• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer structure formation of relativistic electron beams in plasmas

    2022-03-10 03:49:40XiaojuanWANG王曉娟ZhanghuHU胡章虎andYounianWANG王友年
    Plasma Science and Technology 2022年2期
    關(guān)鍵詞:王友

    Xiaojuan WANG(王曉娟),Zhanghu HU(胡章虎)and Younian WANG(王友年)

    School of Physics,Dalian University of Technology,Dalian 116024,People's Republic of China

    Abstract A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.

    Keywords:multi-layer structure,beam phase space,relativistic electron beam,plasma based beam dump,PIC

    1.Introduction

    The interaction of relativistic electron beams with plasmas has gained an intensity level of attention in various applications,such as high energy density physics[1],inertial confinement fusion[2]and plasma-based accelerators(PBAs)[3-11].In the fast ignition,the ignition is achieved by depositing energy into the dense core with the relativistic electron beams.PBA[3]was firstly proposed by Tajima in 1979.By employing a high intensity laser or relativistic charged particle beam as the driver,PBA schemes are categorized into two kinds:laser wakefield acceleration[3,5,9]and plasma wakefield acceleration[4,5,12].The acceleration gradients of PBA are currently able to achieve an order of several hundred GeV m-1,much larger than those produced by conventional radio frequency accelerators.With continuous progress in high power laser technology,multi-GeV energy gain of electrons is achievable over a short distance in the experiments[9].Meanwhile,a safety design of the beam dump[13-16]is urgently acquired to decelerate particles into a safe energy region without radiation.Thus,based on the collective electromagnetic field of short particle bunches in the plasma,plasma-based beam dump has recently received tremendous interest to develop safer and greener facilities.

    Many simulations and analytical works[13-18]have been carried out to investigate plasma-based beam dump.The strong collective stopping of few-fs electron beams inside mm-scale underdense plasma was firstly demonstrated in two independent experiments[19].It is shown that the plasma beam dump can be the most straightforward application for absorbing the kinetic energy of the EuPRAXIA beam over short distance[13-16].Generally,two types of plasma beam dump(passive beam dump and active beam dump)are considered.In the passive beam dump,relativistic electron beam travels through the undisturbed plasma and achieves the deceleration by beam self-driven wakefield.Tailored plasmadensity profiles in the passive scheme are demonstrated to improve the beam-energy loss[13].

    In the active scheme,relativistic electron beam propagates with the wake excited by laser pulse and then disposes large energy in the plasma due to the self-excited and laser-driven wakefields.The plasma-based beam dump can greatly improve the overall compactness of PBA and reduces high-energy radiation caused by scattering in the material beam dump.

    It should be noted that in actual applications,the energetic electron beams might be defocused and have a radius much larger than plasma skin depth in a plasma-based beam dump.In this work,we consider in detail the density evolution and energy deposition of relativistic electron beams with large radius(larger than plasma skin depth)in plasmas and mainly focus on the beam phase space evolution and energy deposition.Multi-layer structures in beam phase space are clearly observed.The twostream instability(TSI)with short electron beam is limited in the present simulations.The current filamentation instability(CFI)breaks up the relativistic electron beam into small filaments and causes large energy deposition in the plasma.The paper is organized as follows.A two-dimensional(2D)particle-in-cell(PIC)simulation model is presented in section 2,along with beam and plasma parameters.We analyze the formation of multi-layer structure in section 3.The influences of beam parameters on the multi-layer structure and beam phase space are studied in detail in section 4.Finally,conclusions are given in section 5.

    2.Simulation model

    A 2D3V electromagnetic PIC simulation code IBMP[20,21]is employed to study density evolution and collective stopping of electron beams in background plasmas.A cell size of△x=△y=2.56×10-9m,time step of △t=5.12×10-18s and nine particles per cell per species are used here.A moving-window approach is used in these simulations to reduce the computation time.It carries out in the laboratory frame,in which the simulation window is shifted by a distance in the beam propagation direction every a few time steps(which can be set in the simulation)to ensure that the simulation window moves with the electron beam on the average.Absorbing boundary conditions are adopted in both longitudinal(along thex-axis)and transverse(along theyaxis)directions.We model a hydrogen plasma with a real ion massmi/me=1836 and chargeZi=efor simulations,which fills the simulation box uniformly at the initialization stage.The density and electron temperature of the plasma are set to benpe=1027m-3andTpe=4 eV respectively.Electron beams with energyEbe=113 MeV and densitynbe=0.1npeare adopted in the simulations.The longitudinal spatial profile of the electron beam is assumed to be Gaussian with a width(FWHM)τbe=π/ωpe,in which ωpeis the plasma electron frequency.We keep relativistic electron beam density fixed and investigate the effects of beam parameters(beam radius and transverse density profile)in detail in the next sections.

    3.Multi-layer structure formation of relativistic electron beams

    We first show here the structure evolution of the electron beam with a Gaussian transverse density profile and radiusrb=5c/ωpe.Here,cis the speed of light and ωpe=For the electron beam with radius much larger than plasma skin depthc/ωpe,the interaction of beam current and plasma return current is subject to the CFI.The beam density evolutions in the plasma at six travel times are clearly depicted in figure 1.Some filaments of the electron beam are shown in figure 1(b).It should be noted that the competition between the CFI and beam focusing effect can be observed in the figure.From figure 1(c),one can see that the beam is strongly focused before the CFI is fully developed,in which the decrease of the beam radius at the tail and the increase of the beam density can be clearly observed.Once a short electron beam is injected into the plasma,plasma electrons are radially expelled from the beam paths and ions do not respond because of their heavy mass(figures 2(c)-(d)).Under the restoring force of the immovable plasma ions,some expelled plasma electrons come across the beam axis and form the oscillating peak density behind the beam driver[17].As a consequence,the space charge oscillation and then the plasma wakefield are formed at the back of beam.The longitudinal wakefield[22-24]excited in the linear regime is expressed approximately by

    wherenpeandnbeare the plasma and beam density in m-3respectively,σxand σyare the rms dimensions of the beam,andkp=ωpe/cis the plasma wave number.Figure 2 clearly displays the distributions of the wakefield at ωpet=280.5.The transverse electric fieldEyat the tail of the beam is seen to strongly focus the beam electrons,which can be observed from figure 2(a).Thus,under the focusing effect of the transverse wakefield(EyandBz),the beam density at the tail increases significantly and reaches 1027m-3in figure 1(e),which is about 10 times larger than the initial value.From equation(1),the magnitude of the longitudinal electric fieldExis estimated to be 4×1011V m-1with the given plasma and beam parameters(figure 1(a)).Once focused,the beam density increases and approaches plasma density(figure 1(c)),the magnitude ofExincreases significantly and reaches 1.5×1012V m-1,as indicated in figure 2(c).

    Figure 1.Structure evolutions of relativistic electron beam with rb=5c/ωpe propagating through the plasma.Snapshots at six selected times are depicted with(a)ωpet=0,(b)127.4,(c)159.3,(d)223.1,(e)280.5 and(f)784.5.

    Figure 2.Distributions of transverse electric field Ey(a)and longitudinal wakefield Ex(b)excited in the plasma at the travel time ωpet=280.5.The spatial profiles of transverse wakefield(c)(Ey and Bz)along the x direction at y=0.5c/ωpe and longitudinal wakefield(d)Ex along the y direction at x=52.5c/ωpe are displayed.The longitudinal and transverse spatial profiles of beam density nbe are also shown in(c)and(d)for illustration.The slice distributions of plasma electron density along the x direction at y=0 and along the y direction at x=52.5c/ωpe are also depicted in(c)and(d).

    Figure 3.Distributions of longitudinal phase space for relativistic electron beam with rb=5c/ωpe at the six different travel times:(a)ωpet=0,(b)127.4,(c)159.3,(d)280.5,(e)531.2 and(f)784.5.

    By inspecting figures 1(d)-(f),we note here the formation of the multi-layer structure(figure 1(d))and later growth of the slice numbers(figure 1(f))at the tail of the beam.To clearly explain this,we also display the longitudinal slice distributions of the transverse wakefield aty=0.5c/ωpein figure 2(c).Meanwhile,the longitudinal and transverse spatial profiles of beam densitynbeare also shown in figures 2(c)and(d)for illustration respectively.Under the focusing force of the transverse wakefield at the tail,the betatron frequency of the beam electron is relatively larger.Thus,the slice structure is firstly observed at the tail,as indicated in figure 1(d).The transverse wakefieldEy-cBzis essentially close to zero at the front.This implies that the slices at the beam head are also gradually presented in figure 1(f)as the travel time increases.Furthermore,the radius of the slice close to the beam front is larger than that at the beam tail,as clearly shown in figures 1(e)and(f).

    Representative snapshots of the longitudinal phase space are displayed in figure 3.Prior studies[24,25]have demonstrated that majority of the beam electrons at the middle are decelerated and a small amount of beam electrons at the tail are accelerated obviously beyond the initial energy,which can be clearly identified in figures 3(a)-(f).It can be envisioned by noting that the longitudinal wakefieldEx(figure 2(b))is positive at the middle of the beam and negative at its higher energy tail relatively.The most attractive feature of figures 3(e)and(f)is the formation of multi-layer structures in the longitudinal phase space,indicating the beam energy modulation in addition to the collective stopping.To show this clearly,the corresponding longitudinal wakefieldExand density of the beam electronnbealong they-axis at the positionx=52.5c/ωpeare displayed in the figure 2(d).It is obvious from this figure that the longitudinal wakefieldExis nonuniform in the transverse direction and decreases gradually towards beam edge.As a result,the electrons at the beam edge are expected to have higher energies than those at the beam axis.Figure 3(f)clearly illustrates that the kinetic energy of slice is nonuniform and then the layers structure of longitudinal phase space is formed consequently.

    4.Effects of beam radius and transverse density profile

    We proceed by considering the influences of different radius on the density evolution and collective stopping of electron beams with high energy traveling through background plasmas.Three cases are considered in the simulations:rb=c/ωpe,5c/ωpeand 7.6c/ωpe.The centers of the electron beams for three cases are located atx=23c/ωpeandy=0 initially.The other parameters are the same as presented in section 2.We compare the longitudinal slice of the longitudinal wakefieldExat the positiony=0 for three cases in figure 4(a).In terms of short electron beam,quantitative characteristics ofExare beam charge dependent.The electron beam with a larger radius excites a stronger wakefield due to a higher beam charge,as indicated in figure 4(a).For the electron beam withrb=c/ωpe,the magnitude of longitudinal wakefieldExis seen to be 300 GV m-1from equation(1),showing agreement with the figure.Meanwhile,the magnitude further increases to 800 GV m-1for the caserb=7.6c/ωpe.The significant beam energy loss due toExcan be expected in figure 4(b).Some of beam electrons are seen to have a kinetic energy of 35 MeV after a travel time of ωpet=704 for the case ofrb=7.6c/ωpe,losing 70% of its initial energy.It should be noted here that multi-peaks in the beam energy spectrum can be identified in the figure due to the multi-layer structure.

    Figure 5 presents detailed comparisons of beam density distributionsnbe((a)-(c))and longitudinal phase space((d)-(f))for three radius cases.The competition between the beam focusing effect and CFI can be clearly expected in figure 5(c).Some filaments at the beam front regions can be observed from the figure.The modulation of beam density(at the beam center regions)in the transverse direction due to the CFI can also be observed,indicating the competition between the beam focusing effect and CFI.As mentioned before,the transverse electric fields at the beam center(defocusing force)increase with the beam radius.Thus,comparing figures 5(a)-(c),one can find that the beam slice radius of multi-layer structure increases with initial beam radius.From the longitudinal phase space distributions,the multi-layer structure is more significant for relativistic electron beam with radiusrb?c/ωpe(i.e.figures 5(e),(f)),indicating the significant nonuniformity ofExalong the transverse direction.

    We also compare the density evolutions of electron beams with two transverse density profiles:Gaussian(figures 6(a),(c))and flat-top(figures 6(b),(d)).The radius of the electron beam is selected to berb=7.6c/ωpe.For the flat-top distribution,the beam electrons are only focused at the beam edge and the CFI can be fully developed.After filaments merging,three electron filaments with small radius are formed,as indicated in figure 6(d).Figure 7 shows comparisons of the longitudinal beam phase space((a)and(b))and energy spectrum((c)and(d))with two density profile cases.The multi-layer structure of the longitudinal phase space for the Gaussian distribution is clearly indicated in figure 7(a).However,for the flat-top case(figure 7(b)),the energy spread of beam electrons is shown to be smaller,which can also be identified by comparing figures 7(c)and(d).In addition,the peak in the beam energy spectrum is seen to move to the low energy side for the flat-top case and the number of beam electrons with high energy(113 MeV)decreases.

    Figure 4.Longitudinal spatial profiles of longitudinal wakefield Ex(a)at y=0 and the energy spectrum of electron beam(b)for three beam radius cases: rb=c/ωpe,5c/ωpe and 7.6c/ωpe.The beam travel time is ωpet=704.

    Figure 5.Comparisons of the electron beam density nbe((a)-(c))and longitudinal phase space((d)-(f))for rb=c/ωpe,5c/ωpe and 7.6c/ωpe.The selected travel time in the figure is ωpet=704.

    Figure 6.Influences of transverse density profiles(Gaussian((a)and(c))and flat-top((b)and(d)))on the density distributions of the electron beam at two travel times(ωpet=0((a)and(b))and ωpet=531.2((c)and(d))).

    Figure 7.Distributions of the longitudinal phase space and energy spectrum of beam electrons with different density profiles:Gaussian((a)and(c))and flat-top((b)and(d)).The travel times in the figure is ωpet=531.2.

    The multi-layer structures indicate that the beam electrons with high energy are located at the beam edge(where the magnitude of longitudinal wakefield is smaller than that at the beam center),which is negative for the beam stopping.As indicated in figure 7(c),a peak can be observed at the high energy regions.This cannot be fixed with a plasma of different density.The reason is that the transverse wakefield coexists with the longitudinal wakefield(which is for collective beam stopping)and the nonuniformity of the transverse field is mainly determined by the beam density profile.The beam duration is a critical parameter for the multi-layer structures in this work.For the beam duration larger than the plasma period,the charge neutralization can be achieved and the TSI can be excited.The coupled TSI and CFI develops and the multi-layer structure cannot be observed anymore.The magnitude of the transverse wakefield depends on the beam density,but is independent on the beam energy.Therefore,as the beam energy increases,the structure is formed on a longer time scale due to a heavier beam electron mass.Meanwhile,as the ratio of beam density to plasma density increases,a stronger wakefield can be expected and the structure is formed on a shorter time scale.These findings may help us to understand the dynamic of the beam with large radius propagating through the plasma,which should provide some references for the plasma based beam dump.

    5.Conclusion

    Motivated by science and commerce,investigation of beamplasma system is a topic of significant interest.The density evolution and collective stopping of relativistic electron beams in plasmas are frequently encountered in many applications,such as the fast ignition and plasma-based beam dump.The wakefield excited by short electron beam plays a vital role in the time evolutions and energy loss.The longitudinal and transverse wakefields are responsible for the beam stopping and focusing respectively.In this work,2D PIC simulations were used to study the density evolution and collective stopping of the short electron beam withrb?c/ωpetraveling through the plasmas.Due to the longitudinal nonuniformity of the transverse wakefield,the multilayer structure is formed in the plasmas.Furthermore,the nonuniformity of the longitudinal wakefield in the transverse direction contributes to the formation of the multi-layer structure in beam phase space.The longitudinal wakefield causes a large energy spread of beam electrons and significant beam energy extraction in dense plasmas.These dynamic evolutions are essential for the plasma-based beam dump.Dimensional effect(2D versus 3D)in PIC simulation,as a key role,can change quantitative results significantly.Especially for the nonlinear interactions between the beam and plasma,the magnitude of wakefield generated by a short beam in background plasmas will vary a lot from 2D to 3D simulations.However,the nonuniformity of the transverse wakefield(EyandBz)in the longitudinal direction is the essential reason for the multi-layer structure formation,which is independent on the dimension of the simulation.Therefore,we believe that the findings in this work should also be presented in the 3D simulations.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Nos.12 075 046 and 11 775 042).

    猜你喜歡
    王友
    3D fluid model analysis on the generation of negative hydrogen ions for negative ion source of NBI
    Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor
    Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model?
    Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma
    Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas?
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    啦啦啦在线观看免费高清www| 尤物成人国产欧美一区二区三区| 美女xxoo啪啪120秒动态图| 七月丁香在线播放| 久久久久久久久大av| 日本色播在线视频| 欧美最新免费一区二区三区| 网址你懂的国产日韩在线| 欧美日本视频| 天天一区二区日本电影三级| 色综合色国产| 亚洲电影在线观看av| 大话2 男鬼变身卡| 精品国产一区二区三区久久久樱花 | 成人综合一区亚洲| 精品人妻一区二区三区麻豆| 老女人水多毛片| 大又大粗又爽又黄少妇毛片口| 免费看光身美女| 国产有黄有色有爽视频| 老司机影院毛片| 伊人久久精品亚洲午夜| 精品少妇黑人巨大在线播放| 欧美人与善性xxx| 国产成人精品福利久久| 国产伦在线观看视频一区| kizo精华| 九九在线视频观看精品| 三级经典国产精品| 人妻少妇偷人精品九色| 亚洲va在线va天堂va国产| 日韩欧美精品免费久久| 国产精品久久久久久av不卡| 99久国产av精品国产电影| 国产美女午夜福利| 在线免费观看不下载黄p国产| 成年免费大片在线观看| 成人亚洲精品av一区二区| 亚洲不卡免费看| av在线app专区| 丝瓜视频免费看黄片| 成年人午夜在线观看视频| 男男h啪啪无遮挡| av在线播放精品| 久久久久网色| 免费看不卡的av| 午夜福利高清视频| 听说在线观看完整版免费高清| 99热全是精品| 天天一区二区日本电影三级| 美女国产视频在线观看| 日韩亚洲欧美综合| 国产在线男女| 街头女战士在线观看网站| 久久久精品欧美日韩精品| 少妇熟女欧美另类| 亚洲欧美日韩东京热| 亚洲熟女精品中文字幕| av卡一久久| 内地一区二区视频在线| 免费观看在线日韩| 男女边吃奶边做爰视频| 麻豆乱淫一区二区| 尾随美女入室| 最新中文字幕久久久久| 一级毛片我不卡| 尤物成人国产欧美一区二区三区| 边亲边吃奶的免费视频| 欧美性感艳星| 嘟嘟电影网在线观看| 伊人久久精品亚洲午夜| 免费电影在线观看免费观看| 丝袜脚勾引网站| 亚洲丝袜综合中文字幕| 在线观看av片永久免费下载| 中国国产av一级| 青春草国产在线视频| 日韩成人伦理影院| 国产中年淑女户外野战色| 男女无遮挡免费网站观看| 午夜福利网站1000一区二区三区| 听说在线观看完整版免费高清| 成人鲁丝片一二三区免费| 亚洲性久久影院| 国产精品无大码| 日韩成人av中文字幕在线观看| 欧美成人精品欧美一级黄| www.av在线官网国产| 日韩不卡一区二区三区视频在线| 国产精品熟女久久久久浪| 国产爽快片一区二区三区| 午夜视频国产福利| 色网站视频免费| 我的老师免费观看完整版| 国产精品秋霞免费鲁丝片| 久久久精品94久久精品| 日本一二三区视频观看| 天堂俺去俺来也www色官网| 在线观看一区二区三区激情| 国产伦理片在线播放av一区| 国产老妇女一区| 亚洲精品乱码久久久久久按摩| 哪个播放器可以免费观看大片| 丰满人妻一区二区三区视频av| 国产视频首页在线观看| 欧美成人一区二区免费高清观看| 熟女人妻精品中文字幕| 中文字幕制服av| 日韩电影二区| 三级经典国产精品| 日日啪夜夜撸| 亚州av有码| 女人十人毛片免费观看3o分钟| 在线免费十八禁| 亚洲国产精品国产精品| 黄色日韩在线| 高清av免费在线| av女优亚洲男人天堂| 欧美变态另类bdsm刘玥| 免费播放大片免费观看视频在线观看| 久久久久精品性色| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| 亚洲av.av天堂| 色婷婷久久久亚洲欧美| 特级一级黄色大片| 国产欧美另类精品又又久久亚洲欧美| 99热这里只有是精品在线观看| 亚洲国产日韩一区二区| 国产欧美另类精品又又久久亚洲欧美| 乱系列少妇在线播放| 国产伦在线观看视频一区| 成人国产麻豆网| 亚洲欧美清纯卡通| 国产毛片在线视频| 亚洲怡红院男人天堂| 99久国产av精品国产电影| 精品视频人人做人人爽| 夜夜看夜夜爽夜夜摸| 婷婷色综合大香蕉| 久久精品国产自在天天线| 国产精品三级大全| av国产久精品久网站免费入址| 色视频www国产| 国产免费又黄又爽又色| 亚洲成人av在线免费| 亚洲自拍偷在线| 大码成人一级视频| 18禁在线无遮挡免费观看视频| 狂野欧美白嫩少妇大欣赏| 亚洲在线观看片| 成人亚洲精品一区在线观看 | 高清毛片免费看| 国产午夜精品一二区理论片| 成年女人看的毛片在线观看| 亚洲av.av天堂| 简卡轻食公司| 伦理电影大哥的女人| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久鲁丝午夜福利片| 久久久久久伊人网av| 人妻少妇偷人精品九色| 在线a可以看的网站| 一级a做视频免费观看| 免费看日本二区| 国产男女超爽视频在线观看| 我要看日韩黄色一级片| 97在线人人人人妻| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜爱| tube8黄色片| 中文字幕av成人在线电影| 色视频在线一区二区三区| 极品少妇高潮喷水抽搐| 91aial.com中文字幕在线观看| videossex国产| 国产淫语在线视频| eeuss影院久久| 亚洲精品国产av成人精品| 久久久精品免费免费高清| 亚洲天堂av无毛| 亚洲国产最新在线播放| 色5月婷婷丁香| 少妇人妻久久综合中文| 青春草国产在线视频| 三级男女做爰猛烈吃奶摸视频| 国产精品三级大全| videos熟女内射| 日韩av在线免费看完整版不卡| 国产av国产精品国产| 一级爰片在线观看| 久久精品国产自在天天线| 中文乱码字字幕精品一区二区三区| 欧美人与善性xxx| 色吧在线观看| 嘟嘟电影网在线观看| 天堂中文最新版在线下载 | 国产成人a区在线观看| 亚洲精品久久久久久婷婷小说| 在线观看免费高清a一片| 免费少妇av软件| 91aial.com中文字幕在线观看| 婷婷色综合www| 久久亚洲国产成人精品v| 久久久久久伊人网av| 久久精品国产亚洲网站| 大话2 男鬼变身卡| 国产免费一区二区三区四区乱码| 内射极品少妇av片p| 亚州av有码| 成人二区视频| 国产亚洲91精品色在线| 国产精品蜜桃在线观看| 2022亚洲国产成人精品| 亚洲av免费高清在线观看| 国产毛片在线视频| 国产亚洲午夜精品一区二区久久 | 国产一区亚洲一区在线观看| 免费黄色在线免费观看| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 国产探花在线观看一区二区| 草草在线视频免费看| 国产中年淑女户外野战色| 色网站视频免费| 国产精品精品国产色婷婷| 久久精品国产鲁丝片午夜精品| 亚洲av国产av综合av卡| 男人和女人高潮做爰伦理| 在线精品无人区一区二区三 | 在线 av 中文字幕| 夫妻性生交免费视频一级片| 久久99热这里只频精品6学生| 中文字幕人妻熟人妻熟丝袜美| 欧美亚洲 丝袜 人妻 在线| 插阴视频在线观看视频| 国产精品.久久久| 国产亚洲午夜精品一区二区久久 | 欧美国产精品一级二级三级 | 免费看av在线观看网站| 在线观看av片永久免费下载| 大香蕉97超碰在线| 亚洲经典国产精华液单| 在线观看美女被高潮喷水网站| 国产日韩欧美在线精品| 国产成人91sexporn| 国产精品国产三级国产专区5o| 精品熟女少妇av免费看| 精品少妇久久久久久888优播| 午夜精品一区二区三区免费看| 日本午夜av视频| 精品人妻熟女av久视频| 亚洲欧美一区二区三区黑人 | 国产精品爽爽va在线观看网站| 中文在线观看免费www的网站| 国产一区二区三区av在线| 男人爽女人下面视频在线观看| h日本视频在线播放| 综合色av麻豆| 99热这里只有是精品50| 日韩制服骚丝袜av| 99热这里只有精品一区| 亚洲欧美日韩无卡精品| 下体分泌物呈黄色| 大话2 男鬼变身卡| 午夜福利视频1000在线观看| 欧美激情久久久久久爽电影| 观看美女的网站| 亚洲丝袜综合中文字幕| 在线观看三级黄色| 亚洲人成网站高清观看| 日本wwww免费看| 亚洲成人一二三区av| 纵有疾风起免费观看全集完整版| 国内精品宾馆在线| 日本免费在线观看一区| 成人无遮挡网站| 欧美+日韩+精品| 日本猛色少妇xxxxx猛交久久| 欧美成人午夜免费资源| 3wmmmm亚洲av在线观看| 久热久热在线精品观看| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 国产女主播在线喷水免费视频网站| 亚洲最大成人av| 丝瓜视频免费看黄片| 国内精品美女久久久久久| 日韩制服骚丝袜av| 在线 av 中文字幕| 成年人午夜在线观看视频| 乱码一卡2卡4卡精品| 大话2 男鬼变身卡| 欧美性感艳星| 国产精品伦人一区二区| 看十八女毛片水多多多| 美女国产视频在线观看| 下体分泌物呈黄色| 人妻一区二区av| 少妇人妻 视频| 五月天丁香电影| 免费av观看视频| 成人国产麻豆网| 国产精品熟女久久久久浪| 少妇的逼水好多| 亚洲精品日韩av片在线观看| 能在线免费看毛片的网站| 天堂网av新在线| 久久久午夜欧美精品| 亚洲欧美日韩卡通动漫| 丝袜喷水一区| 神马国产精品三级电影在线观看| 久久久久久久精品精品| 中文字幕人妻熟人妻熟丝袜美| 亚洲熟女精品中文字幕| 青春草国产在线视频| 男女啪啪激烈高潮av片| 少妇 在线观看| 纵有疾风起免费观看全集完整版| 日韩免费高清中文字幕av| 白带黄色成豆腐渣| 欧美激情在线99| 国产伦在线观看视频一区| av一本久久久久| 久久精品熟女亚洲av麻豆精品| 亚州av有码| 涩涩av久久男人的天堂| 一级毛片 在线播放| 久久精品国产亚洲av天美| 久久国产乱子免费精品| 热re99久久精品国产66热6| 日韩一本色道免费dvd| 能在线免费看毛片的网站| 亚洲成色77777| 亚洲国产精品成人综合色| 欧美+日韩+精品| 舔av片在线| 精品久久久久久久人妻蜜臀av| 高清av免费在线| 国产日韩欧美在线精品| 国产av不卡久久| 国产亚洲av片在线观看秒播厂| 亚洲美女视频黄频| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 国产v大片淫在线免费观看| 中文欧美无线码| 久久99热6这里只有精品| freevideosex欧美| 日韩一区二区三区影片| 国产午夜精品久久久久久一区二区三区| 51国产日韩欧美| 男的添女的下面高潮视频| 色婷婷久久久亚洲欧美| 国产爱豆传媒在线观看| 99热6这里只有精品| 精品人妻偷拍中文字幕| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| a级毛色黄片| 欧美亚洲 丝袜 人妻 在线| 日韩一区二区三区影片| 少妇人妻一区二区三区视频| 蜜桃亚洲精品一区二区三区| 久久精品国产自在天天线| 亚洲av不卡在线观看| 亚洲天堂av无毛| 国产v大片淫在线免费观看| 97人妻精品一区二区三区麻豆| 国产精品伦人一区二区| 免费播放大片免费观看视频在线观看| 久久精品国产鲁丝片午夜精品| 精品一区二区免费观看| 国产一区有黄有色的免费视频| 成人国产av品久久久| 国产黄a三级三级三级人| 国产探花在线观看一区二区| 丰满乱子伦码专区| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 日韩成人伦理影院| 久久精品久久精品一区二区三区| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 99久久九九国产精品国产免费| 国产精品久久久久久av不卡| 欧美日韩一区二区视频在线观看视频在线 | 亚洲美女搞黄在线观看| 色吧在线观看| 精品视频人人做人人爽| 亚洲最大成人av| 91狼人影院| 成人漫画全彩无遮挡| 欧美+日韩+精品| 最近中文字幕高清免费大全6| 黄色配什么色好看| 美女内射精品一级片tv| 国产午夜福利久久久久久| 久久久久网色| 蜜臀久久99精品久久宅男| 久久精品国产亚洲网站| 精品久久久久久久久亚洲| 中文字幕亚洲精品专区| 日日撸夜夜添| 国产淫语在线视频| 99九九线精品视频在线观看视频| 内射极品少妇av片p| 日日摸夜夜添夜夜爱| .国产精品久久| 久久久久九九精品影院| 午夜福利高清视频| 成人鲁丝片一二三区免费| 3wmmmm亚洲av在线观看| 乱码一卡2卡4卡精品| 亚洲av福利一区| 可以在线观看毛片的网站| 久久久精品94久久精品| 日韩国内少妇激情av| 女人十人毛片免费观看3o分钟| 国产黄片美女视频| 亚洲av免费高清在线观看| 成人毛片a级毛片在线播放| 国产黄色视频一区二区在线观看| av播播在线观看一区| 中文字幕制服av| 精品一区二区免费观看| 日韩电影二区| 欧美一区二区亚洲| 伦理电影大哥的女人| 一本久久精品| 国产乱人视频| 欧美丝袜亚洲另类| 免费播放大片免费观看视频在线观看| 真实男女啪啪啪动态图| 精品久久国产蜜桃| 内射极品少妇av片p| 天天躁日日操中文字幕| 国产午夜福利久久久久久| 日韩 亚洲 欧美在线| 日日啪夜夜撸| 中文字幕免费在线视频6| 国产精品一及| 精品久久久久久久人妻蜜臀av| 亚洲av一区综合| 国产黄片美女视频| 久久久久网色| 亚洲欧美精品专区久久| 九九爱精品视频在线观看| 国产精品国产三级国产av玫瑰| 精品一区二区三卡| 久久影院123| 大香蕉久久网| 热99国产精品久久久久久7| 亚洲精品自拍成人| 极品教师在线视频| 各种免费的搞黄视频| 男女无遮挡免费网站观看| 久久影院123| 精品酒店卫生间| 国产亚洲av嫩草精品影院| 亚洲精品aⅴ在线观看| 青春草国产在线视频| 亚洲欧洲国产日韩| 大又大粗又爽又黄少妇毛片口| 国产高清国产精品国产三级 | 成人国产麻豆网| 国产成人a区在线观看| 国产精品爽爽va在线观看网站| 亚洲国产日韩一区二区| 亚洲精品视频女| 18禁在线播放成人免费| 小蜜桃在线观看免费完整版高清| 精品午夜福利在线看| 久久久a久久爽久久v久久| 久久久成人免费电影| 国产在线一区二区三区精| 少妇人妻 视频| 亚洲人成网站在线播| 国产精品无大码| 美女高潮的动态| 亚洲精品,欧美精品| 人妻系列 视频| 日韩一本色道免费dvd| 乱系列少妇在线播放| 欧美精品一区二区大全| 亚洲最大成人手机在线| 国产午夜福利久久久久久| 99久国产av精品国产电影| av.在线天堂| 亚洲四区av| 欧美三级亚洲精品| 欧美成人一区二区免费高清观看| 国产毛片a区久久久久| 69人妻影院| 亚洲,欧美,日韩| 欧美日韩视频高清一区二区三区二| av在线亚洲专区| 一级二级三级毛片免费看| 另类亚洲欧美激情| 听说在线观看完整版免费高清| 欧美日本视频| 亚洲欧洲日产国产| 夜夜爽夜夜爽视频| 日韩三级伦理在线观看| 在线观看人妻少妇| 免费电影在线观看免费观看| 日日啪夜夜爽| 一级毛片 在线播放| 国产亚洲av片在线观看秒播厂| 久久久久久久久大av| 国产色爽女视频免费观看| 爱豆传媒免费全集在线观看| 免费少妇av软件| 欧美精品国产亚洲| 国产色婷婷99| 色哟哟·www| 少妇的逼水好多| 舔av片在线| 国产成人一区二区在线| 黄色怎么调成土黄色| 亚洲国产日韩一区二区| 国产成人免费无遮挡视频| 久久久久久久久久久免费av| 欧美成人a在线观看| 国产老妇女一区| 免费观看的影片在线观看| 大话2 男鬼变身卡| 国产精品一区www在线观看| 男女边摸边吃奶| 欧美丝袜亚洲另类| 深夜a级毛片| 在线亚洲精品国产二区图片欧美 | av专区在线播放| 最近中文字幕高清免费大全6| 国产成人精品久久久久久| 免费看日本二区| 亚州av有码| 国产毛片在线视频| 毛片女人毛片| 亚洲精品成人久久久久久| 国产探花在线观看一区二区| 69av精品久久久久久| 欧美精品一区二区大全| 99热这里只有精品一区| 成人特级av手机在线观看| 欧美最新免费一区二区三区| 人妻系列 视频| 最近最新中文字幕免费大全7| 国产精品人妻久久久久久| 最后的刺客免费高清国语| 老师上课跳d突然被开到最大视频| 日韩电影二区| 一边亲一边摸免费视频| av专区在线播放| 在线观看国产h片| 一个人看视频在线观看www免费| 69av精品久久久久久| 成人亚洲精品一区在线观看 | 街头女战士在线观看网站| 熟女人妻精品中文字幕| 日本色播在线视频| 观看免费一级毛片| 欧美国产精品一级二级三级 | 国产成人精品一,二区| 免费观看性生交大片5| 久久久久久九九精品二区国产| 日本三级黄在线观看| 激情五月婷婷亚洲| 国产熟女欧美一区二区| 一级黄片播放器| 亚洲成人中文字幕在线播放| 国产久久久一区二区三区| 亚洲一级一片aⅴ在线观看| 观看美女的网站| 联通29元200g的流量卡| 国产一区二区亚洲精品在线观看| 97超碰精品成人国产| 欧美日韩视频高清一区二区三区二| 色综合色国产| 国产在视频线精品| 波野结衣二区三区在线| 国产高清有码在线观看视频| 三级经典国产精品| 国产亚洲精品久久久com| 国产高清不卡午夜福利| 99久国产av精品国产电影| 我的老师免费观看完整版| 日韩 亚洲 欧美在线| 少妇人妻一区二区三区视频| 国产爽快片一区二区三区| 成人国产av品久久久| 日日撸夜夜添| a级一级毛片免费在线观看| 欧美日韩视频高清一区二区三区二| 成人免费观看视频高清| 午夜福利视频1000在线观看| 亚洲精品自拍成人| 久久久久久久大尺度免费视频| 九九久久精品国产亚洲av麻豆| 黄色欧美视频在线观看| 久久影院123| 网址你懂的国产日韩在线| 日韩亚洲欧美综合| 免费看a级黄色片| 成年av动漫网址| 亚洲av免费在线观看| 岛国毛片在线播放| 国产精品国产三级国产专区5o| 亚洲国产欧美在线一区| 亚洲成色77777| 国产精品久久久久久精品古装| 97在线视频观看| 免费观看av网站的网址|