 久久国内精品自在自线图片| 三级经典国产精品| 搡老妇女老女人老熟妇| 看黄色毛片网站| 我要看日韩黄色一级片| 午夜日韩欧美国产| 在线免费观看的www视频| 一本精品99久久精品77| 一进一出好大好爽视频| 久久草成人影院| 一a级毛片在线观看| 亚洲图色成人| 午夜福利高清视频| 日本撒尿小便嘘嘘汇集6| 男女啪啪激烈高潮av片| 麻豆成人午夜福利视频| 日韩欧美 国产精品| 淫秽高清视频在线观看| 欧美高清成人免费视频www| 久久久久久久久久黄片| 亚洲第一电影网av| 久久久久久伊人网av| 精品99又大又爽又粗少妇毛片| 国产伦精品一区二区三区视频9| 97超级碰碰碰精品色视频在线观看| 2021天堂中文幕一二区在线观| 干丝袜人妻中文字幕| 国产一区二区在线观看日韩| 日本三级黄在线观看| 高清日韩中文字幕在线| 人妻久久中文字幕网| 国产高清激情床上av| 一本精品99久久精品77| 亚洲自偷自拍三级| 久久久a久久爽久久v久久| 在线免费观看的www视频| 中文字幕久久专区| a级毛片a级免费在线| 国产精品不卡视频一区二区| 色在线成人网| 99久国产av精品| 美女免费视频网站| 蜜桃久久精品国产亚洲av| 无遮挡黄片免费观看| 校园春色视频在线观看| 欧美bdsm另类| 色av中文字幕| 高清日韩中文字幕在线| 国产aⅴ精品一区二区三区波| 国产精品免费一区二区三区在线| 日韩大尺度精品在线看网址| 变态另类丝袜制服| 亚洲人成网站在线观看播放| 日韩成人av中文字幕在线观看 | 成人特级av手机在线观看| 国产午夜精品论理片| 美女xxoo啪啪120秒动态图| 国产探花在线观看一区二区| 久久久久久大精品| 国产探花极品一区二区| 我要搜黄色片| 亚洲av五月六月丁香网| 俄罗斯特黄特色一大片| 又黄又爽又免费观看的视频| 一级毛片我不卡| 九九在线视频观看精品| 欧美xxxx黑人xx丫x性爽| 三级男女做爰猛烈吃奶摸视频| 欧美色视频一区免费| 夜夜看夜夜爽夜夜摸| 狂野欧美白嫩少妇大欣赏| ponron亚洲| 干丝袜人妻中文字幕| 亚洲欧美日韩无卡精品| 久久精品国产亚洲av天美| 色在线成人网| 亚洲精品456在线播放app| 久久精品国产清高在天天线| 精品久久久久久久久久免费视频| 露出奶头的视频| 国产69精品久久久久777片| av天堂在线播放| 国产精品久久久久久久久免| 久久这里只有精品中国| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 欧美日本视频| 欧美日韩乱码在线| 91狼人影院| 免费观看人在逋| 国产探花极品一区二区| 亚洲精品影视一区二区三区av| 国产亚洲精品久久久久久毛片| 老司机影院成人| 国产av在哪里看| 国产精品久久电影中文字幕| 99热网站在线观看| 日韩欧美国产在线观看| АⅤ资源中文在线天堂| 国产精品不卡视频一区二区| 日韩av在线大香蕉| 亚洲中文字幕一区二区三区有码在线看| 欧美丝袜亚洲另类| 免费在线观看影片大全网站| 国产精品一二三区在线看| 久久婷婷人人爽人人干人人爱| 可以在线观看毛片的网站| 成人漫画全彩无遮挡| 欧美最新免费一区二区三区| 午夜福利视频1000在线观看| 亚洲一区二区三区色噜噜| 亚洲成a人片在线一区二区| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 噜噜噜噜噜久久久久久91| 国产精品国产高清国产av|