• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model?

    2021-09-28 02:18:04YingJieWang王英杰JiaWeiHuang黃佳偉QuanZhiZhang張權(quán)治YuRuZhang張鈺如FeiGao高飛andYouNianWang王友年
    Chinese Physics B 2021年9期
    關(guān)鍵詞:王友英杰

    Ying-Jie Wang(王英杰),Jia-Wei Huang(黃佳偉),Quan-Zhi Zhang(張權(quán)治),Yu-Ru Zhang(張鈺如),Fei Gao(高飛),and You-Nian Wang(王友年)

    Key Laboratory of Materials Modification by Laser,Ion,and Electron Beams(Ministry of Education),School of Physics,Dalian University of Technology,Dalian 116024,China

    Keywords:negative hydrogen ion source,inductively coupled plasma,three-dimensional fluid model,magnetic field effect

    1.Introduction

    Besides industrial applications,[1]radio-frequency(RF)inductively coupled plasmas(ICPs)are also extensively used for neutral beam injection(NBI)systems developed towards fusion applications.[2–4]Since the neutralization efficiency of negative hydrogen ions is much higher than positive ions,it is of utmost importance to investigate RF negative hydrogen ion sources(NHIS),which satisfy the high-power and long pulse requirements of the future fusion devices.[5,6]The objective of the NBI prototype for China Fusion Engineering Test Reactor(CFETR)is the generation of a negative hydrogen ion beam for 400 keV of 3600 s with neutralization efficiency higher than 50%.[7,8]

    In the NHIS,magnetic filter field is usually applied to the extraction region to reduce the electron temperature,because negative ions are formed by the attachment of lowenergy electrons on vibrationally excited hydrogen molecules.Therefore,many researchers have done a lot of work on low pressure RF inductively coupled NHIS with magnetic field.Boeuf et al.used a two-dimensional(2D)fluid model to study the discharge characteristics,such as the spatial profiles of the charged species densities and the electron temperature,in an inductively coupled negative ion source.By comparing the electron temperature in cases with and without magnetic field,[9,10]they found that the introduction of the magnetic field decreased the electron density and the electron temperature in the expansion region.Furthermore,the position of the magnetic field filter in NHIS has also been proved to affect the plasma characteristics.As the magnetic filter moved towards the driver region,the penetration of the magnetic field into the driver region enhanced,leading to the significant plasma asymmetry.[11–14]Indeed,the homogeneity of the plasma parameters is very important,which determines the perveance and divergence of ion beam at each aperture of the extraction system.For those apertures with large angle of divergence of ion beam,the local breakdown happens,which affects the performance of NHIS.[15]Therefore,a three-dimensional(3D)model is necessary to investigate the asymmetry of twochamber hydrogen discharges with external magnetic field.

    Indeed,numerical simulation is an effective tool for exploring the generation and transport of plasmas in NHIS.However,in most of the models mentioned above,there exist some problems.For instance,the 3D simulation of the whole NHIS is barely reported.Besides,the stochastic electron heating played a dominant role in inductively coupled discharges when the pressure was equal to or lower than 1.33 Pa.[16]Recently,Gao et al.showed that the elastic collision frequency was lower than the stochastic collision frequency for pressures lower than 0.3 Pa,and they concluded that the stochastic heating should be taken into account when pressure was equal to or lower than 1.0 Pa.[17]Indeed,nonlocal electron kinetics induces different distributions of the plasma density at low pressures.[18]Since RF NHIS works at ultra-high power and low pressure,i.e.,below 1 Pa,the general drift-diffusion approximation of ions is no longer applicable.Especially,the ion drift velocity is much higher than the ion thermal velocity under this condition.[19]Therefore,the electron effective collision frequency and ion mobility at high E-field should be taken into account to explore the physical properties of NHIS accurately.

    In this work,a 3D fluid model is developed within COMSOL MULTIPHYSICS,with electron effective collision frequency and ion mobility at high E-field taken into account,to investigate the properties of NHIS for various discharge parameters.This paper is organized as follows.A detailed description of the 3D fluid model is given in Section 2.In Section 3,we investigate the variations of the magnetic fields,pressures and powers on the plasma parameters.Finally,a brief summary is given in Section 4.

    2.Model description

    The 3D fluid model is introduced in this section,together with the boundary conditions.Figure 1(a)exhibits the schematic diagram of an RF negative ion source,which consists of a cylindrical driver region and a rectangular diffusion region.The diameter of the driver region is 28 cm and the height is 14 cm.The 5 turns RF copper wire coil,which wounds around the tube,has a diameter of 1 cm.In order to avoid the anomalous skin effect at low pressure and high frequency,the discharge is driven by a 2-MHz RF source.[20–22]The expansion region is a cuboid,and the length,width and height are 60 cm,50 cm,and 25 cm,respectively.The permanent magnets are arranged in a row along the x axis at the bottom of the expansion region,as shown in Fig.1(a).Figure 1(b)shows the xz-plane at y=25 cm.The red lines a and b represent the source centerline(i.e.,x=30 cm and y=25 cm)and the transverse line at the bottom(i.e.,z=24 cm and y=25 cm),respectively.

    Fig.1.Schematic diagram of the NHIS(a),and the xz-plane at y=25 cm(b).

    Table 1.Gas phase reactions considered in this work.

    The simulations are performed in H2discharges,with 8 different species taken into account,i.e.,electrons,H+,H+2,and H+3ions,ground-state H2molecules and H atoms,as well as excited-state H(n=2)and H(n=3)atoms.The gas phase reactions considered in the model are listed in Table 1,which includes elastic collision,excitation,ionization,dissociation,recombination,and so on.

    2.1.Fluid model

    The fluid model including continuity equations calculates the densities for various species,and the drift-diffusion approximation equations get the electron and ion fluxes.Besides,only the energy balance equation for electrons is included,because the temperatures for ions and neutral particles are fixed at 600 K.[12]

    The electron behavior is described by the continuity equation

    the drift-diffusion approximation equation

    and the energy balance equation

    The flux of energy Qeis given by

    Bx,By,and Bzare the external magnetic field in x,y,and z directions,μe0and De0are the electron mobility and diffusion coefficient without external magnetic field,

    Here,meis the electron mass,e is the elementary charge.νeff=νm+νstocis the effective collision frequency,and the elastic collision frequencyνmand stochastic collision frequencyνstocare expressed as[19,25]

    Here,kelis the rate coefficient of elastic collision and Nnis the density of H2molecules.δeffis the effective skin depth of the RF electromagnetic field

    vthand c are the electron thermal velocity and the speed of light,ωandωpeare the RF angular frequency and the electron plasma frequency.

    The behaviors of heavy species,i.e.,ions and neutral species,are described by continuity equations

    where niis the ion density,and Siis the ion source term.The ion flux jiis expressed as

    In the high E-field case,the expression of ion mobility is[26]

    Here,miis the ion mass,σiis the cross section characterizing the ion–neutral particles interaction,qiis the ion charge,and Diis the ion diffusion coefficient.

    For neutral particles,the flux jkis

    where nkand Dkare the density and diffusion coefficient for neutrals.

    The electrostatic field is described by Poisson’s equation

    whereε0is the vacuum permittivity andφis the electric potential.Besides,the electrostatic field can be given E=??φ.

    2.2.Electromagnetic model

    In the electromagnetic model,the magnetic vector potential A is calculated in the frequency domain instead of solving the Maxwell equations directly

    As mentioned above,the power absorption density Ptotis described as

    2.3.Magnetostatics model

    In the magnetostatics model,the magnetic field intensity H is expressed by magnetic scalar potential

    The relationship of magnetic scalar potential Vmand magnetization intensity M is

    2.4.Boundary conditions

    The boundary conditions of jeand Qeat all walls are as follows:

    Here,Θis the reflection coefficient of electrons.[27]The boundary conditions of jiand jkat the walls are[12]

    where Tiare Tkare the ion temperature and neutral particle temperature,kBis the Boltzmann constant,γfis the sticking coefficients of ions and neutral particles at the wall,and mkis neutral particle mass.Furthermore,the switching functionsγidepends on the product of n and E.[28]

    In addition,the electric potential and the tangential component of the inductive electric field n×A equal zero at the walls.

    3.Results and discussion

    The model described in Section 2 is developed within COMSOL MULTIPHYSICS and three solvers are included.First,the Stationary solver is implemented to calculate the magnetostatic field;then,the Coil Geometry Analysis solver is applied to analyze the structure of the spiral coil;finally,the Frequency–Transient solver is used to solve the electromagnetic field and plasma properties.The numerical environment is based on the finite element method,which allows the use of mesh grids of triangle in boundaries and tetrahedron in volume.In the volume,the minimum element size of 0.1 cm is applied near the boundaries,and boundary layers are also adopted to get a dense mesh there.

    Fig.2.Axial distributions of the electron density(a)and electron temperature(b)at 40 kW,0.6 Pa,obtained by using the low E-field Langevin mobility(red lines)and high E-field ion mobility(blue lines).

    3.1.Magnetic field effect

    The influence of the remanent magnetization of permanent magnets(RMPM)is illustrated by comparing the spatial distributions of the magnetic field,electron density and electron temperature along the axial direction(line a in Fig.1(b))and transverse direction(line b in Fig.1(b))obtained at different magnetic field strengths,as shown in Fig.3.It is clear that the magnetic field almost increases monotonically along the axial direction(Fig.3(a)),and the transverse distribution exhibits a maximum in the center(Fig.3(b)).Besides,the magnitude declines with reduced RMPM,i.e.,the maximum varies from 70 Gs(1 Gs=10?4T)at RMPM of 21 kGs to 5 Gs at RMPM of 2 kGs.

    In the case without magnetic field(i.e.,0 kGs),the electron density first increases and then decreases along the axial direction.When the magnetic field is applied,a similar axial distribution is observed,as shown in Fig.3(c),except that the value first increases and then decreases with magnetic field(i.e.,the electron density is the highest at RMPM of 6 kGs).Besides,the maximum of the electron density shifts slightly to the driver region at higher RMPM.From Fig.3(d),it is clear that the electron density at the bottom of the expansion region is the highest at RMPM of 2 kGs,and the maximum shifts to lower x direction when the magnetic field is applied.

    Fig.3.Axial distributions(first column)and transverse distributions of the magnetic field(first row),electron density(second row),and electron temperature(third row)for various RMPM at 0.6 Pa,40 kW.

    Fig.4.Spatial distributions of the electron density in the xz-plane for various RMPM:(a)RMPM=0 kGs,(b)RMPM=2 kGs,(c)RMPM=6 kGs,(d)RMPM=12 kGs,(e)RMPM=18 kGs,(f)RMPM=21 kGs,at 40 kW,0.6 Pa.

    When the RMPM is less than 2 kGs,the electron temperature along the source centerline first rises slightly,and then it declines gradually from the driver region to the expansion region(see Fig.3(e)).However,the electron temperature decreases monotonically when the RMPM is higher than 6 kGs.Besides,when the magnetic field is introduced,the electron temperature in the driver region becomes lower,and the decline in the expansion region is more obvious.At the bottom of the expansion region,the electron temperature exhibits a parabolic profile.With the rise of the RMPM,the asymmetry of the electron temperature is enhanced,and the electrons are cooled effectively.For instance,the electron temperature decreases from about 3 eV–4 eV in the case without magnetic field to the expected value of about 1 eV–2 eV with the RMPM higher than 12 kGs.[30]

    In order to illustrate the magnetic field effect on the plasma parameters in the 3D chamber clearly,the spatial distributions of the electron density and electron temperature are presented in the xz-plane(y=25 cm)and yz-plane(x=30 cm),respectively.First,figure 4 shows the spatial distribution of the electron density with different RMPM in the xzplane at 40 kW,0.6 Pa.As we mentioned above,the electron density first rises and then reduces with increased RMPM,and the maximum moves upwards simultaneously.For instance,when the RMPM is 6 kGs,the magnetic field is about 20 Gs at the bottom center of the expansion region,and the maximum electron density is the highest,meanwhile,the peak region is the largest.In addition,the asymmetry of the electron density becomes pronounced at higher RMPM,due to the deeper penetration of magnetic field.[12]

    The spatial distributions of the electron temperature are presented in Fig.5.It is clear that the maximum of the electron temperature first decreases and then increases with RMPM,which is different from the trend of the electron density.Besides,the minimum of the electron temperature at the bottom of the expansion region reduces first and then almost keeps constant.In the absence of the external magnetic field,the electron temperature distribution in the xz-plane(y=25 cm)is symmetric(Fig.5(a)),and the asymmetry becomes more remarkable with the enhancement of the magnetic field.For instance,at RMPM of 21 kGs,the electron temperature at the left side of the driver region is higher,i.e.,up to 9 eV(Fig.5(f)),but it is only 7 eV at the right side wall.

    Fig.5.Spatial distributions of the electron temperature in the xz-plane for various RMPM:(a)RMPM=0 kGs,(b)RMPM=2 kGs,(c)RMPM=6 kGs,(d)RMPM=12 kGs,(e)RMPM=18 kGs,(f)RMPM=21 kGs,at 40 kW,0.6 Pa.

    Fig.6.Spatial distributions of the electron density in the yz-plane for various RMPM:(a)RMPM=0 kGs,(b)RMPM=2 kGs,(c)RMPM=6 kGs,(d)RMPM=12 kGs,(e)RMPM=18 kGs,(f)RMPM=21 kGs,at 40 kW,0.6 Pa.

    Fig.7.Spatial distributions of the electron temperature in the yz-plane for various RMPM:(a)RMPM=0 kGs,(b)RMPM=2 kGs,(c)RMPM=6 kGs,(d)RMPM=12 kGs,(e)RMPM=18 kGs,(f)RMPM=21 kGs,at 40 kW,0.6 Pa.

    Figure 6 represents variations of the electron density with RMPM in the yz-plane at x=30 cm of the chamber.It is clear that the electrons drift to both sides of the y direction when the magnetic field is introduced,and the maximum of the electron density shifts to the driver region.Besides,the electron density distribution in the yz-plane is always symmetric whether the magnetic field is applied or not,which is different from the results in the xz-plane.

    As shown in Fig.7,the electron temperature exhibits different profiles by taken the external magnetic field into account.For instance,in the case without the magnetic field,the electron temperature is about 4 eV throughout the expansion region.However,when the magnetic field is applied,the electron temperature at the bottom center of the expansion region decreases rapidly,especially at higher RMPM cases.

    3.2.Pressure effect

    At a fixed power of 40 kW,it is clear that the electron density increases significantly with gas pressure,as shown in Fig.8,i.e.,the maximum value is about 9.4×1017m?3at 0.3 Pa,and it increases dramatically to 6.58×1018m?3at 2 Pa.In addition,the maximum of the electron density moves upwards with pressure,i.e.,from the driver–expansion interface to the driver region.This is because the mean free path is larger at low pressures,so the electrons could induce substantial ionization in the expansion region,although they are mainly heated in the driver region.[13]

    From Fig.9,it is shown that the electron temperature decreases rapidly with pressure,due to the higher collision frequency and more energy loss at high pressures.Furthermore,the asymmetry of the electron temperature distribution at low pressure is more obvious,i.e.,the magnitude is about 15.3 eV at the left sidewall of the driver chamber at 0.3 Pa,which is about 1.5 times higher than the value at the right sidewall.This is because more powers are deposited at the left sidewall at low pressures,due to the influence of the magnetic field.Indeed,the collision frequency is lower at low pressure,which leads to the higher non-pivot element in the plasma conductivity tensor(Eqs.(23)and(24)),giving rise to the pronounced influence of the magnetic field on the plasma properties.

    Fig.8.Spatial distributions of the electron density in the xz-plane for various pressures:(a)0.3 Pa,(b)0.6 Pa,(c)1 Pa,(d)2 Pa,at RMPM=21 kGs,40 kW.

    Fig.9.Spatial distributions of the electron temperature in the xz-plane for various pressures:(a)0.3 Pa,(b)0.6 Pa,(c)1 Pa,(d)2 Pa,at RMPM=21 kGs,40 kW.

    Fig.10.Spatial distributions of the electron density in the xz-plane for various powers:(a)40 kW,(b)60 kW,(c)80 kW,(d)100 kW,at RMPM=21 kGs,0.6 Pa.

    3.3.Power effect

    The influence of the RF powers(40 kW–100 kW)on the plasma properties is studied at 0.6 Pa and RMPM of 21 kGs.Although the electric field becomes stronger as power increases,the spatial distribution is almost unchanged,thus the electron density has similar profile for various powers.Besides,the electron density increases obviously with power,i.e.,the maximum value is about 2.26×1018m?3at 40 kW,and it increases to 5.54×1018m?3at 100 kW.

    Fig.11.Spatial distributions of the electron temperature in the xz-plane for various powers:(a)40 kW,(b)60 kW,(c)80 kW,(d)100 kW,at RMPM=21 kGs,0.6 Pa.

    The spatial distributions of the electron temperature at various powers are presented in Fig.11.As we mentioned above,the electron temperature exhibits a maximum at the left sidewall of the driver region,followed by a second peak at the right sidewall.In the expansion region,the electron temperature decreases strongly,i.e.,several eV lower,because there is no heating source.Indeed,the maximum value is about 9 eV in the driver region,whereas the minimum value is only about 1.3 eV in the expansion region.As power increases,the electron temperature at the right sidewall of the driver region increases slightly,and the area of the minimum region in the expansion chamber becomes larger.

    4.Conclusion

    In this work,a 3D fluid model,with electron effective collision frequency and high E-field ion mobility taken into account,is developed to investigate the inductively coupled H2discharges used for CFETR at low pressures and high powers.The results indicate that by using the low E-field ion mobility,the electron density is about four times lower than that in the case with high E-field mobility,whereas the electron temperature is several times higher.

    In addition,the spatial distributions of the electron density and electron temperature are also illustrated under different magnetic fields.The results indicate that the application of magnetic field leads to different distributions of the plasma parameters in the xz-plane and yz-plane.In addition,since the magnetic field results in asymmetric power deposition,the electron temperature in the xz-plane at the left side wall of the driver region is much higher than that at the right sidewall.Besides,the asymmetry of the electron temperature and electron density becomes more pronounced with increasing RMPM,due to the deeper penetration of the magnetic field in the chamber.The distribution of the plasma parameters in the yz-plane is always symmetric regardless of whether the magnetic field is applied or not,due to the position of the permanent magnets.Meanwhile,the maximum of the electron density appears at RMPM of 6 kGs,and the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant when the RMPM is higher than 12 kGs.Considering the lower electron temperature and worse asymmetry with increasing RMPM,12 kGs–18 kGs may be the best option under the discharge conditions investigated in this paper.

    Moreover,the plasma characteristics are also investigated at various pressures and powers,with the application of magnetic field.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum shifting from the expansion region to the driver region.Whereas,the electron temperature decreases with pressure,and the asymmetry of the electron temperature becomes less pronounced.Indeed,in the pressure range 0.3 Pa–1 Pa,the asymmetry of the plasma parameters could not be ignored,and this affects the local breakdown of multi-aperture extraction system.Therefore,it is very important to improve the symmetry,which will be explored in the future work.Besides,as power increases,profiles of the electron density and temperature only change slightly.

    猜你喜歡
    王友英杰
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    急性子的媽媽
    Multi-layer structure formation of relativistic electron beams in plasmas
    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor
    Probability density and oscillating period of magnetopolaron in parabolic quantum dot in the presence of Rashba effect and temperature*
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma?
    Observe modern design works and taste traditional Chinese culture
    Special Property of Group Velocity for Temporal Dark Soliton?
    亚洲三区欧美一区| 欧美国产日韩亚洲一区| 91成年电影在线观看| 精品久久久久久,| 欧美精品亚洲一区二区| 波多野结衣巨乳人妻| 欧洲精品卡2卡3卡4卡5卡区| 午夜精品久久久久久毛片777| 黄频高清免费视频| 国产精品一区二区三区四区久久 | 国产精品一区二区精品视频观看| 中文字幕久久专区| 特大巨黑吊av在线直播 | 国产精品乱码一区二三区的特点| 成人18禁高潮啪啪吃奶动态图| 久久这里只有精品19| 亚洲aⅴ乱码一区二区在线播放 | 国产高清激情床上av| 午夜视频精品福利| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 天天躁狠狠躁夜夜躁狠狠躁| 又黄又爽又免费观看的视频| 9191精品国产免费久久| 久久国产精品人妻蜜桃| 99久久综合精品五月天人人| 中文字幕人妻熟女乱码| 麻豆av在线久日| 欧美激情高清一区二区三区| 啦啦啦 在线观看视频| 日韩欧美一区二区三区在线观看| 97碰自拍视频| 老司机靠b影院| 久久香蕉精品热| 99国产精品一区二区三区| 人妻丰满熟妇av一区二区三区| 国产久久久一区二区三区| 很黄的视频免费| 制服诱惑二区| 欧美黑人巨大hd| 亚洲九九香蕉| 国产一区二区激情短视频| 美女高潮喷水抽搐中文字幕| 一a级毛片在线观看| 精品电影一区二区在线| 妹子高潮喷水视频| 欧美日韩精品网址| 一本大道久久a久久精品| 国产亚洲精品综合一区在线观看 | x7x7x7水蜜桃| 麻豆成人午夜福利视频| 99久久无色码亚洲精品果冻| 国产伦人伦偷精品视频| videosex国产| 亚洲中文av在线| 黄片小视频在线播放| 久久亚洲精品不卡| 国产成人系列免费观看| 91字幕亚洲| 欧美三级亚洲精品| 久久香蕉精品热| 老司机在亚洲福利影院| 欧美绝顶高潮抽搐喷水| 成人精品一区二区免费| 成人18禁高潮啪啪吃奶动态图| 午夜福利成人在线免费观看| 老司机福利观看| 女人被狂操c到高潮| 夜夜夜夜夜久久久久| 国产精品美女特级片免费视频播放器 | 久久天躁狠狠躁夜夜2o2o| 精品国产乱码久久久久久男人| 91麻豆精品激情在线观看国产| 国产主播在线观看一区二区| 国产真人三级小视频在线观看| 久久国产乱子伦精品免费另类| 麻豆久久精品国产亚洲av| 一边摸一边做爽爽视频免费| 侵犯人妻中文字幕一二三四区| 欧美国产精品va在线观看不卡| 精品卡一卡二卡四卡免费| 精品国产乱子伦一区二区三区| 午夜久久久久精精品| 色av中文字幕| 特大巨黑吊av在线直播 | 国产高清视频在线播放一区| 精品少妇一区二区三区视频日本电影| 亚洲最大成人中文| 午夜日韩欧美国产| 正在播放国产对白刺激| 国产精品 欧美亚洲| 高清在线国产一区| 国产激情久久老熟女| 夜夜夜夜夜久久久久| 国产日本99.免费观看| 可以在线观看的亚洲视频| 最近在线观看免费完整版| 一边摸一边抽搐一进一小说| 99久久无色码亚洲精品果冻| 99国产精品一区二区蜜桃av| 午夜亚洲福利在线播放| 久久久精品欧美日韩精品| 女生性感内裤真人,穿戴方法视频| 天堂动漫精品| 国产一卡二卡三卡精品| 黄色女人牲交| 亚洲片人在线观看| 草草在线视频免费看| 男女下面进入的视频免费午夜 | 国产三级黄色录像| 欧美黑人欧美精品刺激| 黄色女人牲交| 国产91精品成人一区二区三区| 他把我摸到了高潮在线观看| 国产av一区二区精品久久| 国产又色又爽无遮挡免费看| 国产又爽黄色视频| 亚洲片人在线观看| 午夜福利一区二区在线看| 国产精品,欧美在线| 亚洲精品色激情综合| 免费电影在线观看免费观看| 国产成年人精品一区二区| 精品乱码久久久久久99久播| 黄片小视频在线播放| 欧美黑人欧美精品刺激| 长腿黑丝高跟| 久久久国产精品麻豆| 女性生殖器流出的白浆| 女生性感内裤真人,穿戴方法视频| 亚洲熟妇熟女久久| 波多野结衣高清作品| 久久久水蜜桃国产精品网| 国产精品,欧美在线| 亚洲男人天堂网一区| 久久中文看片网| 国产精品二区激情视频| 亚洲熟妇熟女久久| 成人亚洲精品一区在线观看| 久久久久久国产a免费观看| 亚洲av电影在线进入| 久久久久久大精品| 国产精品自产拍在线观看55亚洲| 日本a在线网址| a级毛片在线看网站| 在线观看午夜福利视频| a在线观看视频网站| 欧美成狂野欧美在线观看| bbb黄色大片| 国产区一区二久久| 美女扒开内裤让男人捅视频| 中文在线观看免费www的网站 | √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 亚洲 欧美 日韩 在线 免费| 满18在线观看网站| 国产一区二区在线av高清观看| av在线天堂中文字幕| 这个男人来自地球电影免费观看| 久久性视频一级片| 久久人妻福利社区极品人妻图片| 免费在线观看完整版高清| 在线永久观看黄色视频| 久久中文看片网| 国产精品九九99| 黄频高清免费视频| 嫁个100分男人电影在线观看| 免费在线观看黄色视频的| 国产单亲对白刺激| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 国产亚洲精品综合一区在线观看 | 成熟少妇高潮喷水视频| 91大片在线观看| 欧美乱码精品一区二区三区| 老司机在亚洲福利影院| 国产成人欧美| 波多野结衣av一区二区av| 久久精品国产亚洲av香蕉五月| 中文字幕人妻丝袜一区二区| 欧美日韩中文字幕国产精品一区二区三区| 精品国产乱码久久久久久男人| 色播亚洲综合网| 久久午夜亚洲精品久久| xxxwww97欧美| 中文在线观看免费www的网站 | 国产aⅴ精品一区二区三区波| 日日夜夜操网爽| 无限看片的www在线观看| 中文字幕人妻熟女乱码| 国产成人欧美在线观看| 久久人妻av系列| 欧美大码av| 久久久久久久久中文| 免费在线观看视频国产中文字幕亚洲| 男女那种视频在线观看| 香蕉久久夜色| 少妇 在线观看| 亚洲专区中文字幕在线| 亚洲自拍偷在线| 久久精品国产清高在天天线| 波多野结衣高清作品| 一夜夜www| 91国产中文字幕| 国产亚洲欧美98| 欧美大码av| 久久精品国产综合久久久| 婷婷精品国产亚洲av| 国产午夜福利久久久久久| 久久国产精品男人的天堂亚洲| www.999成人在线观看| 久久人妻福利社区极品人妻图片| 在线观看免费日韩欧美大片| 欧美中文日本在线观看视频| 久久久久久久久免费视频了| 亚洲自偷自拍图片 自拍| 精品国产超薄肉色丝袜足j| 精品国产美女av久久久久小说| 日韩三级视频一区二区三区| 老鸭窝网址在线观看| 精品欧美国产一区二区三| 欧美另类亚洲清纯唯美| 亚洲精品av麻豆狂野| 久热爱精品视频在线9| 欧美+亚洲+日韩+国产| 黄色女人牲交| 俄罗斯特黄特色一大片| 久久久久九九精品影院| 三级毛片av免费| 成人18禁在线播放| 国产成人精品久久二区二区免费| 欧美不卡视频在线免费观看 | 日本熟妇午夜| 老汉色∧v一级毛片| 国产亚洲精品第一综合不卡| 免费电影在线观看免费观看| 欧美性猛交╳xxx乱大交人| a级毛片在线看网站| 国产极品粉嫩免费观看在线| 亚洲国产中文字幕在线视频| 淫妇啪啪啪对白视频| 岛国在线观看网站| 欧美日韩黄片免| 村上凉子中文字幕在线| 国产免费av片在线观看野外av| 免费在线观看完整版高清| 丝袜美腿诱惑在线| 国产高清有码在线观看视频 | 欧美久久黑人一区二区| 一级毛片女人18水好多| 超碰成人久久| 大型黄色视频在线免费观看| 日韩欧美一区视频在线观看| 视频区欧美日本亚洲| 亚洲国产欧美一区二区综合| 在线观看免费午夜福利视频| 日本三级黄在线观看| 欧美乱码精品一区二区三区| 久久香蕉精品热| 国产精品久久久av美女十八| 老汉色av国产亚洲站长工具| 大型av网站在线播放| 国产国语露脸激情在线看| 高清在线国产一区| 欧美乱码精品一区二区三区| 亚洲中文字幕日韩| 无遮挡黄片免费观看| 男女床上黄色一级片免费看| 99国产综合亚洲精品| 久久九九热精品免费| 人妻久久中文字幕网| 精品久久久久久久人妻蜜臀av| 亚洲三区欧美一区| 国产又爽黄色视频| 哪里可以看免费的av片| 免费搜索国产男女视频| bbb黄色大片| 国产在线精品亚洲第一网站| 手机成人av网站| av中文乱码字幕在线| 亚洲精品色激情综合| 亚洲精华国产精华精| 夜夜夜夜夜久久久久| 怎么达到女性高潮| 日本成人三级电影网站| 波多野结衣av一区二区av| 欧美激情极品国产一区二区三区| 精品久久久久久久末码| 可以在线观看的亚洲视频| 精品久久久久久久久久久久久 | 91在线观看av| 亚洲中文字幕日韩| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 欧美激情高清一区二区三区| 18禁裸乳无遮挡免费网站照片 | 亚洲成国产人片在线观看| 亚洲在线自拍视频| 久久精品91蜜桃| 一区福利在线观看| 免费观看人在逋| 免费在线观看黄色视频的| 午夜久久久久精精品| 亚洲专区字幕在线| 成人国产一区最新在线观看| 99精品欧美一区二区三区四区| 母亲3免费完整高清在线观看| 久久久久国产一级毛片高清牌| 亚洲国产日韩欧美精品在线观看 | 精品高清国产在线一区| 欧美三级亚洲精品| 国产蜜桃级精品一区二区三区| 最近最新中文字幕大全免费视频| 国产亚洲欧美98| 精品卡一卡二卡四卡免费| 亚洲一区二区三区色噜噜| 久热这里只有精品99| 少妇裸体淫交视频免费看高清 | 国产欧美日韩一区二区三| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 99精品在免费线老司机午夜| 国产亚洲av高清不卡| 精华霜和精华液先用哪个| 久久久久久大精品| 久久香蕉激情| 最新美女视频免费是黄的| 亚洲自偷自拍图片 自拍| 97人妻精品一区二区三区麻豆 | 欧美黑人巨大hd| 欧美日韩亚洲国产一区二区在线观看| 在线十欧美十亚洲十日本专区| 亚洲国产精品sss在线观看| 国产亚洲精品久久久久5区| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 一进一出好大好爽视频| 禁无遮挡网站| 国产99久久九九免费精品| 不卡一级毛片| 久久久水蜜桃国产精品网| 国产麻豆成人av免费视频| 99久久99久久久精品蜜桃| 91成人精品电影| 18禁美女被吸乳视频| 亚洲国产中文字幕在线视频| 国产精品免费视频内射| 岛国视频午夜一区免费看| 一区二区三区精品91| 亚洲欧美日韩高清在线视频| 国内少妇人妻偷人精品xxx网站 | 好看av亚洲va欧美ⅴa在| 18禁黄网站禁片免费观看直播| 成人午夜高清在线视频 | 亚洲精品一区av在线观看| 黄频高清免费视频| www.精华液| 中文亚洲av片在线观看爽| 国产成年人精品一区二区| 免费在线观看黄色视频的| 9191精品国产免费久久| 亚洲成人精品中文字幕电影| 欧美zozozo另类| 欧美日韩亚洲国产一区二区在线观看| 国产乱人伦免费视频| 丰满的人妻完整版| 久久天躁狠狠躁夜夜2o2o| 国产在线精品亚洲第一网站| 色老头精品视频在线观看| 日韩欧美三级三区| 亚洲性夜色夜夜综合| 日本 av在线| 免费av毛片视频| 黑丝袜美女国产一区| 99热6这里只有精品| 午夜老司机福利片| 成人18禁高潮啪啪吃奶动态图| 久久国产精品影院| 曰老女人黄片| 99在线视频只有这里精品首页| 日本一区二区免费在线视频| 精品免费久久久久久久清纯| 亚洲av电影在线进入| 日本a在线网址| 国产1区2区3区精品| 成年免费大片在线观看| 又大又爽又粗| 午夜福利免费观看在线| 国产精品久久久久久人妻精品电影| cao死你这个sao货| 成人国语在线视频| 欧美国产日韩亚洲一区| xxx96com| 一级a爱视频在线免费观看| 亚洲人成网站在线播放欧美日韩| 一进一出抽搐gif免费好疼| 巨乳人妻的诱惑在线观看| 亚洲熟妇中文字幕五十中出| 中亚洲国语对白在线视频| 久久久久久亚洲精品国产蜜桃av| 精品第一国产精品| 岛国在线观看网站| 久久久久久九九精品二区国产 | 香蕉丝袜av| 丝袜人妻中文字幕| 亚洲一区高清亚洲精品| 日韩大尺度精品在线看网址| 国产免费男女视频| 国内少妇人妻偷人精品xxx网站 | 啦啦啦免费观看视频1| 亚洲熟妇中文字幕五十中出| 久久亚洲真实| x7x7x7水蜜桃| 看免费av毛片| 757午夜福利合集在线观看| 男人舔奶头视频| 久久精品国产清高在天天线| 男女之事视频高清在线观看| 久久久国产成人免费| 天堂影院成人在线观看| 色婷婷久久久亚洲欧美| 久久久久久九九精品二区国产 | 欧美绝顶高潮抽搐喷水| 国内少妇人妻偷人精品xxx网站 | 亚洲中文字幕一区二区三区有码在线看 | 久久亚洲精品不卡| 中文字幕另类日韩欧美亚洲嫩草| 日韩大码丰满熟妇| 亚洲国产中文字幕在线视频| 亚洲国产日韩欧美精品在线观看 | 日本一本二区三区精品| 国产精品乱码一区二三区的特点| 不卡一级毛片| 巨乳人妻的诱惑在线观看| 亚洲av美国av| 国产精品av久久久久免费| 青草久久国产| 99热这里只有精品一区 | 欧美一区二区精品小视频在线| av超薄肉色丝袜交足视频| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 欧美一级a爱片免费观看看 | 88av欧美| 国产精品,欧美在线| 久久香蕉国产精品| 国产欧美日韩一区二区三| 久久久久久久午夜电影| 亚洲一码二码三码区别大吗| 亚洲五月婷婷丁香| 国产v大片淫在线免费观看| 欧美大码av| 少妇 在线观看| 一a级毛片在线观看| 18禁美女被吸乳视频| 国产精品美女特级片免费视频播放器 | 欧美日韩中文字幕国产精品一区二区三区| 美女国产高潮福利片在线看| 人人澡人人妻人| 久久精品影院6| 天天躁狠狠躁夜夜躁狠狠躁| 村上凉子中文字幕在线| 曰老女人黄片| 9191精品国产免费久久| 免费在线观看视频国产中文字幕亚洲| 国内精品久久久久精免费| 免费一级毛片在线播放高清视频| 免费在线观看完整版高清| 88av欧美| 国产亚洲欧美在线一区二区| 最近最新免费中文字幕在线| 满18在线观看网站| 天堂√8在线中文| av在线天堂中文字幕| 嫩草影院精品99| 1024视频免费在线观看| 一级作爱视频免费观看| 99国产精品一区二区蜜桃av| 首页视频小说图片口味搜索| 男人的好看免费观看在线视频 | 亚洲成人国产一区在线观看| 亚洲片人在线观看| 国产一区在线观看成人免费| 亚洲国产精品sss在线观看| 91成年电影在线观看| 黄频高清免费视频| 久久午夜亚洲精品久久| 国产片内射在线| 精品福利观看| 日本五十路高清| av欧美777| 国产成人欧美| 国产91精品成人一区二区三区| 女生性感内裤真人,穿戴方法视频| 国产成人精品久久二区二区91| 久久人妻福利社区极品人妻图片| 成在线人永久免费视频| 1024手机看黄色片| 国产精品亚洲av一区麻豆| 久久伊人香网站| 国产亚洲欧美98| 国产亚洲欧美98| 国产亚洲精品av在线| 黑人巨大精品欧美一区二区mp4| 国产真人三级小视频在线观看| 黄频高清免费视频| 性欧美人与动物交配| 免费看十八禁软件| 一本久久中文字幕| 久久精品国产99精品国产亚洲性色| 一级毛片精品| 国产99白浆流出| 国产99白浆流出| 国产三级在线视频| 黑人操中国人逼视频| 亚洲熟女毛片儿| 久久天躁狠狠躁夜夜2o2o| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久久国产一级毛片高清牌| 婷婷精品国产亚洲av在线| 日韩精品免费视频一区二区三区| 国产黄色小视频在线观看| 免费在线观看亚洲国产| 黄片播放在线免费| 久久久久久久久中文| 亚洲中文字幕一区二区三区有码在线看 | 俺也久久电影网| 成人三级做爰电影| 人人澡人人妻人| 黄色 视频免费看| 亚洲av日韩精品久久久久久密| 欧美人与性动交α欧美精品济南到| 黄色毛片三级朝国网站| 国产三级在线视频| 免费看美女性在线毛片视频| 久久草成人影院| 久久久久国产精品人妻aⅴ院| 草草在线视频免费看| 亚洲成av人片免费观看| 看黄色毛片网站| 精品久久久久久,| 亚洲成av人片免费观看| 欧美日韩黄片免| 欧美色欧美亚洲另类二区| 午夜免费成人在线视频| 两性夫妻黄色片| 韩国av一区二区三区四区| 久久久久久大精品| 午夜久久久久精精品| 波多野结衣av一区二区av| 国产高清videossex| 国产又色又爽无遮挡免费看| 熟女少妇亚洲综合色aaa.| 12—13女人毛片做爰片一| 无人区码免费观看不卡| 自线自在国产av| 日日干狠狠操夜夜爽| 亚洲一区高清亚洲精品| 激情在线观看视频在线高清| 国产成人系列免费观看| 午夜免费观看网址| 在线观看免费日韩欧美大片| 正在播放国产对白刺激| 日韩中文字幕欧美一区二区| 亚洲成人国产一区在线观看| 操出白浆在线播放| 国内久久婷婷六月综合欲色啪| 日本成人三级电影网站| 桃红色精品国产亚洲av| 精品一区二区三区四区五区乱码| 精品国产国语对白av| 久久精品国产亚洲av香蕉五月| 两个人视频免费观看高清| 国产人伦9x9x在线观看| 自线自在国产av| 麻豆av在线久日| 亚洲成人免费电影在线观看| 欧美黑人巨大hd| 欧美性长视频在线观看| 久久人妻福利社区极品人妻图片| 精品国内亚洲2022精品成人| 国产伦人伦偷精品视频| 亚洲午夜精品一区,二区,三区| 女生性感内裤真人,穿戴方法视频| 看片在线看免费视频| 亚洲男人天堂网一区| 婷婷丁香在线五月| 丁香欧美五月| 黄频高清免费视频| 白带黄色成豆腐渣| 欧美日韩一级在线毛片| 不卡一级毛片| 成人亚洲精品av一区二区| 草草在线视频免费看| 午夜日韩欧美国产| 欧美黑人精品巨大| 男人的好看免费观看在线视频 | 嫩草影院精品99| 精品不卡国产一区二区三区| 亚洲人成网站在线播放欧美日韩| 成年免费大片在线观看| 亚洲精品色激情综合| 一本精品99久久精品77| 久久人妻福利社区极品人妻图片| 久久青草综合色| 人人妻人人澡欧美一区二区| 成年人黄色毛片网站| 亚洲精品国产区一区二| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看 | 欧美性猛交╳xxx乱大交人| 欧美中文综合在线视频| 淫秽高清视频在线观看| 亚洲av片天天在线观看| 亚洲精品久久国产高清桃花|