• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An electromagnetic wave attenuation superposition structure for thin-layer plasma

    2022-03-10 03:50:22WenyuanZHANG張文遠(yuǎn)HaojunXU徐浩軍BinbinPEI裴彬彬XiaolongWEI魏小龍PeiFENG馮佩andLinZHANG張琳
    Plasma Science and Technology 2022年2期
    關(guān)鍵詞:張琳小龍

    Wenyuan ZHANG(張文遠(yuǎn)),Haojun XU(徐浩軍),Binbin PEI(裴彬彬),2,Xiaolong WEI(魏小龍),Pei FENG(馮佩) and Lin ZHANG(張琳)

    1 Science and Technology on Plasma Dynamics Laboratory,Air Force Engineering University,Xi’an 710038,People’s Republic of China

    2 School of Electronic Engineering,Xidian University,Xi’an 710126,People’s Republic of China

    Abstract This work proposes a new plasma super-phase gradient metasurfaces(PS-PGMs)structure,owing to the limitations of the thin-layer plasma for electromagnetic wave attenuation.Based on the cross-shaped surface unit configuration,we have designed the X-band absorbing structure through the dispersion control method.By setting up the Drude dispersion model in the computer simulation technology,the designed phase gradient metasurfaces structure is superposed over the plasma,and the PS-PGMs structure is constructed.The electromagnetic scattering characteristics of the new structure have been simulated,and the reflectance measurement has been carried out to verify the absorbing effect.The results demonstrate that the attenuation effect of the new structure is superior to that of the pure plasma structure,which invokes an improved attenuation effect from the thin layer plasma,thus enhancing the feasibility of applying the plasma stealth technology to the local stealth of the strong scattering part of a combat aircraft.

    Keywords:electromagnetic wave attenuation,thin-layer plasma,superimposed structure,plasma stealth technology

    1.Introduction

    Plasma stealth is a novel concept in stealth technology.It has the advantage of real-time adjustment of the absorption band without affecting the aerodynamic performance of the aircraft or the bandwidth of the absorption wave[1-3].At the macro level,when electromagnetic waves interact with the plasma,multiple propagation mechanisms such as reflection,refraction,and attenuation will occur.Whereas,at the micro level,the response of free electrons in the plasma to the electric field component of the electromagnetic wave will alter the propagation characteristics.Owing to the plasma attenuation characteristics of the electromagnetic waves,the application of plasma stealth technology can effectively attenuate the radar cross section of the target.However,the attenuation effect has a strong relationship with the characteristic parameter distribution and the thickness of the plasma.Generally,a more ideal absorption effect is achieved exclusively for the electron density of a certain order of magnitude,for which the thickness of the plasma exceeds 10 cm[4-8].However,excessive thickness will increase the weight and volume of the discharge system,and cannot meet the lightweight requirements of the modern fighter aircrafts.Henceforth,certain scholars have proposed a multilayer composite electromagnetic attenuation structure,to solve the constraint of plasma thickness[9,10].Although the application of the composite structure can reduce the thickness of the plasma,a multilayer composite structure needs to be superimposed to achieve the expected attenuation effect,which results in large overall thickness[11].Furthermore,the attenuation frequency band of the composite structure is a fixed value,and the frequency band parameters are difficult to adjust since the adjustment range is limited[12].Therefore,this structure will fail,while dealing with the plasma stealth for multi-band broadband radars.The multilayer composite electromagnetic attenuation structure is often a longitudinal superposition of several absorbing materials,and the material can only absorb a part of the incident electromagnetic waves,and hence,cannot fundamentally promote and improve the absorption effect of the plasma itself.To address these problems,we propose a new stealth structure of plasma super-phase gradient metasurfaces(PS-PGMs)to remedy the limitation of the thickness of plasma stealth technology.

    Phase gradient metasurfaces is a two-dimensional plane of structural units arranged with varying geometric parameters in a certain order,based on the phase mutation and polarization control characteristics of the metamaterial structure.In the applications of stealth technology,by introducing the phase mutation of the wavelength scale and rational arrangement of the unit structure,abnormal reflection and refraction can be generated,thereby attenuating the electromagnetic wave energy to achieve the stealth requirement[13-16].When the phase gradient metasurfaces and the plasma are superimposed,owing to the abnormal reflection effect of the phase gradient metasurfaces on electromagnetic waves,the lateral propagation distance of the electromagnetic waves can be extended.To achieve a better absorbing effect,the propagation distance of the electromagnetic waves in the plasma will increase.Increasing the propagation distance of the electromagnetic waves in the plasma can achieve a better attenuation effect in the thin plasma structure,thereby reducing the thickness of the plasma.Furthermore,it solves the limitation of the thickness of the plasma stealth and the multilayer composite structure stealth.The electromagnetic wave reflection direction is according to the active control characteristics of the phase gradient metasurfaces.This work proposes a new type of attenuation structure for PS-PGMs.Plasma is employed as the attenuation medium for the electromagnetic waves.By adjusting the characteristic parameters of the plasma,the attenuation frequency band of the electromagnetic waves can be altered.Simultaneously,the gradient metasurfaces are utilized to adjust the electromagnetic wave to change the reflection direction of the incident electromagnetic wave,and to increase the propagation distance of the electromagnetic wave in the plasma,thereby remedying the effective attenuation of the electromagnetic wave in the thin-layer plasma structure.

    2.Design of phase gradient metasurfaces

    In this section,the theory of PGMs design will be introduced,and the PGMs structure obtained will be simulated and experimentally studied,as a prerequisite for the design of the superposition structure.

    2.1.The theory of PGMs design

    From the above expression,we get the abnormal reflection of electromagnetic waves that can be achieved for a reasonably designed phase gradient of the periodic structure.

    2.2.Characteristics of PGMs

    The cross-shaped structure has the advantages of a simple structure and easy adjustment of the geometric parameters.It is currently the most extensively used and most well-known basic unit structure of meta-materials[18,19].In this work,the design method in[20]has been employed and adapted to the needs of this work,and PGMs with a cross shape as the basic unit have been designed.The basic unit structure is shown in figure 2(a).Accordingly,the intermediate dielectric plate is FR4(εr=4.3,tanδ=0.025),the thickness ist,the side length isl,and the width of the cross-shaped metal plate isa.

    Figure 2(c)shows the structural diagram of the metasurfaces after the unit structure is composed.At 10 GHz,the metasurfaces are designed with the above-mentioned structural geometric parameters such that the phase difference between the adjacent structural units in thex-direction andydirection is Δφ=60°.Therefore,the modulus of the phase gradient is1000π/75 rad m-1.The abnormal reflection angle of the metasurface is 58°,as calculated from equation(9).

    Figure 1.Schematic diagram of PGMs design principle.

    Figure 2.(a)Basic unit structure of the PGMs,(b)energy flow simulation diagram of PGMs,(c)schematic diagram of PGMs,(d)experimental device for reflectance test,(e)experimental results and simulation results of the reflectance test.

    Figure 3.Comparison of the simulation of the reflectivity between PS-PGMs and the plasma structure for a pressure of 10 Pa,thickness of 6 cm,and power of 600 W.

    To verify the designed PGMs structure,the frequency domain solver of computer simulation technology(CST)has been employed to solve the reflectance and energy flow diagram of the metasurfaces.Further,the reflectance test experiment has been carried out.The experimental device is shown in figure 2(d).According to figure 2(b),the designed PGMs can produce an abnormal reflection with a reflection angle of about 58° to the perpendicularly incident electromagnetic wave.The experimental and simulation results of the reflectance test are shown in figure 2(e).The experimental test and simulation results are basically consistent.The designed PGMs structure can effectively reduce the reflectivity when the electromagnetic waves are incident perpendicularly.In the vicinity of 10 GHz,the reflectivity can exceed 10 dB.

    3.Simulation research

    To verify the electromagnetic attenuation characteristics of PS-PGMs,a geometric model of PS-PGMs has been established in the CST simulation platform,and its attenuation characteristics are solved by simulation.The method of setting the characteristic parameters is used to establish a plasma layered model in CST to simulate plasma parameters more accurately.The set electron density is the plasma distribution,for the case of a single peak.In the Drude model in CST,the plasma frequencyωpand collision frequencyνmare substituted.In the control model,the bottom plate is set as a metal plate.

    Figure 3 shows the comparison of the simulation of the reflectivity between PS-PGMs and the plasma structure for a pressure of 10 Pa,thickness of 6 cm,and power of 600 W.It can be seen from the figure that the attenuation effect after the superposition of the PGMs structure is superior to that before the superposition.In the X-band,the attenuation effect of PSPGMs is significantly enhanced,and the maximum attenuation value has increased from-15 to-20 dB.Compared with the plasma structure,the attenuation frequency band is wider,and the two effective attenuation frequency bands are added between 10.0 and 10.5 GHz.Hence,the proposed PS-PGMs structure can enhance the electromagnetic wave attenuation effect.

    Figure 4.Reflectivity of PS-PGMs under different powers at 10 Pa pressure and 6 cm thickness.

    Figure 5.Reflectivity of PS-PGMs under different air pressures at 500 W power and 6 cm thickness.

    Figure 6.Schematic diagram of electromagnetic scattering characteristics test system.

    Figure 7.Reflectivity test results when the plasma thickness is 3 cm.

    The attenuation characteristics of PS-PGMs under different power at 10 Pa and 6 cm thickness are displayed in figure 4.Accordingly,the working frequency range is below that of the metasurfaces,and the effective attenuation band gradually shifts to the high-frequency direction with the increase of power,thus enhancing the attenuation effect.Thus,the attenuation in this frequency band is primarily produced by the plasma,and the plasma electron density gradually increases with the increasing power.On one hand,the dominant effect of plasma collisional absorption becomes more pronounced due to the increase in electron density.On the other hand,the increase in electron density leads to a consequent increase in plasma frequency and a shift in the plasma resonance absorption frequency towards a higher frequency.As a result of the combined effect of the above two effects,the plasma absorption effect shifts towards a higher frequency with increasing power,and the attenuation effect is significantly enhanced.For a power of 100 W,the first attenuation band is around 6 GHz,and the reflectivity can reach -10 dB.When the power is increased to 300 W,the first attenuation band appears around 7.5 GHz and the reflectivity drops to -25 dB.When the power steadily increases to 500 W,the first attenuation band shifts to 9 GHz,though the attenuation peak is reduced.In the working frequency range of the metasurfaces,as the power increases,the attenuation frequency band remains unchanged and concentrated between 10 and 11 GHz.For a low power,there is only one attenuation frequency band.With the increase of power,the attenuation frequency band increases.When the power is increased to 500 W,there are three effective attenuation frequency bands,and the attenuation peak value is proximate to -20 dB.

    The attenuation effect of PS-PGMs under different air pressures at a thickness of 6 cm and power of 500 W,is shown in figure 5.We find from the simulation results that the attenuation effect for the pressure values of 5 Pa and 10 Pa,is basically the same.However,when the air pressure rises,the attenuation frequency bandwidth will gradually increase.When the air pressure rises to 50 Pa,the entire frequency band acquires attenuation characteristics despite the reduction in the attenuation peak.The attenuation bandwidth is markedly widened,particularly under high pressure.It is believed that under the plasma condition,the plasma will appear extremely inhomogeneous at high pressure,and the attenuation effect will be reduced.The attenuation effect of PS-PGMs has been enhanced owing to the following reasons,viz,the high air pressure that leads to an increased plasma inhomogeneity,the abnormal reflection of the electromagnetic waves caused by the PGMs,the significant increase of the propagation distance of the electromagnetic waves in the lateral direction,and the multiple reflections and refractions of the electromagnetic waves.Hence the attenuation effect significantly improves.

    4.Experimental results and data analysis

    4.1.Experimental study on electromagnetic scattering characteristics of inductively coupled plasma

    In this section,the experiment of electromagnetic scattering characteristics of the ICP structure is reported.The schematic diagram of the experimental system is shown in figure 6.The chamber structure employed in the test consists of 3 cm and 6 cm vacuum quartz chambers.

    The reflectivity test results for a plasma thickness 3 cm are shown in figure 7.While processing the results,only the test results of the effective attenuation frequency band are given to observe the effective attenuation effect in the attenuation frequency band in detail,and the frequency band without attenuation effect is omitted.Figure 7(a)displays the test results of 5-7 GHz.The attenuation effect in this frequency band increases with the increase of the discharge power,though the increase effect is not marked.When the power is increased from 300 to 500 W,the attenuation effect is almost unchanged.It indicates that the attenuation effect is almost unaffected by power in the low-frequency range.Figure 7(b)shows the test results of 10-13 GHz.Accordingly,the attenuation effect of this frequency band is completely different from that of the low-frequency band.When the discharge power is 100 W,there is negligible attenuation effect in this frequency band.For a power increased up to 300 W,the attenuation effect is unsatisfactory.When the power is increased to 500 W,the attenuation effect is quickly enhanced.The attenuations in both the 10.3-10.9 GHz and 11.6-12.7 GHz bands exceed -10 dB,and the reflectivity at 12.2 GHz reaches -40 dB.This demonstrates that the attenuation frequency of the plasma at high frequency is significantly affected by power.With the increase of power,the attenuation effect at high frequency emerges from nothing,and the attenuation effect is very ideal.

    Figure 8.Reflectivity test results when the plasma thickness is 6 cm.

    The results of the reflectivity test for a plasma thickness of 6 cm are shown in figure 8.Figure 8(a)shows the test results of 5-7 GHz,and accordingly,the attenuation effect is mainly concentrated between 6 and 7 GHz.The attenuation effect has significantly improved with the increase of the discharge power.When the power exceeds 300 W,the reflectivity goes above -10 dB.By comparing the attenuation effect for the cavity thickness of 3 cm,and for an increase of the thickness of the cavity,the effective attenuation frequency band shifts to high frequency,and the attenuation effect is increasingly affected by the power.Figure 8(b)shows the test results of 8-10.5 GHz.The only one effective attenuation frequency band for a low power,in this frequency range,is concentrated near the 10.2 GHz frequency point,and the attenuation effect at this frequency band does not change much with power.When the power increases,there will be a second effective attenuation band at 8.9 GHz.Further,the reflectivity reaches -20 dB for an increase of power to 500 W.

    Figure 9.Comparison chart of reflectivity test results between plasma and PS-PGMs for a pressure of 10 Pa,thickness of 6 cm,and powers of 100 W and 300 W.

    Figure 10.Reflectivity test results of PS-PGMs with the plasma thickness of 3 cm.

    Figure 11.Reflectivity test result of PS-PGMs when the plasma thickness is 6 cm.

    Combining the above analysis,we conclude that in a pure plasma structure,the attenuation effect will decrease as the plasma thickness decreases.Therefore,this work proposes the PS-PGMs structure,which utilizes the abnormal reflection characteristics of the PGMs to remedy the insufficiency of the poor electromagnetic attenuation effect of the thin-layer plasma.

    4.2.Experimental study on the electromagnetic scattering characteristics of PS-PGMs

    To verify the attenuation simulation results of PS-PGMs,the experiment on the electromagnetic scattering characteristics of the PS-PGMs structure is reported in this section.The test device is the same as the reflectance test experiment.In the experiment,the PGMs has been placed at the bottom of the plasma chamber,whereas the PGMs has been replaced by a metal plate in the control experiment.

    The results from the measurement for a chamber thickness of 6 cm and air pressure of 10 Pa,are shown in figure 9.The solid line is the test result before superimposing the PGMs.Generally,the attenuation effect has improved with the increase of power.When the discharge power is increased,a new effective attenuation section will appear in the low frequency range.Further,the attenuation peak at high frequencies will increase with the increase of power.However,the attenuation frequency band is narrow overall,and the attenuation effect is still not ideal.When the power is 100 W,compared with the attenuation effect of PS-PGMs,the attenuation effect of the plasma is not ideal for low power.There is hardly any attenuation effect at the low frequency band,and the attenuation band near 10.2 GHz is very narrow.The attenuation effect of PS-PGMs has appreciably improved.An attenuation frequency band appears at the 8.6 GHz frequency point,specifically near the effective frequency of the PGMs,and the reflectivity reaches -17 dB.The attenuation frequency band has attained significant attenuation effect between 9.5 and 10.1 GHz.When the power is increased to 300 W,the attenuation effect of the un-superposed structure reaches -10 dB in the low frequency band and -28 dB at 10.2 GHz respectively,though the attenuation band is narrow and the attenuation effect is not ideal.The reflectivity of PSPGMs in the low frequency range has reached -15 dB,specifically between 9.5 and 10.1 GHz,and the reflectivity has been reduced to -20 dB,besides improving the attenuation effect.Henceforth,for a discharge power,the absorbing effect of the plasma is relatively weak.The decrease in the reflectivity is primarily caused by the abnormal reflection of the PGMs.The attenuation effect is unsatisfactory when there is no superimposed structure.This owes to the plasma generated in the thin-layer chamber having a significant inhomogeneity,and the propagation distance of the reflected wave in the chamber being short,thus resulting in an unsatisfactory attenuation effect.After being superimposed with PGMs,the lateral propagation distance of the reflected electromagnetic wave increases,which improves the absorbing effect to a certain extent.

    The results from the measurement of PS-PGMs for an air pressure of 10 Pa and chamber thickness of 3 cm are shown in figure 10.The attenuation effect of PS-PGMs in the range of 5-7 GHz does not vary significantly with the power,since the attenuation effect of this frequency band is mainly produced by plasma.By comparing the attenuation effect diagram for this frequency band of the plasma,we find that the attenuation peak of PS-PGMs has been reduced,though the attenuation frequency band has become wider.For a power of 500 W,the attenuation in the 5-6 GHz band reaches about -10 dB.The attenuation effect of PS-PGMs in the range of 9-12 GHz does not change significantly with power.However,since the operating frequency of the PGMs is 10 GHz,the attenuation effect around 10 GHz is enhanced.Compared with the attenuation effect of pure plasma,the PS-PGMs has a certain attenuation effect in the frequency range of 9.5-10.6 GHz,and the reflectivity is reduced to -18 dB.

    The results from the measurement of PS-PGMs,for an air pressure 10 Pa and chamber thickness 6 cm,are shown in figure 11.The attenuation effect of PS-PGMs in the range of 5-7 GHz improves with the increase of power.However,for a steady power increase,the attenuation effect basically does not alter with the increase of power.By comparing the plasma attenuation effect in this frequency band,we find that for a power 100 W,the attenuation effect has been improved to a certain extent.The reflectivity near 6.2 GHz has been reduced from-5 to-10 dB.However,for a steady increase of power,the attenuation effect does not change.In the 8.5-11.0 GHz frequency band,compared with the attenuation results of pure plasma,the attenuation effect in the 9.6-10.2 GHz frequency band exceeds-10 dB,and the peak value reaches-20 dB.In the vicinity of 8.7 GHz,the plasma structure has a better attenuation effect for an increasing power.However,PSPGMs has a good attenuation effect at low power,and the attenuation frequency band will shift when the power increases.

    According to the above analysis,the greatest advantage of the attenuation effect of PS-PGMs,when compared with the pure plasma structure,is the formation of ideal attenuation effect near the operating frequency point of the PGMs.Furthermore,from the comparison of the experimental data,we find that the attenuation effect of PS-PGMs is less sensitive to the change of power,and the attenuation effect does not appreciably change for a power increased from 300 to 500 W.Compared with the simulation results,the experiment of the electromagnetic scattering characteristics of the PSPGMs structure,reported in this section,is consistent with the trend of the simulation structure,and the attenuation peak value whereas the absorption frequency band range is slightly different.It may be caused by the approximate treatment of the plasma model in the simulation and the power loss in the test process,though it does not affect the proposed PS-PGMs structure to improve the electromagnetic wave attenuation of the pure plasmonic structure.

    5.Conclusion

    A novel stealth structure of PS-PGMs has been proposed,which is intended for the application of local stealth in the strong scattering parts of the stealth aircraft.First,based on the cross-shaped basic unit structure,a PGMs structure for the X-band is designed.The theoretical calculation and numerical simulation results show that the PGMs structure can achieve a 58° deflection for a perpendicular incidence of the TE wave.The results from the reflectivity test experiment are consistent with that of the simulations.The reflectivity can be attenuated in excess of -10 dB at 10 GHz,and the abnormal reflection angle and attenuation effect can meet the stealth requirement.Second,a simulation model of PS-PGMs has been established and its attenuation characteristics were studied.By comparing the reflectance measurement results under different conditions of pressure,thickness,and power,it can be confirmed that the PS-PGMs structure has a more effective attenuation effect on the electromagnetic waves than the plasma absorbing structure does.Finally,the results from the reflectance measurement experiment show that the attenuation effect of the pure plasma decreases with the decrease of thickness,and the attenuation effect of the thin-layer plasma cannot meet the stealth requirement.However,the superposition of PGMs structure can effectively address this problem.Furthermore,under the high pressure of the thin layer,the electron density of the plasma will be uneven,specifically in the lateral direction.Hence,the electron density distribution is extremely uneven,and the electromagnetic wave in the pure plasma structure has a short lateral distance through the plasma,and the attenuation effect is poor.However,owing to the abnormal reflection effect of the PGMs,the electromagnetic wave propagation distance in the plasma has increased.Instead,the non-uniformity of the electron density is employed for improving the attenuation effect.Generally,the PS-PGMs structure can increase the reflection angle of the incident electromagnetic waves,and extend the propagation distance of the electromagnetic waves in the plasma,besides improving the attenuation effect of the thin-layer plasma.

    Acknowledgments

    The work of this research is supported by National Natural Science Foundation of China(No.12075319)and in part by National Natural Science Foundation of China(No.11805277).Thanks to Han Xinmin,Chang Yipeng and Xu Wenfeng for their help in the experiments.

    猜你喜歡
    張琳小龍
    El regreso del dragón
    few, a few, little, a little小練
    小小小小龍
    我的爺爺
    我的太行
    黃河之聲(2018年21期)2018-10-21 17:40:24
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    劉小龍
    中國篆刻(2016年5期)2016-09-26 07:40:04
    讓“數(shù)”“形”結(jié)合更暢通
    風(fēng)中的祈禱詞
    詩選刊(2015年4期)2015-10-26 08:45:28
    第一次玩飛鏢
    他把我摸到了高潮在线观看| 91在线观看av| 91麻豆av在线| 欧美3d第一页| 99热这里只有是精品在线观看 | 全区人妻精品视频| 欧美黄色淫秽网站| 麻豆国产av国片精品| 给我免费播放毛片高清在线观看| 午夜免费激情av| 久久午夜亚洲精品久久| 俺也久久电影网| 美女cb高潮喷水在线观看| 国产精华一区二区三区| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清专用| 能在线免费观看的黄片| 99在线视频只有这里精品首页| 成人av在线播放网站| 51国产日韩欧美| 国产成人欧美在线观看| 久久精品国产亚洲av天美| 观看免费一级毛片| 亚洲美女搞黄在线观看 | 午夜福利在线观看吧| 午夜老司机福利剧场| 麻豆国产av国片精品| 首页视频小说图片口味搜索| 91麻豆av在线| 淫妇啪啪啪对白视频| 看片在线看免费视频| 啦啦啦韩国在线观看视频| 中文字幕av在线有码专区| 搞女人的毛片| 国产一级毛片七仙女欲春2| 男人舔奶头视频| 成人国产一区最新在线观看| 国产精品影院久久| 3wmmmm亚洲av在线观看| 亚洲av美国av| 黄色视频,在线免费观看| 欧美zozozo另类| 男人和女人高潮做爰伦理| 欧美xxxx性猛交bbbb| 蜜桃亚洲精品一区二区三区| 亚洲av电影不卡..在线观看| 国产大屁股一区二区在线视频| 99精品在免费线老司机午夜| 亚洲午夜理论影院| 国产亚洲精品av在线| 国产乱人伦免费视频| 精品一区二区三区视频在线观看免费| 日本五十路高清| 国产蜜桃级精品一区二区三区| 亚洲精品粉嫩美女一区| 国产黄色小视频在线观看| 国产精品久久视频播放| 精品熟女少妇八av免费久了| 日韩 亚洲 欧美在线| 99精品久久久久人妻精品| 热99re8久久精品国产| 99热这里只有精品一区| 观看免费一级毛片| 亚洲三级黄色毛片| 成人永久免费在线观看视频| 欧美不卡视频在线免费观看| 人妻夜夜爽99麻豆av| 国产一区二区在线观看日韩| 成人国产综合亚洲| 亚洲色图av天堂| 高潮久久久久久久久久久不卡| 日本成人三级电影网站| 国产免费男女视频| 日本免费一区二区三区高清不卡| 97人妻精品一区二区三区麻豆| 天堂√8在线中文| 日韩欧美精品免费久久 | 99视频精品全部免费 在线| 成人毛片a级毛片在线播放| eeuss影院久久| 男女床上黄色一级片免费看| 69人妻影院| 别揉我奶头~嗯~啊~动态视频| 老司机午夜福利在线观看视频| 中文字幕久久专区| 永久网站在线| 美女黄网站色视频| 一本久久中文字幕| 国产单亲对白刺激| 亚洲在线自拍视频| 老熟妇乱子伦视频在线观看| 国产一区二区在线观看日韩| 午夜亚洲福利在线播放| 国产亚洲欧美98| 99久久99久久久精品蜜桃| 波多野结衣高清无吗| 久久久久久大精品| 国产成人aa在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 精品一区二区三区视频在线观看免费| 高清日韩中文字幕在线| 国产黄a三级三级三级人| 最近视频中文字幕2019在线8| 久久6这里有精品| 亚洲五月婷婷丁香| 亚洲欧美激情综合另类| 蜜桃久久精品国产亚洲av| 日韩欧美在线二视频| 内地一区二区视频在线| 男女那种视频在线观看| 尤物成人国产欧美一区二区三区| www.熟女人妻精品国产| 日韩大尺度精品在线看网址| 久久精品国产亚洲av涩爱 | 日韩欧美三级三区| 一级毛片久久久久久久久女| 欧美在线一区亚洲| 午夜免费激情av| 老司机午夜福利在线观看视频| 欧美一级a爱片免费观看看| 麻豆一二三区av精品| 在线a可以看的网站| 日本与韩国留学比较| 欧美精品国产亚洲| а√天堂www在线а√下载| 男插女下体视频免费在线播放| 制服丝袜大香蕉在线| 一区福利在线观看| avwww免费| 在线观看一区二区三区| 欧美激情在线99| avwww免费| 一进一出抽搐gif免费好疼| a级一级毛片免费在线观看| 亚洲人成网站在线播| 午夜福利成人在线免费观看| 很黄的视频免费| 久久午夜亚洲精品久久| 久久久久久久精品吃奶| 成年人黄色毛片网站| 日韩亚洲欧美综合| 99精品久久久久人妻精品| 久久99热6这里只有精品| 一本久久中文字幕| 国产精品久久久久久精品电影| 悠悠久久av| 人妻夜夜爽99麻豆av| 日本熟妇午夜| 精品福利观看| 99视频精品全部免费 在线| 搡老岳熟女国产| 丰满的人妻完整版| 欧美一区二区亚洲| 一个人免费在线观看电影| 性色av乱码一区二区三区2| 久久久色成人| 精品欧美国产一区二区三| 老司机福利观看| 精品久久久久久久久久免费视频| 久久人妻av系列| 色5月婷婷丁香| 国产精品亚洲美女久久久| 免费在线观看影片大全网站| 国产探花极品一区二区| 日韩国内少妇激情av| 亚洲av成人精品一区久久| 久久久久久久久中文| 亚洲最大成人中文| av天堂在线播放| 90打野战视频偷拍视频| 亚洲av美国av| 日韩人妻高清精品专区| 夜夜看夜夜爽夜夜摸| 久久亚洲精品不卡| 精品一区二区免费观看| 在线观看美女被高潮喷水网站 | 中文字幕免费在线视频6| 欧美一级a爱片免费观看看| 757午夜福利合集在线观看| 亚洲精品在线美女| 亚洲成人精品中文字幕电影| 噜噜噜噜噜久久久久久91| 97热精品久久久久久| 欧美另类亚洲清纯唯美| 欧美日本视频| 日韩精品青青久久久久久| 亚洲熟妇中文字幕五十中出| 夜夜爽天天搞| 久久精品国产99精品国产亚洲性色| 中文字幕高清在线视频| 亚洲电影在线观看av| 亚洲美女视频黄频| 欧美成人a在线观看| 十八禁国产超污无遮挡网站| 亚洲成人中文字幕在线播放| 精品熟女少妇八av免费久了| 在线观看免费视频日本深夜| 嫩草影院新地址| 国产综合懂色| 最新中文字幕久久久久| 国内精品久久久久久久电影| 日本黄大片高清| 欧美一区二区亚洲| 免费一级毛片在线播放高清视频| 亚洲av.av天堂| xxxwww97欧美| 两个人的视频大全免费| 99riav亚洲国产免费| 91在线观看av| 国产一区二区在线av高清观看| 精品99又大又爽又粗少妇毛片 | 欧洲精品卡2卡3卡4卡5卡区| 国产av在哪里看| 亚洲欧美清纯卡通| h日本视频在线播放| 国产亚洲欧美在线一区二区| 九色国产91popny在线| 人人妻人人澡欧美一区二区| 99精品久久久久人妻精品| 欧美不卡视频在线免费观看| 极品教师在线免费播放| 午夜精品一区二区三区免费看| 自拍偷自拍亚洲精品老妇| 舔av片在线| 99久久精品国产亚洲精品| 国产在线男女| 午夜福利在线在线| 国产国拍精品亚洲av在线观看| 免费人成视频x8x8入口观看| 最近最新免费中文字幕在线| 午夜精品在线福利| 色精品久久人妻99蜜桃| 欧美成人a在线观看| 给我免费播放毛片高清在线观看| 久久午夜福利片| 日韩av在线大香蕉| 国内精品久久久久久久电影| 精品久久久久久成人av| 两性午夜刺激爽爽歪歪视频在线观看| 国产成人福利小说| 欧美一区二区亚洲| 国产精品亚洲av一区麻豆| 国产精品人妻久久久久久| 日韩精品青青久久久久久| av在线天堂中文字幕| 亚洲人成伊人成综合网2020| 丁香六月欧美| 一区二区三区高清视频在线| 丰满的人妻完整版| 午夜老司机福利剧场| 高清在线国产一区| 麻豆成人av在线观看| 国产精品精品国产色婷婷| 日本一本二区三区精品| 日韩欧美一区二区三区在线观看| 成人亚洲精品av一区二区| 男人舔奶头视频| 日本一二三区视频观看| 久久国产精品影院| 男女视频在线观看网站免费| 国产免费男女视频| 极品教师在线免费播放| 看黄色毛片网站| 88av欧美| 夜夜夜夜夜久久久久| 一个人看的www免费观看视频| 精品久久久久久,| 免费在线观看亚洲国产| 看十八女毛片水多多多| 久久久久久久久久黄片| 啪啪无遮挡十八禁网站| 成人精品一区二区免费| 成人三级黄色视频| 在线观看午夜福利视频| 国产精品野战在线观看| 色噜噜av男人的天堂激情| 禁无遮挡网站| 搡老熟女国产l中国老女人| 一区福利在线观看| 性插视频无遮挡在线免费观看| 欧美一级a爱片免费观看看| 国产精品影院久久| a在线观看视频网站| 国产亚洲精品av在线| 欧美黑人欧美精品刺激| 69人妻影院| av专区在线播放| 国产主播在线观看一区二区| 1024手机看黄色片| 日日摸夜夜添夜夜添av毛片 | 一区二区三区高清视频在线| 观看美女的网站| 日韩有码中文字幕| 亚洲,欧美,日韩| 亚洲综合色惰| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| 国产成年人精品一区二区| 日韩有码中文字幕| 757午夜福利合集在线观看| 久久中文看片网| 亚洲欧美激情综合另类| av福利片在线观看| 深夜精品福利| 18禁黄网站禁片午夜丰满| 日韩国内少妇激情av| 国产成年人精品一区二区| 亚洲一区高清亚洲精品| 国产精品亚洲一级av第二区| 国产一区二区在线av高清观看| 91麻豆av在线| 999久久久精品免费观看国产| 舔av片在线| 国产精品永久免费网站| 日韩欧美 国产精品| 美女高潮喷水抽搐中文字幕| 午夜激情福利司机影院| 少妇高潮的动态图| 深夜精品福利| 亚洲一区高清亚洲精品| 九九在线视频观看精品| 亚洲国产欧洲综合997久久,| 国产69精品久久久久777片| 国产精品乱码一区二三区的特点| 久久这里只有精品中国| 一本一本综合久久| 看黄色毛片网站| 搡女人真爽免费视频火全软件 | 99久久成人亚洲精品观看| 欧美三级亚洲精品| 51午夜福利影视在线观看| 亚洲在线自拍视频| 日韩中字成人| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2| 岛国在线免费视频观看| 国产成人a区在线观看| 91字幕亚洲| 免费人成视频x8x8入口观看| 国产精品电影一区二区三区| 一级a爱片免费观看的视频| 亚洲人成电影免费在线| 老熟妇乱子伦视频在线观看| 亚洲av日韩精品久久久久久密| 99热这里只有精品一区| 久久国产精品影院| 午夜亚洲福利在线播放| 久久人妻av系列| 午夜免费成人在线视频| 91在线精品国自产拍蜜月| 一进一出抽搐动态| 国产精品不卡视频一区二区 | www.熟女人妻精品国产| 国产视频一区二区在线看| 欧美日韩中文字幕国产精品一区二区三区| 亚洲欧美精品综合久久99| 亚洲最大成人中文| 日本精品一区二区三区蜜桃| 美女高潮的动态| 小说图片视频综合网站| 国产91精品成人一区二区三区| 久久久久性生活片| 欧美日韩综合久久久久久 | 好男人电影高清在线观看| 最近最新免费中文字幕在线| 搡老熟女国产l中国老女人| 深夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 色哟哟哟哟哟哟| 久久性视频一级片| 91久久精品电影网| 免费在线观看亚洲国产| 深夜a级毛片| 老司机午夜福利在线观看视频| 少妇人妻一区二区三区视频| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| 欧美国产日韩亚洲一区| 亚洲激情在线av| 99久久成人亚洲精品观看| 亚洲av.av天堂| 久久国产精品人妻蜜桃| 床上黄色一级片| a级一级毛片免费在线观看| 亚洲精品粉嫩美女一区| netflix在线观看网站| 国产精品精品国产色婷婷| 精品国产亚洲在线| 18禁裸乳无遮挡免费网站照片| 亚洲中文字幕日韩| 国产欧美日韩一区二区精品| 国内少妇人妻偷人精品xxx网站| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 国产人妻一区二区三区在| 亚洲 国产 在线| 在线看三级毛片| 日韩欧美精品v在线| 91麻豆av在线| 日韩欧美一区二区三区在线观看| 亚洲在线观看片| 变态另类丝袜制服| 中文资源天堂在线| 日本a在线网址| 欧美激情久久久久久爽电影| 丝袜美腿在线中文| 一区二区三区激情视频| 麻豆成人午夜福利视频| 国产男靠女视频免费网站| 亚洲一区高清亚洲精品| 久久这里只有精品中国| 国产成人a区在线观看| 亚洲熟妇熟女久久| 国产精品野战在线观看| 听说在线观看完整版免费高清| 一个人看视频在线观看www免费| 狠狠狠狠99中文字幕| 亚洲国产精品合色在线| 天天躁日日操中文字幕| 757午夜福利合集在线观看| 综合色av麻豆| 欧美乱色亚洲激情| 精品免费久久久久久久清纯| 国产精品人妻久久久久久| 久久精品影院6| 中文字幕久久专区| 90打野战视频偷拍视频| 欧美精品啪啪一区二区三区| 高清毛片免费观看视频网站| 日本免费一区二区三区高清不卡| 国产成人欧美在线观看| 日韩欧美一区二区三区在线观看| 免费在线观看日本一区| 欧美一区二区亚洲| 免费av不卡在线播放| 成年人黄色毛片网站| 亚洲 国产 在线| 女人被狂操c到高潮| 久久精品夜夜夜夜夜久久蜜豆| 在线播放国产精品三级| 天堂√8在线中文| 9191精品国产免费久久| av视频在线观看入口| 在线观看66精品国产| 男人和女人高潮做爰伦理| 亚洲精品亚洲一区二区| 亚洲欧美精品综合久久99| 他把我摸到了高潮在线观看| 国产精品野战在线观看| 日本a在线网址| 女同久久另类99精品国产91| 国产美女午夜福利| 亚洲成人中文字幕在线播放| 国产 一区 欧美 日韩| 女生性感内裤真人,穿戴方法视频| 久久久久免费精品人妻一区二区| 亚洲五月天丁香| 久久精品91蜜桃| 三级毛片av免费| 成人三级黄色视频| 九色国产91popny在线| 国产精品日韩av在线免费观看| 国产精品亚洲美女久久久| 欧美黑人巨大hd| 动漫黄色视频在线观看| 很黄的视频免费| 国产一级毛片七仙女欲春2| 一边摸一边抽搐一进一小说| 国产乱人视频| 欧美日韩亚洲国产一区二区在线观看| 亚洲自偷自拍三级| 91九色精品人成在线观看| 色播亚洲综合网| 国产一级毛片七仙女欲春2| 免费在线观看成人毛片| 最新中文字幕久久久久| 看免费av毛片| 午夜亚洲福利在线播放| 亚洲中文字幕日韩| 国产日本99.免费观看| 少妇被粗大猛烈的视频| 国产色婷婷99| 在线观看美女被高潮喷水网站 | 日日干狠狠操夜夜爽| 亚洲人成网站在线播放欧美日韩| 熟女人妻精品中文字幕| 欧美在线黄色| 啦啦啦观看免费观看视频高清| 国产一区二区三区在线臀色熟女| 精品福利观看| 久99久视频精品免费| 最好的美女福利视频网| 国产av一区在线观看免费| 女生性感内裤真人,穿戴方法视频| 99国产精品一区二区三区| www.www免费av| 男人舔奶头视频| 蜜桃久久精品国产亚洲av| 亚洲熟妇熟女久久| 国产探花极品一区二区| 给我免费播放毛片高清在线观看| 2021天堂中文幕一二区在线观| 欧美国产日韩亚洲一区| a级毛片免费高清观看在线播放| 成人国产综合亚洲| 成人性生交大片免费视频hd| 18禁黄网站禁片免费观看直播| 国产精品一区二区免费欧美| 亚洲性夜色夜夜综合| 在线观看66精品国产| 三级毛片av免费| 搡女人真爽免费视频火全软件 | 一进一出抽搐动态| 男人舔奶头视频| 国产久久久一区二区三区| 九色成人免费人妻av| 欧美日本视频| 俺也久久电影网| 国产男靠女视频免费网站| 又爽又黄a免费视频| 90打野战视频偷拍视频| 在线播放无遮挡| 欧美在线一区亚洲| 日韩人妻高清精品专区| 蜜桃亚洲精品一区二区三区| 长腿黑丝高跟| 成人国产综合亚洲| 可以在线观看的亚洲视频| 在线观看一区二区三区| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 麻豆久久精品国产亚洲av| 国产精品伦人一区二区| 亚洲av成人av| 激情在线观看视频在线高清| 亚洲国产色片| 久久精品久久久久久噜噜老黄 | 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 欧美在线黄色| 免费在线观看日本一区| 最近中文字幕高清免费大全6 | 在线国产一区二区在线| 久久午夜福利片| 婷婷精品国产亚洲av在线| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 久久香蕉精品热| 欧美色欧美亚洲另类二区| 国产精品久久久久久精品电影| 亚洲成av人片在线播放无| 一本久久中文字幕| 久久国产乱子免费精品| 欧美潮喷喷水| 性插视频无遮挡在线免费观看| 日韩欧美国产一区二区入口| 老女人水多毛片| 午夜亚洲福利在线播放| 国产免费一级a男人的天堂| 亚洲avbb在线观看| 淫秽高清视频在线观看| 日本成人三级电影网站| 女人被狂操c到高潮| 长腿黑丝高跟| 一个人看的www免费观看视频| 一级黄片播放器| 国产欧美日韩一区二区三| 在线播放无遮挡| 亚洲最大成人手机在线| 亚洲精品成人久久久久久| av专区在线播放| 欧美xxxx黑人xx丫x性爽| 最好的美女福利视频网| 国产色婷婷99| 老鸭窝网址在线观看| 亚洲精品在线观看二区| 十八禁国产超污无遮挡网站| 一区二区三区四区激情视频 | 日韩欧美在线二视频| 我要看日韩黄色一级片| 欧美日韩黄片免| 一卡2卡三卡四卡精品乱码亚洲| 丰满乱子伦码专区| 日韩中文字幕欧美一区二区| 久久久国产成人精品二区| 国产黄a三级三级三级人| 成人国产综合亚洲| 在线免费观看不下载黄p国产 | 欧美xxxx黑人xx丫x性爽| 色在线成人网| 国产探花在线观看一区二区| 青草久久国产| 3wmmmm亚洲av在线观看| 18+在线观看网站| 男插女下体视频免费在线播放| 亚洲精品成人久久久久久| 国产在线男女| 国产亚洲精品久久久com| 久久精品久久久久久噜噜老黄 | 亚洲成人中文字幕在线播放| 国产精品电影一区二区三区| 一区二区三区免费毛片| 亚洲欧美日韩无卡精品| 精品国内亚洲2022精品成人| 亚洲五月天丁香| 深夜a级毛片| 波多野结衣巨乳人妻| 青草久久国产| 成人特级黄色片久久久久久久| 免费在线观看亚洲国产| 欧美黄色片欧美黄色片| 国内精品一区二区在线观看| 欧美xxxx性猛交bbbb| 亚洲精品色激情综合| 国产精品不卡视频一区二区 |