• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-layer structure formation of relativistic electron beams in plasmas

    2022-03-10 03:49:40XiaojuanWANG王曉娟ZhanghuHU胡章虎andYounianWANG王友年
    Plasma Science and Technology 2022年2期
    關(guān)鍵詞:王友

    Xiaojuan WANG(王曉娟),Zhanghu HU(胡章虎)and Younian WANG(王友年)

    School of Physics,Dalian University of Technology,Dalian 116024,People's Republic of China

    Abstract A two-dimensional electromagnetic particle-in-cell simulation model is proposed to study the density evolution and collective stopping of electron beams in background plasmas.We show here the formation of the multi-layer structure of the relativistic electron beam in the plasma due to the different betatron frequency from the beam front to the beam tail.Meanwhile,the nonuniformity of the longitudinal wakefield is the essential reason for the multi-layer structure formation in beam phase space.The influences of beam parameters(beam radius and transverse density profile)on the formation of the multi-layer structure and collective stopping in background plasmas are also considered.

    Keywords:multi-layer structure,beam phase space,relativistic electron beam,plasma based beam dump,PIC

    1.Introduction

    The interaction of relativistic electron beams with plasmas has gained an intensity level of attention in various applications,such as high energy density physics[1],inertial confinement fusion[2]and plasma-based accelerators(PBAs)[3-11].In the fast ignition,the ignition is achieved by depositing energy into the dense core with the relativistic electron beams.PBA[3]was firstly proposed by Tajima in 1979.By employing a high intensity laser or relativistic charged particle beam as the driver,PBA schemes are categorized into two kinds:laser wakefield acceleration[3,5,9]and plasma wakefield acceleration[4,5,12].The acceleration gradients of PBA are currently able to achieve an order of several hundred GeV m-1,much larger than those produced by conventional radio frequency accelerators.With continuous progress in high power laser technology,multi-GeV energy gain of electrons is achievable over a short distance in the experiments[9].Meanwhile,a safety design of the beam dump[13-16]is urgently acquired to decelerate particles into a safe energy region without radiation.Thus,based on the collective electromagnetic field of short particle bunches in the plasma,plasma-based beam dump has recently received tremendous interest to develop safer and greener facilities.

    Many simulations and analytical works[13-18]have been carried out to investigate plasma-based beam dump.The strong collective stopping of few-fs electron beams inside mm-scale underdense plasma was firstly demonstrated in two independent experiments[19].It is shown that the plasma beam dump can be the most straightforward application for absorbing the kinetic energy of the EuPRAXIA beam over short distance[13-16].Generally,two types of plasma beam dump(passive beam dump and active beam dump)are considered.In the passive beam dump,relativistic electron beam travels through the undisturbed plasma and achieves the deceleration by beam self-driven wakefield.Tailored plasmadensity profiles in the passive scheme are demonstrated to improve the beam-energy loss[13].

    In the active scheme,relativistic electron beam propagates with the wake excited by laser pulse and then disposes large energy in the plasma due to the self-excited and laser-driven wakefields.The plasma-based beam dump can greatly improve the overall compactness of PBA and reduces high-energy radiation caused by scattering in the material beam dump.

    It should be noted that in actual applications,the energetic electron beams might be defocused and have a radius much larger than plasma skin depth in a plasma-based beam dump.In this work,we consider in detail the density evolution and energy deposition of relativistic electron beams with large radius(larger than plasma skin depth)in plasmas and mainly focus on the beam phase space evolution and energy deposition.Multi-layer structures in beam phase space are clearly observed.The twostream instability(TSI)with short electron beam is limited in the present simulations.The current filamentation instability(CFI)breaks up the relativistic electron beam into small filaments and causes large energy deposition in the plasma.The paper is organized as follows.A two-dimensional(2D)particle-in-cell(PIC)simulation model is presented in section 2,along with beam and plasma parameters.We analyze the formation of multi-layer structure in section 3.The influences of beam parameters on the multi-layer structure and beam phase space are studied in detail in section 4.Finally,conclusions are given in section 5.

    2.Simulation model

    A 2D3V electromagnetic PIC simulation code IBMP[20,21]is employed to study density evolution and collective stopping of electron beams in background plasmas.A cell size of△x=△y=2.56×10-9m,time step of △t=5.12×10-18s and nine particles per cell per species are used here.A moving-window approach is used in these simulations to reduce the computation time.It carries out in the laboratory frame,in which the simulation window is shifted by a distance in the beam propagation direction every a few time steps(which can be set in the simulation)to ensure that the simulation window moves with the electron beam on the average.Absorbing boundary conditions are adopted in both longitudinal(along thex-axis)and transverse(along theyaxis)directions.We model a hydrogen plasma with a real ion massmi/me=1836 and chargeZi=efor simulations,which fills the simulation box uniformly at the initialization stage.The density and electron temperature of the plasma are set to benpe=1027m-3andTpe=4 eV respectively.Electron beams with energyEbe=113 MeV and densitynbe=0.1npeare adopted in the simulations.The longitudinal spatial profile of the electron beam is assumed to be Gaussian with a width(FWHM)τbe=π/ωpe,in which ωpeis the plasma electron frequency.We keep relativistic electron beam density fixed and investigate the effects of beam parameters(beam radius and transverse density profile)in detail in the next sections.

    3.Multi-layer structure formation of relativistic electron beams

    We first show here the structure evolution of the electron beam with a Gaussian transverse density profile and radiusrb=5c/ωpe.Here,cis the speed of light and ωpe=For the electron beam with radius much larger than plasma skin depthc/ωpe,the interaction of beam current and plasma return current is subject to the CFI.The beam density evolutions in the plasma at six travel times are clearly depicted in figure 1.Some filaments of the electron beam are shown in figure 1(b).It should be noted that the competition between the CFI and beam focusing effect can be observed in the figure.From figure 1(c),one can see that the beam is strongly focused before the CFI is fully developed,in which the decrease of the beam radius at the tail and the increase of the beam density can be clearly observed.Once a short electron beam is injected into the plasma,plasma electrons are radially expelled from the beam paths and ions do not respond because of their heavy mass(figures 2(c)-(d)).Under the restoring force of the immovable plasma ions,some expelled plasma electrons come across the beam axis and form the oscillating peak density behind the beam driver[17].As a consequence,the space charge oscillation and then the plasma wakefield are formed at the back of beam.The longitudinal wakefield[22-24]excited in the linear regime is expressed approximately by

    wherenpeandnbeare the plasma and beam density in m-3respectively,σxand σyare the rms dimensions of the beam,andkp=ωpe/cis the plasma wave number.Figure 2 clearly displays the distributions of the wakefield at ωpet=280.5.The transverse electric fieldEyat the tail of the beam is seen to strongly focus the beam electrons,which can be observed from figure 2(a).Thus,under the focusing effect of the transverse wakefield(EyandBz),the beam density at the tail increases significantly and reaches 1027m-3in figure 1(e),which is about 10 times larger than the initial value.From equation(1),the magnitude of the longitudinal electric fieldExis estimated to be 4×1011V m-1with the given plasma and beam parameters(figure 1(a)).Once focused,the beam density increases and approaches plasma density(figure 1(c)),the magnitude ofExincreases significantly and reaches 1.5×1012V m-1,as indicated in figure 2(c).

    Figure 1.Structure evolutions of relativistic electron beam with rb=5c/ωpe propagating through the plasma.Snapshots at six selected times are depicted with(a)ωpet=0,(b)127.4,(c)159.3,(d)223.1,(e)280.5 and(f)784.5.

    Figure 2.Distributions of transverse electric field Ey(a)and longitudinal wakefield Ex(b)excited in the plasma at the travel time ωpet=280.5.The spatial profiles of transverse wakefield(c)(Ey and Bz)along the x direction at y=0.5c/ωpe and longitudinal wakefield(d)Ex along the y direction at x=52.5c/ωpe are displayed.The longitudinal and transverse spatial profiles of beam density nbe are also shown in(c)and(d)for illustration.The slice distributions of plasma electron density along the x direction at y=0 and along the y direction at x=52.5c/ωpe are also depicted in(c)and(d).

    Figure 3.Distributions of longitudinal phase space for relativistic electron beam with rb=5c/ωpe at the six different travel times:(a)ωpet=0,(b)127.4,(c)159.3,(d)280.5,(e)531.2 and(f)784.5.

    By inspecting figures 1(d)-(f),we note here the formation of the multi-layer structure(figure 1(d))and later growth of the slice numbers(figure 1(f))at the tail of the beam.To clearly explain this,we also display the longitudinal slice distributions of the transverse wakefield aty=0.5c/ωpein figure 2(c).Meanwhile,the longitudinal and transverse spatial profiles of beam densitynbeare also shown in figures 2(c)and(d)for illustration respectively.Under the focusing force of the transverse wakefield at the tail,the betatron frequency of the beam electron is relatively larger.Thus,the slice structure is firstly observed at the tail,as indicated in figure 1(d).The transverse wakefieldEy-cBzis essentially close to zero at the front.This implies that the slices at the beam head are also gradually presented in figure 1(f)as the travel time increases.Furthermore,the radius of the slice close to the beam front is larger than that at the beam tail,as clearly shown in figures 1(e)and(f).

    Representative snapshots of the longitudinal phase space are displayed in figure 3.Prior studies[24,25]have demonstrated that majority of the beam electrons at the middle are decelerated and a small amount of beam electrons at the tail are accelerated obviously beyond the initial energy,which can be clearly identified in figures 3(a)-(f).It can be envisioned by noting that the longitudinal wakefieldEx(figure 2(b))is positive at the middle of the beam and negative at its higher energy tail relatively.The most attractive feature of figures 3(e)and(f)is the formation of multi-layer structures in the longitudinal phase space,indicating the beam energy modulation in addition to the collective stopping.To show this clearly,the corresponding longitudinal wakefieldExand density of the beam electronnbealong they-axis at the positionx=52.5c/ωpeare displayed in the figure 2(d).It is obvious from this figure that the longitudinal wakefieldExis nonuniform in the transverse direction and decreases gradually towards beam edge.As a result,the electrons at the beam edge are expected to have higher energies than those at the beam axis.Figure 3(f)clearly illustrates that the kinetic energy of slice is nonuniform and then the layers structure of longitudinal phase space is formed consequently.

    4.Effects of beam radius and transverse density profile

    We proceed by considering the influences of different radius on the density evolution and collective stopping of electron beams with high energy traveling through background plasmas.Three cases are considered in the simulations:rb=c/ωpe,5c/ωpeand 7.6c/ωpe.The centers of the electron beams for three cases are located atx=23c/ωpeandy=0 initially.The other parameters are the same as presented in section 2.We compare the longitudinal slice of the longitudinal wakefieldExat the positiony=0 for three cases in figure 4(a).In terms of short electron beam,quantitative characteristics ofExare beam charge dependent.The electron beam with a larger radius excites a stronger wakefield due to a higher beam charge,as indicated in figure 4(a).For the electron beam withrb=c/ωpe,the magnitude of longitudinal wakefieldExis seen to be 300 GV m-1from equation(1),showing agreement with the figure.Meanwhile,the magnitude further increases to 800 GV m-1for the caserb=7.6c/ωpe.The significant beam energy loss due toExcan be expected in figure 4(b).Some of beam electrons are seen to have a kinetic energy of 35 MeV after a travel time of ωpet=704 for the case ofrb=7.6c/ωpe,losing 70% of its initial energy.It should be noted here that multi-peaks in the beam energy spectrum can be identified in the figure due to the multi-layer structure.

    Figure 5 presents detailed comparisons of beam density distributionsnbe((a)-(c))and longitudinal phase space((d)-(f))for three radius cases.The competition between the beam focusing effect and CFI can be clearly expected in figure 5(c).Some filaments at the beam front regions can be observed from the figure.The modulation of beam density(at the beam center regions)in the transverse direction due to the CFI can also be observed,indicating the competition between the beam focusing effect and CFI.As mentioned before,the transverse electric fields at the beam center(defocusing force)increase with the beam radius.Thus,comparing figures 5(a)-(c),one can find that the beam slice radius of multi-layer structure increases with initial beam radius.From the longitudinal phase space distributions,the multi-layer structure is more significant for relativistic electron beam with radiusrb?c/ωpe(i.e.figures 5(e),(f)),indicating the significant nonuniformity ofExalong the transverse direction.

    We also compare the density evolutions of electron beams with two transverse density profiles:Gaussian(figures 6(a),(c))and flat-top(figures 6(b),(d)).The radius of the electron beam is selected to berb=7.6c/ωpe.For the flat-top distribution,the beam electrons are only focused at the beam edge and the CFI can be fully developed.After filaments merging,three electron filaments with small radius are formed,as indicated in figure 6(d).Figure 7 shows comparisons of the longitudinal beam phase space((a)and(b))and energy spectrum((c)and(d))with two density profile cases.The multi-layer structure of the longitudinal phase space for the Gaussian distribution is clearly indicated in figure 7(a).However,for the flat-top case(figure 7(b)),the energy spread of beam electrons is shown to be smaller,which can also be identified by comparing figures 7(c)and(d).In addition,the peak in the beam energy spectrum is seen to move to the low energy side for the flat-top case and the number of beam electrons with high energy(113 MeV)decreases.

    Figure 4.Longitudinal spatial profiles of longitudinal wakefield Ex(a)at y=0 and the energy spectrum of electron beam(b)for three beam radius cases: rb=c/ωpe,5c/ωpe and 7.6c/ωpe.The beam travel time is ωpet=704.

    Figure 5.Comparisons of the electron beam density nbe((a)-(c))and longitudinal phase space((d)-(f))for rb=c/ωpe,5c/ωpe and 7.6c/ωpe.The selected travel time in the figure is ωpet=704.

    Figure 6.Influences of transverse density profiles(Gaussian((a)and(c))and flat-top((b)and(d)))on the density distributions of the electron beam at two travel times(ωpet=0((a)and(b))and ωpet=531.2((c)and(d))).

    Figure 7.Distributions of the longitudinal phase space and energy spectrum of beam electrons with different density profiles:Gaussian((a)and(c))and flat-top((b)and(d)).The travel times in the figure is ωpet=531.2.

    The multi-layer structures indicate that the beam electrons with high energy are located at the beam edge(where the magnitude of longitudinal wakefield is smaller than that at the beam center),which is negative for the beam stopping.As indicated in figure 7(c),a peak can be observed at the high energy regions.This cannot be fixed with a plasma of different density.The reason is that the transverse wakefield coexists with the longitudinal wakefield(which is for collective beam stopping)and the nonuniformity of the transverse field is mainly determined by the beam density profile.The beam duration is a critical parameter for the multi-layer structures in this work.For the beam duration larger than the plasma period,the charge neutralization can be achieved and the TSI can be excited.The coupled TSI and CFI develops and the multi-layer structure cannot be observed anymore.The magnitude of the transverse wakefield depends on the beam density,but is independent on the beam energy.Therefore,as the beam energy increases,the structure is formed on a longer time scale due to a heavier beam electron mass.Meanwhile,as the ratio of beam density to plasma density increases,a stronger wakefield can be expected and the structure is formed on a shorter time scale.These findings may help us to understand the dynamic of the beam with large radius propagating through the plasma,which should provide some references for the plasma based beam dump.

    5.Conclusion

    Motivated by science and commerce,investigation of beamplasma system is a topic of significant interest.The density evolution and collective stopping of relativistic electron beams in plasmas are frequently encountered in many applications,such as the fast ignition and plasma-based beam dump.The wakefield excited by short electron beam plays a vital role in the time evolutions and energy loss.The longitudinal and transverse wakefields are responsible for the beam stopping and focusing respectively.In this work,2D PIC simulations were used to study the density evolution and collective stopping of the short electron beam withrb?c/ωpetraveling through the plasmas.Due to the longitudinal nonuniformity of the transverse wakefield,the multilayer structure is formed in the plasmas.Furthermore,the nonuniformity of the longitudinal wakefield in the transverse direction contributes to the formation of the multi-layer structure in beam phase space.The longitudinal wakefield causes a large energy spread of beam electrons and significant beam energy extraction in dense plasmas.These dynamic evolutions are essential for the plasma-based beam dump.Dimensional effect(2D versus 3D)in PIC simulation,as a key role,can change quantitative results significantly.Especially for the nonlinear interactions between the beam and plasma,the magnitude of wakefield generated by a short beam in background plasmas will vary a lot from 2D to 3D simulations.However,the nonuniformity of the transverse wakefield(EyandBz)in the longitudinal direction is the essential reason for the multi-layer structure formation,which is independent on the dimension of the simulation.Therefore,we believe that the findings in this work should also be presented in the 3D simulations.

    Acknowledgments

    This work is supported by National Natural Science Foundation of China(Nos.12 075 046 and 11 775 042).

    猜你喜歡
    王友
    3D fluid model analysis on the generation of negative hydrogen ions for negative ion source of NBI
    Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
    Conductivity effects during the transition from collisionless to collisional regimes in cylindrical inductively coupled plasmas
    High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma
    Influence of magnetic filter field on the radiofrequency negative hydrogen ion source of neutral beam injector for China Fusion Engineering Test Reactor
    Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model?
    Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma
    Time-resolved radial uniformity of pulse-modulated inductively coupled O2/Ar plasmas?
    Experimental investigation of the electromagnetic effect and improvement of the plasma radial uniformity in a large-area,very-high frequency capacitive argondischarge
    Spatio-temporal measurements of overshoot phenomenon in pulsed inductively coupled discharge?
    啦啦啦免费观看视频1| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| av网站在线播放免费| 中文字幕高清在线视频| 伊人久久大香线蕉亚洲五| 亚洲第一av免费看| 狠狠狠狠99中文字幕| 国产欧美日韩综合在线一区二区| 久久久久久久久免费视频了| 下体分泌物呈黄色| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 亚洲国产中文字幕在线视频| 国产精品一区二区精品视频观看| 日韩欧美一区视频在线观看| 国产精品自产拍在线观看55亚洲 | 国产精品美女特级片免费视频播放器 | 亚洲成人手机| 亚洲国产成人一精品久久久| 亚洲精品国产精品久久久不卡| 超色免费av| 大片电影免费在线观看免费| 老熟妇乱子伦视频在线观看| 国产主播在线观看一区二区| 久久久久久久久久久久大奶| 欧美另类亚洲清纯唯美| 亚洲专区国产一区二区| 国产精品免费一区二区三区在线 | 中文字幕人妻熟女乱码| 我的亚洲天堂| 黄网站色视频无遮挡免费观看| 亚洲第一av免费看| 日韩人妻精品一区2区三区| 国产区一区二久久| 亚洲欧洲日产国产| 欧美国产精品va在线观看不卡| 成人国产一区最新在线观看| 女性生殖器流出的白浆| 在线观看免费午夜福利视频| 50天的宝宝边吃奶边哭怎么回事| 女人被躁到高潮嗷嗷叫费观| 精品国产一区二区三区四区第35| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 亚洲自偷自拍图片 自拍| 免费看a级黄色片| 欧美日韩中文字幕国产精品一区二区三区 | 午夜免费鲁丝| 三上悠亚av全集在线观看| 国产成人系列免费观看| 国产免费福利视频在线观看| √禁漫天堂资源中文www| 国产亚洲精品一区二区www | a级毛片在线看网站| 国产单亲对白刺激| 欧美精品亚洲一区二区| 亚洲av美国av| tocl精华| 午夜福利视频精品| 色在线成人网| 人成视频在线观看免费观看| 伦理电影免费视频| 悠悠久久av| 久久久水蜜桃国产精品网| 一区在线观看完整版| 人人妻人人添人人爽欧美一区卜| 不卡一级毛片| 亚洲人成77777在线视频| 最黄视频免费看| 精品国内亚洲2022精品成人 | 国产日韩欧美在线精品| 男女边摸边吃奶| 亚洲欧洲日产国产| 悠悠久久av| 欧美激情极品国产一区二区三区| 欧美日韩福利视频一区二区| 亚洲专区字幕在线| 久热这里只有精品99| 老鸭窝网址在线观看| 国产亚洲欧美精品永久| 亚洲中文字幕日韩| av有码第一页| 亚洲人成伊人成综合网2020| 欧美性长视频在线观看| 久久久欧美国产精品| 最新的欧美精品一区二区| 国产精品久久电影中文字幕 | 少妇粗大呻吟视频| 久久久国产精品麻豆| 亚洲一卡2卡3卡4卡5卡精品中文| 国产亚洲精品一区二区www | 嫁个100分男人电影在线观看| 久久人妻av系列| 国产亚洲av高清不卡| 亚洲精品一二三| 欧美精品一区二区免费开放| 精品少妇内射三级| 亚洲欧美色中文字幕在线| 叶爱在线成人免费视频播放| av网站在线播放免费| 国产精品国产高清国产av | 麻豆av在线久日| www.精华液| 国产精品99久久99久久久不卡| 国产一卡二卡三卡精品| 热99re8久久精品国产| 欧美乱码精品一区二区三区| 波多野结衣av一区二区av| 国产精品av久久久久免费| 亚洲成a人片在线一区二区| 一本综合久久免费| 亚洲视频免费观看视频| 欧美日韩福利视频一区二区| 岛国在线观看网站| 一本一本久久a久久精品综合妖精| 波多野结衣一区麻豆| 人人妻人人添人人爽欧美一区卜| 亚洲国产欧美日韩在线播放| 亚洲性夜色夜夜综合| 亚洲成国产人片在线观看| 高清欧美精品videossex| 精品视频人人做人人爽| av福利片在线| 搡老熟女国产l中国老女人| 国产在线观看jvid| 久久久久国内视频| 久久 成人 亚洲| 精品亚洲成国产av| 欧美亚洲 丝袜 人妻 在线| 黄片播放在线免费| 国产深夜福利视频在线观看| 欧美精品一区二区大全| 黄色丝袜av网址大全| 蜜桃国产av成人99| 国产有黄有色有爽视频| 国产高清国产精品国产三级| 亚洲 国产 在线| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 嫩草影视91久久| 51午夜福利影视在线观看| 免费久久久久久久精品成人欧美视频| 动漫黄色视频在线观看| 欧美激情高清一区二区三区| 国产一区二区 视频在线| 亚洲国产欧美日韩在线播放| 精品国产乱码久久久久久男人| 国产单亲对白刺激| 女同久久另类99精品国产91| 精品人妻熟女毛片av久久网站| 精品熟女少妇八av免费久了| 一本大道久久a久久精品| 国产真人三级小视频在线观看| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 免费少妇av软件| 高清毛片免费观看视频网站 | 性少妇av在线| 少妇 在线观看| 十八禁网站网址无遮挡| 首页视频小说图片口味搜索| 精品国产超薄肉色丝袜足j| 日本黄色日本黄色录像| av网站在线播放免费| 国产精品一区二区免费欧美| 国产男靠女视频免费网站| 精品福利永久在线观看| 久久久久久久久免费视频了| 亚洲专区中文字幕在线| 久久免费观看电影| 国产免费视频播放在线视频| av视频免费观看在线观看| 欧美日韩视频精品一区| 手机成人av网站| 高清视频免费观看一区二区| 精品午夜福利视频在线观看一区 | 人成视频在线观看免费观看| 精品少妇久久久久久888优播| 人人妻,人人澡人人爽秒播| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 国产精品免费视频内射| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美一区二区三区久久| 天天躁狠狠躁夜夜躁狠狠躁| 久久九九热精品免费| 精品高清国产在线一区| 男女无遮挡免费网站观看| 麻豆国产av国片精品| 91九色精品人成在线观看| 国产主播在线观看一区二区| 中文字幕人妻熟女乱码| 欧美日韩精品网址| 日韩成人在线观看一区二区三区| av福利片在线| 久久久久网色| 亚洲性夜色夜夜综合| 欧美国产精品一级二级三级| 国产高清视频在线播放一区| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 欧美午夜高清在线| 久久精品国产99精品国产亚洲性色 | 亚洲精品久久成人aⅴ小说| 超色免费av| 美女福利国产在线| 国产一区有黄有色的免费视频| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲| 久久久水蜜桃国产精品网| 亚洲综合色网址| 国产亚洲av高清不卡| 老司机影院毛片| 黄色丝袜av网址大全| 亚洲精品在线观看二区| 国产熟女午夜一区二区三区| 色老头精品视频在线观看| 国产欧美亚洲国产| 久久ye,这里只有精品| 老熟女久久久| 亚洲一卡2卡3卡4卡5卡精品中文| 女同久久另类99精品国产91| 狠狠婷婷综合久久久久久88av| 成人三级做爰电影| 欧美+亚洲+日韩+国产| 69av精品久久久久久 | 天堂中文最新版在线下载| 日本av手机在线免费观看| 亚洲欧美色中文字幕在线| 最新的欧美精品一区二区| 91精品国产国语对白视频| 欧美黑人精品巨大| 中文字幕色久视频| 一区二区三区激情视频| 少妇裸体淫交视频免费看高清 | 精品熟女少妇八av免费久了| 日本黄色视频三级网站网址 | 2018国产大陆天天弄谢| 国产亚洲精品第一综合不卡| 亚洲色图 男人天堂 中文字幕| 国产成+人综合+亚洲专区| 欧美黄色片欧美黄色片| 日本wwww免费看| 麻豆乱淫一区二区| av网站免费在线观看视频| 久久精品国产综合久久久| 一区福利在线观看| 菩萨蛮人人尽说江南好唐韦庄| 日韩中文字幕欧美一区二区| 啪啪无遮挡十八禁网站| 热99国产精品久久久久久7| 大香蕉久久网| 免费在线观看日本一区| 日韩欧美一区视频在线观看| 18禁裸乳无遮挡动漫免费视频| 黄色 视频免费看| 叶爱在线成人免费视频播放| 窝窝影院91人妻| 国产免费av片在线观看野外av| 夜夜夜夜夜久久久久| 悠悠久久av| 久久精品91无色码中文字幕| 手机成人av网站| 99精国产麻豆久久婷婷| 国产成人免费无遮挡视频| 午夜福利一区二区在线看| 免费观看a级毛片全部| av免费在线观看网站| 极品教师在线免费播放| 丝袜美足系列| 亚洲,欧美精品.| 国产成人一区二区三区免费视频网站| 丝袜在线中文字幕| 久久人妻熟女aⅴ| av国产精品久久久久影院| h视频一区二区三区| 最黄视频免费看| 久热爱精品视频在线9| 欧美激情高清一区二区三区| 在线观看舔阴道视频| 老汉色av国产亚洲站长工具| 亚洲第一欧美日韩一区二区三区 | tocl精华| 妹子高潮喷水视频| 亚洲一区二区三区欧美精品| 午夜激情av网站| 99在线人妻在线中文字幕 | 精品少妇一区二区三区视频日本电影| 国产av精品麻豆| 看免费av毛片| 免费黄频网站在线观看国产| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区蜜桃| 十八禁人妻一区二区| 色老头精品视频在线观看| 俄罗斯特黄特色一大片| 在线观看舔阴道视频| 国产在线免费精品| 免费在线观看日本一区| 老汉色av国产亚洲站长工具| 国产精品一区二区在线不卡| 国产精品久久久人人做人人爽| 久久久久国产一级毛片高清牌| 999久久久精品免费观看国产| 一级片免费观看大全| 黑人操中国人逼视频| 精品人妻熟女毛片av久久网站| 国产亚洲欧美精品永久| 男女无遮挡免费网站观看| 日韩大片免费观看网站| 色在线成人网| 国产成人欧美在线观看 | 俄罗斯特黄特色一大片| 天天躁日日躁夜夜躁夜夜| 深夜精品福利| 国产亚洲午夜精品一区二区久久| 国产又色又爽无遮挡免费看| 欧美成人免费av一区二区三区 | 久久精品国产亚洲av香蕉五月 | 国产精品国产高清国产av | 欧美日韩亚洲国产一区二区在线观看 | 又黄又粗又硬又大视频| 午夜福利欧美成人| 亚洲成国产人片在线观看| 亚洲专区国产一区二区| 中文字幕另类日韩欧美亚洲嫩草| 青青草视频在线视频观看| 久久久欧美国产精品| 大片电影免费在线观看免费| 成年动漫av网址| 欧美人与性动交α欧美精品济南到| 国产精品久久久久久精品电影小说| 十八禁网站免费在线| 大码成人一级视频| 99久久人妻综合| 无人区码免费观看不卡 | 国产欧美日韩综合在线一区二区| 欧美精品亚洲一区二区| 1024视频免费在线观看| 久久精品国产综合久久久| 亚洲第一青青草原| 国产亚洲午夜精品一区二区久久| 午夜福利一区二区在线看| 亚洲成a人片在线一区二区| 999久久久国产精品视频| 久久免费观看电影| 欧美激情久久久久久爽电影 | 又紧又爽又黄一区二区| 1024视频免费在线观看| 色婷婷久久久亚洲欧美| 亚洲黑人精品在线| 亚洲精品一卡2卡三卡4卡5卡| 久久99一区二区三区| 精品国内亚洲2022精品成人 | 黄频高清免费视频| xxxhd国产人妻xxx| 日韩欧美三级三区| 50天的宝宝边吃奶边哭怎么回事| 十八禁网站免费在线| 9色porny在线观看| 99re在线观看精品视频| 欧美另类亚洲清纯唯美| 午夜福利乱码中文字幕| 久久久久久亚洲精品国产蜜桃av| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品国产亚洲av高清涩受| 久久久久久久大尺度免费视频| 亚洲熟女精品中文字幕| 成人av一区二区三区在线看| 黄色片一级片一级黄色片| 久久人人97超碰香蕉20202| a在线观看视频网站| 侵犯人妻中文字幕一二三四区| 精品免费久久久久久久清纯 | 国产精品久久久av美女十八| 黄色片一级片一级黄色片| 自线自在国产av| 午夜精品久久久久久毛片777| 免费在线观看影片大全网站| 国产成人一区二区三区免费视频网站| 国产野战对白在线观看| 夜夜夜夜夜久久久久| 一个人免费看片子| 人妻久久中文字幕网| 久久国产精品男人的天堂亚洲| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 成年女人毛片免费观看观看9 | 一二三四社区在线视频社区8| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 精品国内亚洲2022精品成人 | cao死你这个sao货| 国产精品亚洲一级av第二区| 汤姆久久久久久久影院中文字幕| 婷婷成人精品国产| 亚洲天堂av无毛| 纯流量卡能插随身wifi吗| 欧美日韩福利视频一区二区| 精品亚洲成a人片在线观看| 国产精品秋霞免费鲁丝片| 99国产极品粉嫩在线观看| 成人国产av品久久久| 亚洲伊人久久精品综合| 在线观看一区二区三区激情| 国产精品久久电影中文字幕 | 国产精品一区二区在线观看99| 精品少妇内射三级| 一个人免费在线观看的高清视频| 国产在视频线精品| 满18在线观看网站| 无限看片的www在线观看| 自线自在国产av| 男女下面插进去视频免费观看| 中文字幕高清在线视频| 黄频高清免费视频| 亚洲午夜精品一区,二区,三区| 久久天躁狠狠躁夜夜2o2o| 天堂俺去俺来也www色官网| 成人黄色视频免费在线看| 亚洲专区中文字幕在线| av片东京热男人的天堂| 亚洲少妇的诱惑av| 成人国产av品久久久| 精品欧美一区二区三区在线| 国产精品国产av在线观看| 我的亚洲天堂| 啦啦啦 在线观看视频| 午夜福利视频精品| 亚洲av第一区精品v没综合| 九色亚洲精品在线播放| 69av精品久久久久久 | 精品一区二区三区四区五区乱码| 丝袜喷水一区| 法律面前人人平等表现在哪些方面| 宅男免费午夜| 国产精品一区二区免费欧美| 90打野战视频偷拍视频| 又黄又粗又硬又大视频| 国产福利在线免费观看视频| 精品福利观看| tocl精华| 丁香六月天网| 高清av免费在线| 91麻豆精品激情在线观看国产 | 国产aⅴ精品一区二区三区波| 日本精品一区二区三区蜜桃| 精品高清国产在线一区| 国产成人精品无人区| 手机成人av网站| 一区二区三区精品91| 成人特级黄色片久久久久久久 | 中文亚洲av片在线观看爽 | 免费在线观看日本一区| 亚洲av电影在线进入| 国产精品免费大片| 国产在线观看jvid| 成人18禁高潮啪啪吃奶动态图| 午夜福利乱码中文字幕| 久久久久视频综合| 在线观看一区二区三区激情| 最新美女视频免费是黄的| 五月开心婷婷网| 亚洲专区字幕在线| 一级,二级,三级黄色视频| 黑人巨大精品欧美一区二区mp4| 午夜精品久久久久久毛片777| 精品亚洲成a人片在线观看| 大码成人一级视频| 午夜福利,免费看| 国产av国产精品国产| 国产av精品麻豆| 精品福利观看| 999精品在线视频| 99精品久久久久人妻精品| 在线观看人妻少妇| 99久久精品国产亚洲精品| 99re在线观看精品视频| 我的亚洲天堂| 黑丝袜美女国产一区| 欧美日韩av久久| 免费看十八禁软件| 嫩草影视91久久| 久久久国产一区二区| 亚洲视频免费观看视频| 在线播放国产精品三级| 捣出白浆h1v1| 亚洲av片天天在线观看| 国产成人精品无人区| 国产精品亚洲一级av第二区| 一区二区av电影网| 国产av一区二区精品久久| 久久人妻av系列| 免费高清在线观看日韩| 美女国产高潮福利片在线看| 青草久久国产| www.自偷自拍.com| av又黄又爽大尺度在线免费看| av欧美777| 人人澡人人妻人| 国产免费现黄频在线看| www日本在线高清视频| 亚洲国产欧美一区二区综合| 18禁观看日本| 色综合欧美亚洲国产小说| 亚洲久久久国产精品| 一本久久精品| 嫁个100分男人电影在线观看| 国产精品影院久久| 亚洲欧洲精品一区二区精品久久久| 性高湖久久久久久久久免费观看| 国产老妇伦熟女老妇高清| 国产黄频视频在线观看| 男女午夜视频在线观看| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 9191精品国产免费久久| 电影成人av| 国产精品久久久久久精品古装| 一本—道久久a久久精品蜜桃钙片| 蜜桃在线观看..| 精品国产国语对白av| av网站免费在线观看视频| 亚洲国产成人一精品久久久| 国产男女内射视频| 19禁男女啪啪无遮挡网站| 欧美性长视频在线观看| 久9热在线精品视频| 少妇精品久久久久久久| 50天的宝宝边吃奶边哭怎么回事| 免费观看av网站的网址| 欧美亚洲日本最大视频资源| 99久久国产精品久久久| 考比视频在线观看| 99国产精品99久久久久| 亚洲精品自拍成人| 99国产极品粉嫩在线观看| 多毛熟女@视频| 国产三级黄色录像| av免费在线观看网站| 日本wwww免费看| 亚洲视频免费观看视频| 久久 成人 亚洲| 国产精品 国内视频| 少妇粗大呻吟视频| www.精华液| 啦啦啦 在线观看视频| a级毛片黄视频| 成人黄色视频免费在线看| 国产真人三级小视频在线观看| 色精品久久人妻99蜜桃| 在线观看66精品国产| 日本撒尿小便嘘嘘汇集6| 在线永久观看黄色视频| 欧美日韩国产mv在线观看视频| 国产精品久久久久久人妻精品电影 | 国产成人精品无人区| 超碰97精品在线观看| 大码成人一级视频| 亚洲精品粉嫩美女一区| 黄色成人免费大全| 亚洲人成伊人成综合网2020| 国产精品免费一区二区三区在线 | 丰满饥渴人妻一区二区三| 欧美人与性动交α欧美精品济南到| 国产不卡一卡二| 看免费av毛片| 免费观看人在逋| 亚洲精品在线美女| 亚洲精品乱久久久久久| 国产一区二区三区综合在线观看| 在线十欧美十亚洲十日本专区| 精品国产乱码久久久久久小说| 久久精品国产亚洲av香蕉五月 | 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区 视频在线| 国产精品av久久久久免费| 一边摸一边做爽爽视频免费| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看完整版高清| 午夜福利影视在线免费观看| 麻豆国产av国片精品| 一区二区日韩欧美中文字幕| 久久香蕉激情| 两个人免费观看高清视频| 久久 成人 亚洲| 汤姆久久久久久久影院中文字幕| 国产精品久久久av美女十八| 日本av手机在线免费观看| 夜夜爽天天搞| 乱人伦中国视频| 亚洲欧洲精品一区二区精品久久久| 少妇裸体淫交视频免费看高清 | 亚洲成人手机| 国产精品成人在线| 午夜福利欧美成人| 亚洲午夜理论影院| 国产精品成人在线| 日韩精品免费视频一区二区三区| 亚洲精品av麻豆狂野| 夜夜爽天天搞| 精品亚洲成国产av| 国产av国产精品国产| 这个男人来自地球电影免费观看| 国产亚洲精品第一综合不卡| 黄色丝袜av网址大全| 性色av乱码一区二区三区2| 亚洲专区中文字幕在线| 最近最新中文字幕大全电影3 | 麻豆国产av国片精品| 欧美变态另类bdsm刘玥| av电影中文网址| tocl精华| 国产精品国产av在线观看|