• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of gas pressure on ion energy at substrate side of Ag target radio-frequency and very-high-frequency magnetron sputtering discharge

    2022-03-10 03:50:36WeichenNI倪煒臣ChaoYE葉超YiqingYU虞一青andXiangyingWANG王響英
    Plasma Science and Technology 2022年2期

    Weichen NI(倪煒臣),Chao YE(葉超),2,*,Yiqing YU(虞一青),2 and Xiangying WANG(王響英)

    1 School of Physics Science and Technology,Soochow University,Suzhou 215006,People’s Republic of China

    2 Key Laboratory of Thin Films of Jiangsu Province,Soochow University,Suzhou 215006,People’s Republic of China

    3 Medical College,Soochow University,Suzhou 215123,People’s Republic of China

    Abstract The effect of gas pressure on ion energy distribution at the substrate side of Ag target radio-frequency(RF)and very-high-frequency(VHF)magnetron sputtering discharge was investigated.At lower pressure,the evolution of maximum ion energy(E)with discharge voltage(V)varied with the excitation frequency,due to the joint contribution of the ion generation in the bulk plasma and the ion movement across the sheath related to the ion transit sheath time τi and RF period τRF.At higher pressure,the evolution of E-V relationships did not vary with the excitation frequency,due to the balance between the energy lost through collisions and the energy gained by acceleration in the electric field.Therefore,for RF and VHF magnetron discharge,lower gas pressure can have a clear influence on the E-V relationship.

    Keywords:excitation frequency,gas pressure,ion energy,magnetron sputtering discharge

    1.Introduction

    Magnetron sputtering is an important tool for the deposition of thin films.Progress made on the magnetron sputtering system in the last several decades has led to its widespread use.During deposition of film using magnetron sputtering,the energy of an ion incident on a substrate surface has a strong influence on the growth and properties of the film,such as the microstructure,crystallography,phase composition,and mechanical and optical properties.Therefore,to understand the mechanism of film growth,the ion energy at the substrate surface is of great interest[1-14].

    According to the model of the ion energy distribution at the substrate surface in radio-frequency(RF)magnetron sputtering developed by Garofanoet al[1],the energy of an ion incident on the substrate surface was related to the ejection of atoms from the target,their transport in the gas phase,and their acceleration in the sheath near the surface of the substrate[1].However,for magnetron sputtering,near the target surface,there existed an electric field pointing toward the target,which resulted from the self-bias voltage[2,14].The action of this electric field on the sputtered ions led to the positive ions returning to the target and the negative ions going into the bulk plasma[2,14].As a result,for metal target magnetron sputtering,the sputtered positive ions could not go into the bulk plasma and had no contribution to the ion energy at the substrate side.The ion energy measured at the substrate side was mainly related to the ionization process(Penning ionization of sputtered atoms,electron impact ionization and charge-exchange collisions)in the bulk plasma,the thermalization process of the sputtered atoms through collisions with the gas atoms,and the movement of ions passing through the sheath.

    The ionization and thermalization processes in the bulk plasma are closely related to the operating conditions,such as the working pressure,discharge power,excitation frequency and electrode spacing[1].The effect of the working pressure,discharge power and electrode spacing on the ion energy has been paid more attention[1,6,9,10],but the effect of excitation frequency,especially at different working pressures,has seldom been reported.

    The movement of ions passing through the sheath mainly depends on the excitation frequency,but is also related to the working pressure.If the ion transit sheath time τiis comparable with the RF period τRFof excitation frequency,namely τi<τRFor τi~τRF,the ions can pass through the sheath in one RF period or less[13,15].The ion energy at the substrate side mainly depends on the initial energy of the ions and the time at which they enter the sheath[1,16].If τi>τRF,the ions cannot pass through the sheath quickly[13,15].The ion energy at the substrate side mainly depends on the constant averaged potential acting upon the ions[1,16].In addition,in the case of higher pressure,the charge-exchange collisions can also have some influence on the ion movement in the sheath.Therefore,the effect of excitation frequency at different pressures on the ion energy also needs to be considered.

    Many investigations on the ion energy at the substrate side have been carried out,but these works focused on the common 13.56 MHz RF magnetron sputtering discharge.For high-frequency magnetron sputtering[17-21],however,the effect of working pressure on the ion energy at the substrate side is lacking.Therefore,in this work,the ion energy at the substrate side of Ag target magnetron sputtering driven by 13.56 MHz,27.12 MHz and 60 MHz in the pressure range of 1.0-10.0 Pa was investigated.

    2.Experimental setup

    The experiment was carried out using a homemade magnetron sputtering system,as shown in figure 1.The cylindrical vacuum chamber(350 mm in diameter and 300 mm in height)was used as the main chamber,in which a water-cooled circular Ag target(99.99%pure,50 mm in diameter)was placed at the top,and the electrically floated stainless steel substrate holder(100 mm in diameter)was set at the bottom,about 70 mm away from the center of the target surface.The Ag target was biased with 13.56 MHz,27.12 MHz and 60 MHz power through the corresponding matching box.The wall of the chamber was electrically grounded.The discharge voltage and sputtering power for the fundamental frequencies of 13.56 MHz,27.12 MHz and 60 MHz were measured using an Impedans Octiv SuiteV-Iprobe[22,23],which was connected between the matching box and the Ag target.The base pressure of the magnetron sputtering system was less than 5×10-4Pa,evacuated with a 600 l/s turbo-molecular pump backed up with a mechanical pump.Ar was used as the discharge gas and the working pressure was chosen at about 1.0-10.0 Pa with a flow rate of 2.5-17.0 sccm.

    The ion velocity distribution function(IVDF)was measured using a Semion HV-2500 retarding field energy analyzer(RFEA),which was placed at the substrate holder.The IVDF is described as follows[24,25]:

    whereIcis the detector current,φris the applied retarding grid potential,mis the mass of ions,Tgis the total geometrical transparency of grids,andA0is the total ion acceptance area and is equal to 21.5 mm2for the top face with 37×0.83 mm diameter orifices.

    The electron temperatureTe,electron densityne,plasma potentialVp,and floating potentialVfof the bulk plasma were estimated from theI-Vcharacteristics[12],which were measured at about 20 mm above the center of the substrate surface using a Hiden Analytical RF compensated cylindrical ESPion Langmuir probe.

    A horseshoe-type annular magnetic field on the surface of the cathode(Ag target)was distributed by two permanent magnets placed behind the cathode.The intensities of the magnetic field on the cathode surface and at the position of the Langmuir probe,which were measured using a Hall-probe gaussmeter,were about 1182 G and 10 G,respectively.For the application of a cylindrical Langmuir probe in the magnetron sputtering system,in order to avoid the depletion of low-energy electrons by the magnetic field,it was necessary that the radius of the probe(R)should be smaller than the Larmor radius of electrons(rce),i.e.R?rce.Our previous work proved that the condition ofR?rcewas satisfied and the probe measurement was sufficiently reliable in the downstream region[12].

    3.Results and discussion

    Figure 2 shows the IVDFs at pressure of 1.0-10.0 Pa for 13.56 MHz,27.12 MHz and 60 MHz driven magnetron sputtering discharge at a discharge voltage(sputtering power)ofVrms=116±8 V(P=205±4 W),Vrms=62±1 V(P=216±4 W)andVrms=134±5 V(P=78±2 W),respectively.At the pressure of 1.0 Pa,the higher ion energy is found in a single peak at around 49.5 eV,52.5 eV and 51.2 eV,respectively.However,for the 60 MHz magnetron sputtering,some small low-energy peaks can be obviously seen due to the charge-exchange collisions in the sheath at higher frequency[1].Upon increasing the pressure,the single peaks all shift to the lower-energy side,and smaller low-energy peaks are developed.This shift of the peaks to lower energy and the development of a low-energy tail with the pressure increase have usually been observed in RF magnetron sputtering[2,8,10,11],and were thought to be due to the increase in collisions in the sheath.At the pressures of 7.5 Pa and 10.0 Pa,a low energy shoulder or low energy peak can be seen due to the increase in collisions within the sheath.The variation of the maximum ion energyE(designated as the ion energy at maximum peak)with the pressure is shown in figure 3.The maximum ion energy is seen to decrease with the pressure increase for the three excitation frequencies.

    Figure 1.Schematic of the magnetron sputtering discharge setup.

    Figure 2.Variation of IVDFs with pressure for the(a)13.56 MHz,(b)27.12 MHz and(c)60 MHz driven magnetron sputtering discharge at a discharge voltage of Vrms=116±8 V, Vrms=62±1 V and Vrms=134±5 V,respectively.

    Figure 3.Variation of maximum ion energy with pressure for the 13.56 MHz,27.12 MHz and 60 MHz driven magnetron sputtering discharge at a discharge voltage of Vrms=116±8 V,Vrms=62±1 V and Vrms=134±5 V.

    Figure 4 shows the variation of IVDFs with discharge voltage(or sputtering power)at the pressure of 1.0 Pa for the 13.56 MHz,27.12 MHz and 60 MHz magnetron sputtering cases.The evolution trends are found to be completely different for the different excitation frequencies.For the 13.56 MHz magnetron sputtering,with a discharge voltage increase,the ion energy peak shifts monotonously to the lowenergy region.In contrast,for the 60 MHz magnetron sputtering,the single peak shifts monotonously to the high-energy region.However,for the 27.12 MHz magnetron sputtering,the ion energy peak firstly shifts to the low-energy region in the discharge voltage range of 49-60 V and then to the highenergy region in the discharge voltage range of 60-71 V.This evolution of IVDFs with discharge voltage is completely different for the 13.56 MHz and 60 MHz magnetron sputtering operation,and is seldom reported.These results show that at lower pressure the increase in excitation frequency leads to an obvious difference in the evolution of IVDFs with discharge voltage.

    Figure 5 shows the variation of IVDFs with discharge voltage(or sputtering power)at the pressure of 10.0 Pa for the 13.56 MHz,27.12 MHz and 60 MHz magnetron sputtering.The evolution trends are different from those at 1.0 Pa.With the discharge voltage increase,the ion energy peaks all shift to the high-energy region.In addition,many small energy peaks develop simultaneously in both the low-energy region and the high-energy region,particularly for the 60 MHz magnetron sputtering,due to the increase in charge-exchange collisions at higher pressure and higher frequency.The results show that at higher pressure the excitation frequency has a weak influence on the evolution of IVDFs with discharge voltage.

    Figure 4.Variation of IVDFs with discharge voltage(or sputtering power)at the pressure of 1.0 Pa for the(a)13.56 MHz,(b)27.12 MHz,and(c)60 MHz driven magnetron sputtering discharge.

    Figure 5.Variation of IVDFs with discharge voltage(or sputtering power)at the pressure of 10.0 Pa for the(a)13.56 MHz,(b)27.12 MHz,and(c)60 MHz driven magnetron sputtering discharge.

    By plotting the dependence of maximum ion energy(E)on discharge voltage(V),the effect of pressure on theE-Vrelationship can be clearly seen,as shown in figure 6.It can be found that the pressure has an obvious influence on theE-Vrelationships for the 13.56 MHz and 27.12 MHz driven magnetron sputtering discharge.For the 13.56 MHz driven magnetron sputtering discharge,theE-Vrelationship shows a decreasing trend at the pressure of 1.0 Pa.As the pressure increases from 3.5 Pa to 7.5 Pa,theE-Vrelationships change from the decreasing trend to the initially decreasing and subsequently increasing trend,while at the pressure of 10.0 Pa,theE-Vrelationship shows an increasing trend.For the 27.12 MHz driven magnetron sputtering discharge,in the pressure range of 1.0-5.0 Pa,theE-Vrelationships all show an initially decreasing and then increasing trend,but the voltage for this change shifts to the low-voltage region with increasing pressure.In the pressure range of 7.5-10.0 Pa,theE-Vrelationships all show an increasing trend.For the 60 MHz driven magnetron sputtering discharge,theE-Vrelationships all show an increasing trend in the pressure range of 1.0-10.0 Pa.Therefore,for different excitation frequencies,the increase in pressure leads to differentE-Vrelationships.

    The relationships between the average ion energy and the voltage applied across the electrodes in the capacitive RF plasma discharge and the RF magnetron sputtering discharge have been investigated through the years[1,26-29].For the low-pressure RF plasma,theE-Vrelationship was found to follow a linearly increasing trend[26,27],and was thought to relate to the energy gained in the sheath due to fewer collisions[26].However,for the RF magnetron sputtering discharge,the energy of the main peak was found to decrease with increasing bias voltage,which was attributed to a slight decrease in the electron temperature induced by the change in plasma composition as the Ag atoms were sputtered in greater numbers[1].Therefore,theE-Vrelationships are different for capacitive RF plasma discharge and RF magnetron sputtering discharge.In this work,however,more complexE-Vrelationships are obtained,which are found to relate to the working pressure and the driving frequency.

    4.Discussion

    According to Garofano’s model and van Hattum’s analysis of metal target RF magnetron sputtering,the ion energy at the substrate side is mainly related to the ionization process of sputtered atoms in the bulk plasma,the thermalization process of the ions with background gas atoms,and the movement of ions passing through the sheath.The possible ionization processes taking place in the bulk plasma and in the sheath are plotted as shown in figure 7,and the possible mechanism of the complexE-Vrelationship is discussed as follows.

    4.1.Ionization and thermalization in the bulk plasma

    For metal target magnetron sputtering,only the sputtered atoms can go into the bulk plasma,and they are mostly ionized in the bulk plasma through Penning ionization and electron impact ionization[1].

    At lower pressure,collisionless plasma can be obtained.The electron impact ionization and the thermalization process in the bulk plasma can be neglected.As the electron density is equal to or lower than 1016m-3,and the metastable atoms of the working gas are abundant and have relatively high energies,a likely possibility is the Penning ionization process[30-32].For Ag target magnetron sputtering,the ionization potential(7.58 eV)of Ag[1]is less than the metastable energy(11.55 and 11.72 eV)of Ar*[30].In addition,at the pressure of 1.0 Pa,the electron density measured using the Langmuir probe is in the range of(0.13-1.48)×1016m-3(for the 13.56 MHz discharge at a discharge voltage of 104-124 V),(0.19-3.14)×1016m-3(for the 27.12 MHz discharge at a discharge voltage of 51-71 V),and(0.15-0.41)×1016m-3(for the 60 MHz discharge at a discharge voltage of 88-128 V),respectively.Therefore,the conditions for the Penning ionization are well satisfied,and the Penning ionization(Ar*+Ag→Ag++Ar+e)between the Ar metastable atom(with kinetic energy)and the neutral Ag atom dominates the generation of ions.As a result,the energy of Ag+depends on the kinetic energy of Ar metastable atoms.However,the Ar metastable atoms are produced by the energetic electrons impacting near the target surface.Because the electrons gain the energy in the electric

    field by theE×Brotation,the increase in discharge voltage should increase the electron energy[33].However,the electron density is found to increase with increasing discharge voltage.This leads to the enhancement of electron-electron collisions and a decrease in electron temperature[12],as shown in figure 8.Therefore,at lower pressure,the increase in discharge voltage should lead to a decrease in ion energy in the bulk plasma.

    With a pressure increase,the collision effect increases gradually.The electron impact ionization becomes an important way to produce the ions in the bulk plasma.Therefore,the ion energy is related to the electron temperature.Figure 8 shows the variation of electron temperature with discharge voltage for the 13.56 MHz,27.12 MHz and 60 MHz magnetron sputtering discharges.It can be seen that with the increase in discharge voltage,the electron temperature almost shows a decreasing trend due to the enhancement of electron-electron collisions.The decrease in electron temperature leads to a decrease in ion energy by electron impact ionization.Therefore,at higher pressure,the increase in discharge voltage leads to a decrease in ion energy in the bulk plasma.In addition,the thermalization process of the ions with the background gas atoms and the chargeexchange collisions also lead to a decrease in ion energy in the bulk plasma.

    Figure 6.Variation of maximum ion energy with discharge voltage at different pressures for the(a)13.56 MHz,(b)27.12 MHz and(c)60 MHz driven magnetron sputtering discharge.

    Figure 7.Possible ionization processes taking place in the bulk plasma and in the sheath.

    4.2.Movement of ions passing through the sheath

    Because the ion energy measured at the substrate side depends on the energy of ions in the bulk plasma and the energy of ions gained in the sheath,the movement of ions passing through the sheath also has an important influence on the ion energy at the substrate side.

    The movement of ions passing through the sheath is related to the ratio of the ion transit sheath time τito the RF period τRF,dependent on the excitation frequency and working pressure.According to the bulk plasma densityn0,electron temperatureTe,plasma potentialVp,and floating potentialVfmeasured using the Langmuir probe,the ion transit time τiis estimated using the following equation[13]:

    where the mean sheath widthsˉis obtained as follows[34,35]:

    and the mean sheath potential dropis estimated in terms of=Vp-Vf[9,36],where ε0is vacuum permittivity,eis the electronic charge,Miis the ion mass(here,taking the mass of Ar+,i.e.Mi=40 because the plasma composition,including Ar+and Ag+,is very difficult to measure).Figure 9 shows the variation of τi/τRFratios with discharge voltage at different pressures for the 13.56 MHz,27.12 MHz and 60 MHz driven magnetron sputtering discharge.The τi/τRFratios all decrease with the discharge voltage increase.

    Figure 8.Variation of electron temperature with discharge voltage at different pressures for the(a)13.56 MHz,(b)27.12 MHz and(c)60 MHz driven magnetron sputtering discharge.

    Figure 9.Ratios of ion transit time τi to RF period τRF with increasing discharge voltage at different pressures for the(a)13.56 MHz,(b)27.12 MHz and(c)60 MHz driven magnetron sputtering discharge.

    At lower pressure,the charge-exchange collisions in the sheath are weak.Therefore,the energy of ions gained in the sheath is related to the sheath potential[15,26],dependent on the ratio of the ion transit sheath time τito the RF period τRF.From figure 9,it can be seen that the τi/τRFratios at the pressure of 1.0 Pa are in the range of 6.9-2.1,6.8-3.3,and 23.0-14.8 for the 13.56 MHz,27.12 MHz and 60 MHz driven discharges,respectively.The results mean that the cycle of ions passing through the sheath decreases from many RF cycles to several RF cycles for the 13.56 MHz and 27.12 MHz driven discharges.In the case of many RF cycles,the ion responds to the time averaged sheath potential and gains the maximum energy[15].With the discharge voltage increase,the τi/τRFratios decrease,and thus the energy of an ion gained in the time averaged sheath potential decreases.In the case of several RF cycles,the ion can traverse the sheath in several RF periods,and gains energy by the instantaneous acceleration of sheath potential.Because the sheath potential increases with discharge voltage,the ion energy gradually increases.As a result,the decrease in ion energy in the bulk plasma is offset by the increase in ion energy in the sheath,leading to a change in theE-Vrelationship from a decreasing trend to an increasing trend.However,for the 60 MHz driven discharge,the ions must take many more RF cycles to traverse the sheath.Thus,the ion can gain more energy during traversing the sheath.As a result,the energy decrease in the bulk plasma is completely offset by the energy increase in the sheath due to the increase in sheath potential,leading to the monotonous increase of theE-Vrelationship.

    With a pressure increase,the charge-exchange collisions in the sheath increase gradually.When the ions pass through the sheath,they go through a sufficient number of collisions,reaching a balance between energy lost through collisions and energy gained by acceleration in the electric field[26].Therefore,the ion energy mainly depends on the time averaged sheath potential.At the pressures of 3.5 Pa and 5.0 Pa,the energy decrease in the bulk plasma is partly offset by the energy increase in the sheath due to the increase in sheath potential.Thus,the evolution of theE-Vrelationship shows a similar trend to that of 1.0 Pa.At the pressures of 7.5 Pa and 10.0 Pa,the energy decrease in the bulk plasma is completely offset by the energy increase in the sheath,leading to an increasing trend in theE-Vrelationship.

    5.Conclusions

    The effect of working pressure on the ion energy distribution at the substrate side of Ag target RF and very-highfrequency(VHF)magnetron sputtering discharge was investigated.At lower pressure,the evolution of maximum ion energy(E)with discharge voltage(V)varied with the excitation frequency,and exhibited a decreasing trend for the 13.56 MHz driven magnetron sputtering discharge,an initially decreasing and then increasing trend for the 27.12 MHz driven magnetron sputtering discharge,and an increasing trend for the 60 MHz driven magnetron sputtering discharge.This evolution is due to the joint contribution of the ion generation in the bulk plasma and the ion movement across the sheath related to the ion transit sheath time τiand the RF period τRFin the collisionless plasma.At higher pressure,the evolutions of theE-Vrelationships all show an increasing trend for the 13.56 MHz,27.12 MHz and 60 MHz driven magnetron sputtering discharges,and do not vary with the excitation frequency.This evolution is related to the balance between the energy lost through collisions and the energy gained by acceleration in the electric field.Therefore,for the RF and VHF magnetron discharge,lower gas pressure can have a clear influence on theE-Vrelationship.

    Acknowledgments

    The work was supported by National Natural Science Foundation of China(No.11275136).

    国产免费视频播放在线视频| 肉色欧美久久久久久久蜜桃| 国精品久久久久久国模美| 寂寞人妻少妇视频99o| 午夜免费男女啪啪视频观看| 亚洲美女搞黄在线观看| 亚洲图色成人| 亚洲av免费高清在线观看| 91精品伊人久久大香线蕉| 99久久精品国产国产毛片| 热re99久久国产66热| 久久热在线av| 午夜福利视频精品| av不卡在线播放| 成人二区视频| 高清视频免费观看一区二区| 波多野结衣一区麻豆| 在线观看国产h片| 人妻少妇偷人精品九色| 成年动漫av网址| av有码第一页| 亚洲国产精品一区二区三区在线| 一级片'在线观看视频| 人妻人人澡人人爽人人| 精品亚洲成国产av| 精品国产一区二区三区久久久樱花| 人人妻人人澡人人看| 啦啦啦中文免费视频观看日本| 国产精品国产三级国产专区5o| 两个人免费观看高清视频| 男女免费视频国产| √禁漫天堂资源中文www| 99久国产av精品国产电影| 丁香六月天网| 国产免费一级a男人的天堂| 各种免费的搞黄视频| 国产在视频线精品| 精品一区二区三卡| 男女边摸边吃奶| 有码 亚洲区| 欧美国产精品va在线观看不卡| 久久精品国产鲁丝片午夜精品| 五月开心婷婷网| 五月伊人婷婷丁香| 中文字幕av电影在线播放| 丝袜在线中文字幕| 日韩,欧美,国产一区二区三区| av播播在线观看一区| 亚洲情色 制服丝袜| 99热6这里只有精品| 人妻 亚洲 视频| 人成视频在线观看免费观看| 91久久精品国产一区二区三区| 九色亚洲精品在线播放| 日韩成人伦理影院| 国产一区二区在线观看日韩| 最近中文字幕高清免费大全6| 热re99久久精品国产66热6| 国产成人一区二区在线| 99热国产这里只有精品6| 亚洲 欧美一区二区三区| 黄色 视频免费看| 91精品三级在线观看| 波多野结衣一区麻豆| 久久99热这里只频精品6学生| 美女视频免费永久观看网站| 国产一区二区激情短视频 | 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 女性被躁到高潮视频| 国产色婷婷99| 男女免费视频国产| 少妇的逼好多水| 亚洲国产色片| 国产精品人妻久久久久久| 婷婷色麻豆天堂久久| 在线观看国产h片| 久久精品久久久久久久性| 欧美激情 高清一区二区三区| 久久99蜜桃精品久久| 亚洲精品久久午夜乱码| 新久久久久国产一级毛片| 最近中文字幕2019免费版| 成人国语在线视频| 99热6这里只有精品| 久久亚洲国产成人精品v| 久久99蜜桃精品久久| 看免费av毛片| av免费在线看不卡| 欧美 亚洲 国产 日韩一| 午夜福利视频在线观看免费| 亚洲精品视频女| 国产精品一区二区在线不卡| 男人舔女人的私密视频| 99精国产麻豆久久婷婷| 色吧在线观看| 最近的中文字幕免费完整| 免费看不卡的av| 国产精品成人在线| 中文字幕av电影在线播放| 亚洲图色成人| 一级片免费观看大全| 成人18禁高潮啪啪吃奶动态图| 黄网站色视频无遮挡免费观看| 亚洲在久久综合| 日本色播在线视频| 18禁在线无遮挡免费观看视频| 91成人精品电影| 国产成人精品久久久久久| 一级片'在线观看视频| 少妇 在线观看| 色5月婷婷丁香| 婷婷色综合大香蕉| 欧美人与性动交α欧美软件 | 欧美性感艳星| 久久精品国产亚洲av天美| 女性生殖器流出的白浆| 亚洲美女黄色视频免费看| av免费在线看不卡| 国产综合精华液| av片东京热男人的天堂| 91久久精品国产一区二区三区| 国产精品一区www在线观看| 秋霞伦理黄片| 人体艺术视频欧美日本| 26uuu在线亚洲综合色| 中文字幕人妻丝袜制服| 22中文网久久字幕| 亚洲内射少妇av| 人妻人人澡人人爽人人| 亚洲精品一区蜜桃| 亚洲在久久综合| 婷婷色麻豆天堂久久| 精品一区在线观看国产| 日韩成人av中文字幕在线观看| 水蜜桃什么品种好| 老女人水多毛片| 成人亚洲精品一区在线观看| 国产精品一区二区在线观看99| 久久精品久久久久久噜噜老黄| 国产欧美另类精品又又久久亚洲欧美| 久久韩国三级中文字幕| 久久精品国产a三级三级三级| 91精品三级在线观看| 香蕉国产在线看| 免费大片18禁| 老司机影院成人| 国产精品久久久av美女十八| 欧美激情国产日韩精品一区| 免费高清在线观看日韩| 黑丝袜美女国产一区| 日韩一本色道免费dvd| 精品久久久久久电影网| 成人黄色视频免费在线看| 在线看a的网站| av女优亚洲男人天堂| 免费看av在线观看网站| 久久久欧美国产精品| 伦精品一区二区三区| 国产黄色免费在线视频| av片东京热男人的天堂| 久久 成人 亚洲| 国产成人欧美| 少妇精品久久久久久久| 欧美成人午夜免费资源| 女人久久www免费人成看片| 日本黄色日本黄色录像| 国产福利在线免费观看视频| 如日韩欧美国产精品一区二区三区| 制服诱惑二区| 久久久久久久精品精品| 黄色怎么调成土黄色| 精品一区二区三区视频在线| 侵犯人妻中文字幕一二三四区| 精品视频人人做人人爽| 久久国产精品大桥未久av| 欧美精品一区二区大全| 一本色道久久久久久精品综合| 欧美性感艳星| 婷婷成人精品国产| kizo精华| 欧美精品一区二区免费开放| 久久久久人妻精品一区果冻| 黄网站色视频无遮挡免费观看| 18+在线观看网站| 男女下面插进去视频免费观看 | av电影中文网址| 久久韩国三级中文字幕| 久久午夜福利片| 中文字幕亚洲精品专区| 免费在线观看完整版高清| av有码第一页| 国产精品国产三级国产av玫瑰| 久久97久久精品| 久热久热在线精品观看| 久久av网站| 超色免费av| 国产高清国产精品国产三级| 亚洲欧美中文字幕日韩二区| 精品亚洲乱码少妇综合久久| 永久网站在线| 中文天堂在线官网| 九色成人免费人妻av| 在现免费观看毛片| 亚洲欧美色中文字幕在线| 欧美精品一区二区大全| 26uuu在线亚洲综合色| 国产1区2区3区精品| 国产乱人偷精品视频| 久久久久国产网址| 精品久久久久久电影网| 丰满少妇做爰视频| 精品人妻一区二区三区麻豆| 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧洲国产日韩| 2021少妇久久久久久久久久久| 巨乳人妻的诱惑在线观看| 精品国产一区二区三区久久久樱花| 精品久久蜜臀av无| 欧美日韩国产mv在线观看视频| 青春草国产在线视频| 亚洲成av片中文字幕在线观看 | 十八禁网站网址无遮挡| 亚洲av成人精品一二三区| 99久国产av精品国产电影| 自线自在国产av| 一级毛片黄色毛片免费观看视频| 色婷婷av一区二区三区视频| 亚洲国产精品一区三区| 人人澡人人妻人| 日本欧美国产在线视频| 亚洲国产精品国产精品| 免费观看av网站的网址| 国产精品欧美亚洲77777| 热re99久久精品国产66热6| 日韩成人伦理影院| 一区二区三区精品91| 精品第一国产精品| 一级黄片播放器| 国产精品麻豆人妻色哟哟久久| 亚洲av国产av综合av卡| 哪个播放器可以免费观看大片| 久久久久久久精品精品| 久久99热6这里只有精品| 久久这里有精品视频免费| 熟女电影av网| 26uuu在线亚洲综合色| 国产成人a∨麻豆精品| 亚洲少妇的诱惑av| 日本免费在线观看一区| 五月玫瑰六月丁香| av女优亚洲男人天堂| 两个人免费观看高清视频| 亚洲av国产av综合av卡| 精品第一国产精品| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| 中国三级夫妇交换| 国内精品宾馆在线| 日韩视频在线欧美| 亚洲精品视频女| 久久99热这里只频精品6学生| 久久精品熟女亚洲av麻豆精品| 久久精品久久久久久噜噜老黄| 久久人人爽人人片av| 在线天堂最新版资源| 日本av手机在线免费观看| 日韩电影二区| 成人国语在线视频| 中文字幕制服av| 亚洲一区二区三区欧美精品| 中文乱码字字幕精品一区二区三区| 色94色欧美一区二区| 9色porny在线观看| 赤兔流量卡办理| 亚洲精品乱久久久久久| 欧美成人精品欧美一级黄| 日韩人妻精品一区2区三区| 一区二区三区乱码不卡18| 免费看光身美女| 精品一区在线观看国产| 国产又爽黄色视频| 一级毛片 在线播放| 欧美亚洲日本最大视频资源| 久久99精品国语久久久| 亚洲欧美日韩另类电影网站| 天天躁夜夜躁狠狠久久av| 丰满少妇做爰视频| 国产一区二区激情短视频 | 免费黄色在线免费观看| a级毛片在线看网站| 午夜91福利影院| 亚洲,欧美,日韩| 有码 亚洲区| 国产色爽女视频免费观看| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 日本色播在线视频| 国产一级毛片在线| 国产一区二区三区av在线| 久久久久网色| 亚洲成av片中文字幕在线观看 | 国产精品欧美亚洲77777| 中文字幕精品免费在线观看视频 | 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 精品熟女少妇av免费看| 日本爱情动作片www.在线观看| 久久狼人影院| 精品少妇黑人巨大在线播放| 七月丁香在线播放| 99热全是精品| 久久鲁丝午夜福利片| 亚洲精品色激情综合| 日韩一区二区三区影片| 宅男免费午夜| 欧美人与性动交α欧美精品济南到 | 亚洲精品一二三| 99热国产这里只有精品6| 精品卡一卡二卡四卡免费| 亚洲少妇的诱惑av| 精品人妻偷拍中文字幕| 久久99热这里只频精品6学生| 国产成人精品一,二区| 超色免费av| 久久精品国产综合久久久 | 在线观看三级黄色| 国产精品久久久久久精品古装| 插逼视频在线观看| 激情五月婷婷亚洲| 久久久久久久国产电影| 全区人妻精品视频| av天堂久久9| 中文字幕亚洲精品专区| 黑丝袜美女国产一区| 国国产精品蜜臀av免费| 国内精品宾馆在线| 青春草视频在线免费观看| 国产一区二区在线观看日韩| 久久久久久人人人人人| 99香蕉大伊视频| 美女视频免费永久观看网站| 国产精品成人在线| 人妻系列 视频| 1024视频免费在线观看| 少妇熟女欧美另类| 免费高清在线观看视频在线观看| 天堂俺去俺来也www色官网| 人体艺术视频欧美日本| 日韩av免费高清视频| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| 少妇人妻 视频| 丰满少妇做爰视频| 蜜桃在线观看..| www.色视频.com| 亚洲五月色婷婷综合| 人人妻人人澡人人爽人人夜夜| 国产精品免费大片| 久久久久久人人人人人| 国产福利在线免费观看视频| 久久97久久精品| 日韩精品免费视频一区二区三区 | 天堂8中文在线网| 免费黄频网站在线观看国产| 免费人妻精品一区二区三区视频| 咕卡用的链子| 亚洲成av片中文字幕在线观看 | 91aial.com中文字幕在线观看| 欧美 亚洲 国产 日韩一| 不卡视频在线观看欧美| 一本—道久久a久久精品蜜桃钙片| 一本大道久久a久久精品| 亚洲,欧美,日韩| 少妇的丰满在线观看| 成人二区视频| 亚洲av日韩在线播放| 亚洲综合精品二区| 在线看a的网站| 亚洲国产色片| 天天操日日干夜夜撸| 老司机影院成人| 亚洲国产精品一区二区三区在线| 国产精品99久久99久久久不卡 | 国产男女超爽视频在线观看| 最近手机中文字幕大全| 亚洲av日韩在线播放| 精品一区二区三区视频在线| 亚洲精品自拍成人| 另类精品久久| 精品国产乱码久久久久久小说| 久久久久久久大尺度免费视频| 国产熟女午夜一区二区三区| 久久人人97超碰香蕉20202| 亚洲av成人精品一二三区| 国产在线一区二区三区精| 亚洲国产av影院在线观看| 久久精品国产鲁丝片午夜精品| 国产成人91sexporn| 在线观看人妻少妇| 一边亲一边摸免费视频| 少妇的逼水好多| 丰满乱子伦码专区| 亚洲国产精品999| 美女xxoo啪啪120秒动态图| 久久av网站| 看免费av毛片| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 久久99一区二区三区| 亚洲国产精品成人久久小说| 亚洲激情五月婷婷啪啪| 亚洲精品中文字幕在线视频| 日韩不卡一区二区三区视频在线| 国产高清三级在线| 男女边吃奶边做爰视频| 人人妻人人爽人人添夜夜欢视频| 91精品国产国语对白视频| 国产男女超爽视频在线观看| 老司机亚洲免费影院| 国产永久视频网站| 啦啦啦啦在线视频资源| 免费播放大片免费观看视频在线观看| 午夜福利视频在线观看免费| 一级a做视频免费观看| 国产又色又爽无遮挡免| 免费观看性生交大片5| av有码第一页| 久久国内精品自在自线图片| 美女大奶头黄色视频| 欧美成人午夜精品| 成人黄色视频免费在线看| 国产爽快片一区二区三区| 精品一区二区免费观看| 亚洲国产看品久久| 9色porny在线观看| 久久精品人人爽人人爽视色| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 国产精品久久久久久精品古装| 久久精品久久久久久噜噜老黄| 新久久久久国产一级毛片| 国产一区亚洲一区在线观看| 国产精品人妻久久久久久| 黄色怎么调成土黄色| 国产免费现黄频在线看| 国产精品久久久久成人av| 一级片免费观看大全| 欧美丝袜亚洲另类| 久久这里只有精品19| 一级爰片在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲欧美日韩卡通动漫| 国产熟女欧美一区二区| 国产精品一区www在线观看| 欧美日韩成人在线一区二区| 日韩制服丝袜自拍偷拍| 国产一区亚洲一区在线观看| 亚洲精品一二三| 亚洲欧美日韩卡通动漫| 天堂中文最新版在线下载| 超色免费av| 日韩av不卡免费在线播放| 国产av国产精品国产| 少妇高潮的动态图| 亚洲,一卡二卡三卡| 亚洲中文av在线| 一级片'在线观看视频| 夜夜爽夜夜爽视频| 这个男人来自地球电影免费观看 | 精品熟女少妇av免费看| 午夜91福利影院| 欧美日本中文国产一区发布| 黄片播放在线免费| 欧美激情国产日韩精品一区| 色5月婷婷丁香| 成人18禁高潮啪啪吃奶动态图| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 久久久a久久爽久久v久久| 日韩不卡一区二区三区视频在线| 日韩制服丝袜自拍偷拍| 一区二区av电影网| 久久精品国产鲁丝片午夜精品| 人人妻人人澡人人看| 在线观看www视频免费| 国产 一区精品| 啦啦啦啦在线视频资源| 波多野结衣一区麻豆| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 97人妻天天添夜夜摸| 男女啪啪激烈高潮av片| 久久人人爽人人片av| av播播在线观看一区| 蜜桃国产av成人99| av免费观看日本| 中文字幕亚洲精品专区| 国产麻豆69| 精品人妻一区二区三区麻豆| 免费不卡的大黄色大毛片视频在线观看| 午夜影院在线不卡| 亚洲欧洲日产国产| 欧美激情 高清一区二区三区| 色视频在线一区二区三区| 在线天堂中文资源库| 男男h啪啪无遮挡| 日韩成人伦理影院| 一级a做视频免费观看| 人妻 亚洲 视频| 国产成人av激情在线播放| 成年人免费黄色播放视频| 在线观看免费高清a一片| 国产免费现黄频在线看| 精品国产国语对白av| 欧美最新免费一区二区三区| 一本久久精品| 亚洲国产精品一区二区三区在线| 国产老妇伦熟女老妇高清| 久久99一区二区三区| 久久久久网色| 中文天堂在线官网| 少妇 在线观看| av在线观看视频网站免费| 久久精品久久久久久久性| 欧美人与性动交α欧美精品济南到 | 亚洲国产av影院在线观看| 涩涩av久久男人的天堂| 亚洲国产欧美在线一区| 久久这里有精品视频免费| 中国国产av一级| 国产毛片在线视频| 国产成人av激情在线播放| 国产欧美亚洲国产| 在线观看免费高清a一片| 久久女婷五月综合色啪小说| 在线观看美女被高潮喷水网站| 人妻一区二区av| 久久99热这里只频精品6学生| 亚洲在久久综合| 啦啦啦视频在线资源免费观看| 国产在线视频一区二区| 亚洲国产精品一区三区| 午夜视频国产福利| 欧美另类一区| 国产毛片在线视频| 啦啦啦中文免费视频观看日本| 99精国产麻豆久久婷婷| av女优亚洲男人天堂| 亚洲精品久久久久久婷婷小说| 久久久久国产精品人妻一区二区| 在线看a的网站| 97人妻天天添夜夜摸| 午夜日本视频在线| 亚洲av综合色区一区| xxx大片免费视频| 久久久久国产网址| 午夜激情av网站| 又大又黄又爽视频免费| 日韩欧美一区视频在线观看| 中文字幕av电影在线播放| 一级片免费观看大全| av线在线观看网站| 在线观看国产h片| av.在线天堂| 亚洲成人一二三区av| 欧美精品国产亚洲| 精品酒店卫生间| 久久精品夜色国产| av片东京热男人的天堂| 欧美+日韩+精品| 国产精品嫩草影院av在线观看| 波多野结衣一区麻豆| 成年女人在线观看亚洲视频| 热re99久久国产66热| 国产极品天堂在线| 久久久a久久爽久久v久久| 日本爱情动作片www.在线观看| 欧美精品一区二区大全| 天天躁夜夜躁狠狠躁躁| 精品一区在线观看国产| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美日韩在线播放| 日本猛色少妇xxxxx猛交久久| 国产成人精品在线电影| 日韩一区二区三区影片| av又黄又爽大尺度在线免费看| 久久鲁丝午夜福利片| 欧美xxxx性猛交bbbb| 日本vs欧美在线观看视频| 久久亚洲国产成人精品v| 国产精品熟女久久久久浪| 免费在线观看黄色视频的| 热99久久久久精品小说推荐| 中文字幕精品免费在线观看视频 | 男人舔女人的私密视频| 激情五月婷婷亚洲| 中文字幕另类日韩欧美亚洲嫩草| 如何舔出高潮| 激情五月婷婷亚洲| 狠狠婷婷综合久久久久久88av| 晚上一个人看的免费电影| √禁漫天堂资源中文www| 国产av精品麻豆| 国产精品久久久久久久久免| 欧美国产精品一级二级三级| 国产熟女欧美一区二区| 女人被躁到高潮嗷嗷叫费观| 国产片内射在线| 天堂中文最新版在线下载| 熟妇人妻不卡中文字幕| 美女xxoo啪啪120秒动态图| 纵有疾风起免费观看全集完整版| 久久精品国产a三级三级三级| 欧美日韩视频高清一区二区三区二|