• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?

    2018-05-05 09:13:25LinZhang張琳ZhongHan韓眾andYongChen陳勇
    Communications in Theoretical Physics 2018年1期
    關(guān)鍵詞:陳勇張琳

    Lin Zhang(張琳)Zhong Han(韓眾)and Yong Chen(陳勇)?

    1Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    2Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    1 Introduction

    Symmetry group theory has a priority to gain much concern in finding exact solutions of differential equations.[1?5]The theory is commonly applied to construct explicit solutions for integrable and non-integrable nonlinear equations.Based on the theory,an original nonlinear system of any given subgroup can be reduced to a system with fewer independent variables.The reduction of the variables is established on group invariant solutions.Since in finite subgroups always exist,which means the impossibility of finding all the group invariant solutions[6?9]to the given system,the classi fication[10?20]of symmetry subgroup is essentially important in solving the problem.Then to find those complete but inequivalent groupinvariant solutions is expected.From now on,many systematic and effective method has formulated,and the concept of“optimal system” for group-invariant solutions is proposed to solve the problem.

    People always find an optimal system of subalgebras instead of finding subgroups,which are equivalent.Ovsiannikov[21]initially uses the adjoint representation[22]of a Lie group on Lie algebra to classify group-invariant solutions and the method is developed by Olver,Winternitz,Zassenhaus,and Patera[23?24]afterwards.In particular,Olver[22]gave an ingenious method,which is more simple to calculate.For the one-dimensional optimal system,he successfully applied the method in the Korteweg-de Vries(KdV)equation and the heat equation.Later on,many new methods have appeared and the mechanization has been realized[25?31]through computer.The mechanized realization simpli fies complicated manual computation efficiently.So to many important partial differential equations,this has always been paid substantial concentration.

    The objective of this paper is to give a newMaplepackage for constructing the one-dimensional optimal system,[32]which can be more precise and common used.Here we propose a new symbolic computation algorithm and develop aMaplepackage namedOne Optimal System.For a given Lie algebra,it can find different cases of classi fication and the corresponding one-dimensional optimal system automatically.Compared to existing software packages,the improvement of the new software package is that it gets more precise result,which is equal to Olver’s result.What is more,it can be more common used in many important partial differential equations.So we have made a meaningful improvement in constructing the onedimensional optimal system of finite dimensional Lie algebra.

    This paper is arranged as follows.In Sec.2,we present some necessary de finitions and formulas refereed in the paper.Section 3 includes an illustration of essential algorithm details and description of some vital functions and variables.In Sec.4,we verify the validity and efficiency of the software package by applying it to some well-known partial differential equations.In Sec.5,we generalize the advantages and innovations of our work and propose future work expectation.

    2 Conceptions and Formulas

    2.1 Optimal System

    SupposeGis a Lie group.We de fineHas an optimal system ofs-parameter subgroups,which are inequivalent to each other.It is a system of differential equations inp(p>s)independent variables based on a family of groupinvariant solutions.For any elementsg∈Gnot inHcan be transformed to the ones included inH.In general,the subgroups in the optimal system can represent the whole elements from the in finite subgroups of a given equation.Commonly,we use symmetry subalgebra to form an optimal system instead of subgroups.

    2.2 Adjoint Representation

    LetGbe ann-dimensional Lie algebra andvi(i=1...n)bengenerators in the vector fields ofG.The adjoint representation is de fined as

    2.3 Invariant

    Suppose a real function?.For allv∈Gand allg∈G,it satis fies

    Then?can be called an invariant.For any invariant,two vectorsvandv′are equivalent under the adjoint action.As Olver[21]said,it is very important to find the invariant that decides how far we can simplify a Lie algebra.We expect to find all the invariants of the given symmetry algebraGin spite of Killing form.

    2.4 Classi fication Rules

    We classify all the generators by assigning different values to the invariants.The rules of classi fication are as follows:

    (i)Check every invariant’s degree.If we find the degree of an invariant is even,we can make it either 1 or 0.On the other hand,if the degree is odd,we can make it 1,?1 or 0.

    (ii)For every invariant,it must be assigned either 1 or?1(if degree is odd) firstly.And in each case,we must and just make only one invariant(marked as a flag invariant)either 1 or?1.Then the remaining invariants are assigned c at the same time.After that,we can make the flag invariant 0 with any other invariant assigned either 1 or?1.And the remaining invariants are assignedcat the same time.

    (iii)Once an invariant is assigned 0,it cannot be assignedcany more.When all the invariants have been assigned either 1 or?1.The last case must be all the invariants are assigned 0.

    2.5 Invariance Set

    3 Algorithms

    We developed an automated software packageOne Optimal SystemonMapleversions 16 and above.The package is initialized by the command withOne Optimal System. The software package is consisted of Lie Bracket,commutator,lie bracket,commutatortable,liebracket cal,Linear Co,e index,e0,eps,datadata,funset,ndeta,detapd,ep solve,judge s,speciale,aaasolve,get rid,get solution,beauty m,check30,exper30,check fun,trans ornot,excep vv,denoax,beautyc,andOne Optimalfunctions.The main function isOne Optimal:=proc(vs.,consts).We will illustrate the whole software flow and introduce algorithm of fundamental steps with some important functions and parameters description.

    3.1 Overview of One Optimal System

    Given the m-dimensional Lie algebraG.Firstly,we can get the commutator table by formula(7)for every pairs of generators:

    Fig.1 Software flow diagram of the One Optimal System.

    By extracting the coefficients ofbi,i=1,...,n,we obtainN(N≤n)linear differential equations about

    ?(a1,...,an).Solve the equations,the invariant?is obtained.According to the commutator table,we can get the adjoint transformation matrix by using formula(1).Then we classi fied different cases through the classi fication rules.For each case,we must choose a representative generator and check the chosen generator in case of an incomplete representation.What is more,we should also check the existence of invariance set for more representative generators.Finally,we get all the representative generators to compose the one-dimensional optimal system.

    3.2 Generation of Adjoint Transformation Matrix

    We can get the adjoint representation table by using formula(2),then the adjoint transformation matrixAis obtained by calculating Eqs.(3)and(4).However,it remains a problem to do in this way.In formula(1),the degree of adjoint representation is in finite.So we will have difficulty in constructing an in finite series expansion through symbolic computation.In this situation,constructing a finite estimated series expansion is commonly to be done,but it de finitely makes the result imprecise.Here we proposed a new algorithm to solve the problem.Without calculating formula(2)directly,we extract every element of the commutator table to constructAi.TakeA1for example,it mainly depends on line 1 of the commutator table(lineiis forAi).Suppose a vectorV=[a1vm+1,...,anvm+n]in line 1 and a matrixA11.Then inA11,we can getA11[i][j]=an,wherei=n,j=m+n.After making exponential calculation ofA11,we will obtainA1.In software package,functioneindex:=proc(ct0::Matrix)realizes this process.

    Here is an example for KdV equation.Table 1 is the commutator table and Eq.(11)presentsAi,i=1,...,4.

    Table 1 The commutator table of KdV equation.

    Compared with the old method,the new method is more sufficient and it is much easier for us to realize the calculating process through symbolic computation.Above all,the result is more accuracy than before.Functions implementing this part as well as some important parameters are in Table 2.

    Fig.2 Software flow diagram of situation 2.

    Table 2 Functions and parameters of the One Optimal System.

    3.3 Classi fication of One Optimal System

    After we get all the invariants,we can classify each case of one-dimensional optimal system according to classi fication rules(details in Table 3).

    Table 3 Different cases of classi fication for an optimal system.

    Remark

    (i)We assume invariant1and invariant2are origin invariants and initialize a current invariant set to put them in.For every cases,we assign exact value to the invariants in the current invariants set according to classi fication rules.

    (ii)When there is no invariant assignedc,we substitute the case constraints into the differential equation to find if new invariants(assuming invariant3and invariant4represents new invariants in each case)exists.If all the invariants in the current set are not assigned 0,we should make all new invariantsc.On the other hand,if all the invariants in the current set are assigned 0,we can add the new invariants into the current invariants set and assign exact value to them according to classi fication rules.

    (iii)What we should notice is the new invariants are not constant if they are not added to the current set.The new invariants’expression depend on the differential equation,which are substituted different case constraints.

    (iv)The last column of Table 3 are used to check the degree of invariants.

    Functions implementing this part as well as some important parameters are described in Table 4.

    Table 4 Functions and parameters of the One Optimal System.

    3.4 Find the Representative Generator

    (i)Find a representative generator

    For each case,we must choose a representative generator and it is better to be as simple as possible.For this intention,we solve case constraint firstly.Then we assume eachaishowing in the numerator of the solution to be 0,except the one showing up in the denominator as well.And the one in the denominator should be assigned either 1 or?1,determined by another constraint(expressions likein the solution.This method can make sure of choosing more simple representative generators.

    (ii)Check the representative generator

    By solving Eq.(5),we can determine if the chosen representative generator is appropriate for this case.If there is a solution exists,we should also judge if there are some constraints as follows in the solution.

    (a)Exists expressionslike ln(ai),

    (b)Exists denominatorai.

    If so,this will make the chosen representative generator not complete.That means it can not represent the whole generators of this case.Then we should find another representative generator to complement the chosen one.

    Situation 1For the first situation,we give two examples in the following Table 5.

    Table 5 Two examples of the first situation.

    Remark

    (i) If the same constraint also exists in the case constraints,we do not need to find another generator as the constraints exist originally in this case.

    (ii)Solution1is for the case constraint and solution2is for Eq.(5),generator1is the origin generator and generator2is the one to make complement.

    Situation 2

    For this situation,it is related to the invariance set and we have a check method in Fig.2.(Remark:?1=

    Table 6 Functions and parameters of the One Optimal System.

    If we get the invariance set,we can classify two cases as follows:

    (i)Make all the variants 0 in the invariance set.

    (ii)Make not all the variants 0 in the invariance set.

    Then we can get two new representative generators.Through the two steps above,we can find the representative generator in every cases,but there is still a special situation we should also take a consideration.Take KdV equation for example.When we find the representative generators under the case constraintswe can listv1,v2,v3as candidate representative generators corresponding to{a4=0,a2=0,a3=0},{a4=0,a3=0,a2=0},{a4=0,a2=0,a3=0}respectively.From the adjoint matrix of KdV,we can see from the adjoint transformation matrix(14)when the generator satis fies{a4=0,a2=0,a3=0},the second and third column of the matrix are 0 constantly by computing Eq.(5).So for this situation,we should check all of the candidate representative generators to see whether they are equal or not.Finally,we should list all the unequal ones to complement,

    Functions implementing this part as well as some important parameters are described as in Table 6.

    4 Examples

    According to the previous software packageOne Optimal,[33]which generates one-dimensional optimal system of finite dimensional Lie Algebra,the result has to adjust the coefficients containingε,which is uncertainty to give a complete classi fication.This uncertainty makes problems that some of the representative generators of the one-dimensional optimal system are absent or belong to the same case.The new software packageOne Optimal Systemcan overcome this problem by giving a direct classi fication,whose answer is equal to Olver’a result.In this chapter,we apply it to many important equations to check its effectiveness and correctness.

    4.1 KdV(Korteweg-de Vries)Equation

    >kdv:

    >One Optimal({kdv,});

    —Outputs:

    The commutator table is as Table 7

    Table 7 The commutator table of KdV equation.

    The origin invariants are:[a4].

    The Optimal System is:3}.

    According to Olver,[22]the one-dimensional optimal system of KdV Equation is

    The result({vi|i=1,...,4}represents the same vector in Table 7 is just the same as our answer.

    4.2 Heat Equation

    Table 8 The commutator table of heat equation.

    4.3 NS(Navier-Stokes)Equation

    Table 9 The commutator table of NS equation.

    4.4 ZK(Zakharove-Kuznetsov)Equation

    Table 10 The commutator table of ZK equation.

    5 Conclusions

    Group invariant solutions have been used to describe general solutions to PDE systems.They can be illustrated by the invariance of PDE symmetry group.We need to find group invariant solutions due to the existence of infinite different symmetry groups.To classify invariant solutions in Lie algebra,we propose a newMaplepackage calledOne Optimal System.This has a signi ficant mean-ing in the mathematics mechanization and machine learning.The mechanized realization efficiently make complicated manual computation much more simple.Especially,to many important partial differential equations,many researchers have paid substantial concentration to the theme.Compared with the previous software package,[33]this new software package is obviously more efficient than the previous one,which costs less time in operation.And we can get a perfect result that is precisely consistent with Olver’s result.And the algorithm of the new software package is more direct and programming than the previous one without many manual settings.Furthermore,the algorithm structure can be used tor-parameter(r≥2)optimal systems for further developing,which is difficult for the previous one.In this article,firstly,we use a new algorithm to calculate the adjoint transformation matrix,which effectively makes the mechanized realization much easier.Secondly,we find all the origin invariants(new ones are found in the process of classi fication)of a Lie algebra in spite of Killing form,then the classi fication rules of assigning different values to invariants regularly ensure the completeness of one optimal system.Last but not least,we check constraints of the chosen representative generator in simplest form to avoid overlooking some special situations.Simultaneously,we propose an important conception of invariance set.The software package can be applied to not only single partial differential equations,but also to ODEs and systems of differential equations.The original(1+1)-dimensional system of differential equations can be reduced to inequivalent ODEs,as a result of the one-dimensional optimal system of the symmetry Lie algebra with corresponding group invariant solutions recovered.

    We realize calculation process of the one-dimensional optimal system by developingOne Optimal Systemsoftware package,which is demonstrated effective,precise and systemic.This is proved to simplify the manual computation signi ficantly and has made a contribution to mathematics mechanization.To achieve more pervasive mechanized application of this method,we will devote to developing new software package ofr-parameter(r≥2)optimal systems in the future.

    We would like to express our sincere thanks to S.Y.Lou,X.R.Hu,and Q.Miao for their valuable comments and suggestions.

    [1]S.Lie,Arch.Math.6(1881)328.

    [2]J.Lin and H.Wang,Optics Commun.298(2013)185.

    [3]A.L.Guo and J.Lin,Commun.Theor.Phys.57(2012)523.

    [4]Y.K.Liu and B.Li,Chin.J.Phys.54(2016)718.

    [5]W.G.Cheng,B.Li,and Y.Chen,Commun.Nonl.Sci.Numer.Simu.29(2015)198.

    [6]X.R.Hu and Y.Chen,Appl.Math.Comput.215(2009)1141.

    [7]Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.66a(2011)75.

    [8]X.R.Hu,Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.65a(2010)1.

    [9]Z.Z.Dong,Y.Chen,D.X.Kong,and Z.G.Wang,Chin.Ann.Math.33(2012)309.

    [10]N.H.Ibragimov,CRC Handbook of Lie Group Analysis of Differential Equations,CRC Press,Boca Raton(1994).

    [11]X.R.Hu,Y.Chen,and L.J.Qian,Commun.Theor.Phys.55(2011)737.

    [12]Z.Z.Dong and Y.Chen,Commun.Theor.Phys.54(2010)389.

    [13]F.Galas and E.W.Richter,Physica D 50(1991)297.

    [14]L.Gagnon and P.Winternitz,J.Phys.A 22(1989)469.

    [15]L.Gagnon,B.Grammaticos,A.Ramani,and P.Winternitz,J.Phys.A 22(1989)499.

    [16]L.Gagnon,P.Winternitz,J.Phys.A 21(1988)1493.

    [17]K.S.Chou,G.X.Li,and C.Z.Qu,J.Math.Anal.Appl.261(2)(2001)741.

    [18]X.R.Hu and Y.Chen,Commun.Theor.Phys.52(2009)997.

    [19]S.V.Coggeshall and J.Meyer-Ter-Vehn,J.Math.Phys.33(1992)3585.

    [20]J.C.Fuchs,J.Math.Phys.32(1991)1703.

    [21]L.V.Ovsiannikov,Group Analysis of Differential Equations,Academic,New York(1982).

    [22]P.J.Olver,Applications of Lie Groups to Differential Equations,Springer,New York(1993).

    [23]J.Patera,R.T.Sharp,P.Winternitz,and H.Zassenhaus,J.Math.Phys.17(1976)986.

    [24]L.Weisner,Canad.J.Math.Phys.11(1959)141.

    [25]A.K.Head,Program BIGLIE for Lie Analysis of Differential Equations on IBM Type PCs,Users Manual(2000).

    [26]J.Carminati and K.Vu,J.Symbolic Comput.29(2000)95.

    [27]A.K.Head,Program LIE for Lie Analysis of Differential Equations on IBM Type PCs,User’s Manual(2000).

    [28]Baumann,Symmetry Analysis of Differential Equations with Mathematica,Springer,New York(2000).

    [29]E.S.Cheb-Terrab,and K.von Bulow,Comp.Phys.Comm.90(1995)116.

    [30]K.T.Vu,J.Butcher,and J.Carminati,Comp.Phys.Comm.176(2007)682.

    [31]F.Schwarz,SIAM Rev.30(1988)450.

    [32]X.R.Hu,Y.Q.Li,and Y.Chen,J.Math.Phys.56(2015)053504

    [33]Q.Miao,X.R.Hu,and Y.Chen,Commun.Theor.Phys.61(2014)160.

    猜你喜歡
    陳勇張琳
    few, a few, little, a little小練
    A physics-constrained deep residual network for solving the sine-Gordon equation
    我的爺爺
    黃騰、吳家艷、張琳、高曉燕作品
    我的太行
    黃河之聲(2018年21期)2018-10-21 17:40:24
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    陳勇:勵(lì)精圖治 銳意創(chuàng)新
    陳勇:我不看好這樣的藥房托管
    国语自产精品视频在线第100页| 男女之事视频高清在线观看| 亚洲av二区三区四区| 又爽又黄a免费视频| 亚洲精华国产精华精| 欧美性猛交黑人性爽| 成人午夜高清在线视频| 中国美女看黄片| 嫁个100分男人电影在线观看| 亚洲最大成人手机在线| 性色avwww在线观看| 丰满人妻一区二区三区视频av| 神马国产精品三级电影在线观看| 韩国av一区二区三区四区| 免费av观看视频| 国产又黄又爽又无遮挡在线| 人妻丰满熟妇av一区二区三区| 色综合色国产| 亚洲国产高清在线一区二区三| 国产毛片a区久久久久| 欧美色欧美亚洲另类二区| 色综合站精品国产| 午夜福利欧美成人| 在线观看一区二区三区| 成人国产麻豆网| 亚洲精品色激情综合| 五月玫瑰六月丁香| 欧美三级亚洲精品| 欧美人与善性xxx| 国产高清三级在线| 国产欧美日韩一区二区精品| 两个人视频免费观看高清| 18禁在线播放成人免费| 国产精品亚洲美女久久久| 国产综合懂色| 可以在线观看的亚洲视频| 日日撸夜夜添| 国产三级在线视频| 国产一级毛片七仙女欲春2| .国产精品久久| av黄色大香蕉| 欧美高清性xxxxhd video| 性欧美人与动物交配| 97超级碰碰碰精品色视频在线观看| 桃色一区二区三区在线观看| 免费黄网站久久成人精品| 国产亚洲av嫩草精品影院| 在线免费观看的www视频| 午夜福利在线观看免费完整高清在 | 欧美成人免费av一区二区三区| 俺也久久电影网| 露出奶头的视频| 九九久久精品国产亚洲av麻豆| 国产精品国产高清国产av| 免费人成在线观看视频色| 免费在线观看日本一区| 午夜福利在线观看免费完整高清在 | 一级毛片久久久久久久久女| 久久欧美精品欧美久久欧美| 亚洲人成网站在线播放欧美日韩| 中文字幕av在线有码专区| 精品久久久久久久人妻蜜臀av| 精品一区二区三区人妻视频| 久久亚洲精品不卡| АⅤ资源中文在线天堂| 国内精品一区二区在线观看| 国产欧美日韩精品一区二区| 中出人妻视频一区二区| 欧美另类亚洲清纯唯美| 国产久久久一区二区三区| 日韩欧美在线二视频| 性色avwww在线观看| 女人十人毛片免费观看3o分钟| 久久久久久久午夜电影| 久久久精品欧美日韩精品| 美女xxoo啪啪120秒动态图| 亚洲精品日韩av片在线观看| 老熟妇乱子伦视频在线观看| 人妻制服诱惑在线中文字幕| 精品福利观看| 三级男女做爰猛烈吃奶摸视频| 日本一本二区三区精品| 人妻丰满熟妇av一区二区三区| 欧美+日韩+精品| 此物有八面人人有两片| 国内毛片毛片毛片毛片毛片| 午夜福利成人在线免费观看| 欧美高清成人免费视频www| 在线a可以看的网站| 观看免费一级毛片| 狂野欧美白嫩少妇大欣赏| 久久天躁狠狠躁夜夜2o2o| 99精品久久久久人妻精品| 国产在视频线在精品| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品1区2区在线观看.| 老司机午夜福利在线观看视频| av女优亚洲男人天堂| 麻豆精品久久久久久蜜桃| 乱码一卡2卡4卡精品| 老司机福利观看| 久99久视频精品免费| 日韩欧美精品免费久久| 两人在一起打扑克的视频| 中文字幕人妻熟人妻熟丝袜美| 国内精品久久久久久久电影| 丝袜美腿在线中文| 国产一区二区激情短视频| 一区二区三区免费毛片| 国产久久久一区二区三区| 成人国产综合亚洲| 精品久久久久久久久亚洲 | 午夜精品一区二区三区免费看| 久久人妻av系列| 精品午夜福利视频在线观看一区| 亚洲天堂国产精品一区在线| 国产毛片a区久久久久| 人人妻人人澡欧美一区二区| 一区福利在线观看| 日韩欧美 国产精品| 免费av不卡在线播放| 亚洲天堂国产精品一区在线| 99精品在免费线老司机午夜| 麻豆一二三区av精品| 国产一区二区亚洲精品在线观看| 哪里可以看免费的av片| 一区二区三区四区激情视频 | 五月玫瑰六月丁香| 美女免费视频网站| 久久精品国产清高在天天线| 99热网站在线观看| 91麻豆精品激情在线观看国产| 欧美精品国产亚洲| 可以在线观看的亚洲视频| 国产精品野战在线观看| 九九在线视频观看精品| 婷婷精品国产亚洲av在线| 国产午夜福利久久久久久| 三级男女做爰猛烈吃奶摸视频| h日本视频在线播放| 国产精品1区2区在线观看.| 午夜福利欧美成人| 欧美一区二区国产精品久久精品| 国产精品久久久久久亚洲av鲁大| 12—13女人毛片做爰片一| 999久久久精品免费观看国产| 欧美三级亚洲精品| 国产主播在线观看一区二区| 18禁在线播放成人免费| 欧美成人性av电影在线观看| 久久久国产成人免费| 日本黄色片子视频| 春色校园在线视频观看| 成人无遮挡网站| 午夜精品在线福利| 乱系列少妇在线播放| 直男gayav资源| 欧美日本视频| 又紧又爽又黄一区二区| 少妇的逼水好多| 中文字幕av在线有码专区| 国产av麻豆久久久久久久| 欧美人与善性xxx| 男女啪啪激烈高潮av片| 色综合亚洲欧美另类图片| 成年女人永久免费观看视频| 久久亚洲真实| 成人特级av手机在线观看| or卡值多少钱| 欧美一区二区亚洲| 亚洲五月天丁香| 男人和女人高潮做爰伦理| 一卡2卡三卡四卡精品乱码亚洲| 亚洲在线自拍视频| 成熟少妇高潮喷水视频| 亚洲男人的天堂狠狠| 国产中年淑女户外野战色| 熟妇人妻久久中文字幕3abv| 22中文网久久字幕| 亚洲一级一片aⅴ在线观看| 日日干狠狠操夜夜爽| 国产麻豆成人av免费视频| 国产一区二区三区在线臀色熟女| 九九热线精品视视频播放| 国产成人福利小说| 亚洲av熟女| 亚洲欧美激情综合另类| 中国美白少妇内射xxxbb| 午夜a级毛片| 亚洲欧美日韩卡通动漫| 精品人妻熟女av久视频| 亚洲四区av| 18禁裸乳无遮挡免费网站照片| 亚洲va在线va天堂va国产| 美女 人体艺术 gogo| 日韩一区二区视频免费看| av在线蜜桃| 国产精品三级大全| 亚洲精品久久国产高清桃花| 久9热在线精品视频| 久久久久九九精品影院| 久久天躁狠狠躁夜夜2o2o| 亚洲成人久久爱视频| 极品教师在线视频| 国产在线男女| 国产熟女欧美一区二区| 男人舔奶头视频| 国产精品一区二区性色av| h日本视频在线播放| 女同久久另类99精品国产91| 国产乱人视频| 久久久成人免费电影| 国产伦人伦偷精品视频| av女优亚洲男人天堂| 好男人在线观看高清免费视频| 国产精品久久久久久久久免| 国产精品永久免费网站| 中文字幕高清在线视频| 小说图片视频综合网站| 国产av在哪里看| 久久中文看片网| 18禁在线播放成人免费| 美女 人体艺术 gogo| 中文字幕久久专区| 欧美日韩瑟瑟在线播放| 女同久久另类99精品国产91| 女同久久另类99精品国产91| 国内少妇人妻偷人精品xxx网站| www.色视频.com| 亚洲最大成人av| 少妇人妻精品综合一区二区 | 无人区码免费观看不卡| 色尼玛亚洲综合影院| 国产精品不卡视频一区二区| 尾随美女入室| 亚洲色图av天堂| 国产高清不卡午夜福利| 亚洲精品日韩av片在线观看| 亚洲狠狠婷婷综合久久图片| 91久久精品国产一区二区成人| 亚洲一区高清亚洲精品| 亚洲中文日韩欧美视频| 国产精品亚洲美女久久久| 小说图片视频综合网站| 神马国产精品三级电影在线观看| 我的女老师完整版在线观看| 一本久久中文字幕| 又爽又黄无遮挡网站| 中文字幕av在线有码专区| 国产免费一级a男人的天堂| 日本黄大片高清| av中文乱码字幕在线| 男女下面进入的视频免费午夜| 国产伦人伦偷精品视频| 热99re8久久精品国产| 国产精品野战在线观看| 91久久精品电影网| 精品人妻视频免费看| 波多野结衣高清作品| 日本爱情动作片www.在线观看 | 毛片一级片免费看久久久久 | 国产精品日韩av在线免费观看| 波多野结衣高清作品| 俄罗斯特黄特色一大片| 天天躁日日操中文字幕| 如何舔出高潮| 小蜜桃在线观看免费完整版高清| 国产免费一级a男人的天堂| 国产欧美日韩精品亚洲av| 一本久久中文字幕| aaaaa片日本免费| 日日摸夜夜添夜夜添小说| 白带黄色成豆腐渣| 午夜福利18| 舔av片在线| 中出人妻视频一区二区| 亚洲va日本ⅴa欧美va伊人久久| 久久欧美精品欧美久久欧美| 国产成人福利小说| or卡值多少钱| 国产精品美女特级片免费视频播放器| 久久精品国产亚洲av天美| 一个人看视频在线观看www免费| 日本色播在线视频| 亚洲黑人精品在线| 九九爱精品视频在线观看| 国产色婷婷99| 熟女电影av网| 搡老岳熟女国产| 91在线精品国自产拍蜜月| 婷婷丁香在线五月| 欧美精品啪啪一区二区三区| 国产一区二区在线观看日韩| 国产成人福利小说| 男插女下体视频免费在线播放| 日本在线视频免费播放| 一级黄色大片毛片| 男女做爰动态图高潮gif福利片| a在线观看视频网站| 老女人水多毛片| 搞女人的毛片| 日韩精品青青久久久久久| 亚洲av免费在线观看| 最后的刺客免费高清国语| 国产aⅴ精品一区二区三区波| 一区二区三区激情视频| 免费不卡的大黄色大毛片视频在线观看 | 丝袜美腿在线中文| 热99re8久久精品国产| 日日摸夜夜添夜夜添av毛片 | 在现免费观看毛片| 精品久久久久久久久久免费视频| 看十八女毛片水多多多| 91午夜精品亚洲一区二区三区 | 免费在线观看成人毛片| 啦啦啦观看免费观看视频高清| 国产极品精品免费视频能看的| 国产精品三级大全| 亚洲avbb在线观看| 国产极品精品免费视频能看的| 亚洲精品粉嫩美女一区| 午夜爱爱视频在线播放| 久久久久久久久久久丰满 | 小说图片视频综合网站| 精品国产三级普通话版| 欧美成人一区二区免费高清观看| 国产精品电影一区二区三区| 亚洲欧美日韩无卡精品| 两人在一起打扑克的视频| 大型黄色视频在线免费观看| 搡老妇女老女人老熟妇| 日韩欧美在线二视频| 成人特级黄色片久久久久久久| 国产伦精品一区二区三区视频9| 极品教师在线免费播放| 99在线视频只有这里精品首页| 乱码一卡2卡4卡精品| 日韩欧美 国产精品| 69人妻影院| 十八禁国产超污无遮挡网站| 男女啪啪激烈高潮av片| 天堂√8在线中文| 日本a在线网址| 成年免费大片在线观看| 欧美潮喷喷水| 亚洲专区中文字幕在线| 变态另类丝袜制服| 国产人妻一区二区三区在| 在线播放无遮挡| 日韩精品有码人妻一区| 久久6这里有精品| 欧美高清性xxxxhd video| 国产亚洲精品av在线| 久久欧美精品欧美久久欧美| 国产免费av片在线观看野外av| 欧美激情在线99| 亚洲av电影不卡..在线观看| av福利片在线观看| 免费高清视频大片| 欧美极品一区二区三区四区| 国产老妇女一区| 亚洲精品日韩av片在线观看| 乱人视频在线观看| 午夜福利成人在线免费观看| 久久久久免费精品人妻一区二区| 搡女人真爽免费视频火全软件 | 欧美日韩精品成人综合77777| 精品久久久久久久末码| 成人欧美大片| 欧美最新免费一区二区三区| 精品一区二区免费观看| 男人的好看免费观看在线视频| 亚洲在线自拍视频| 精品人妻偷拍中文字幕| 乱人视频在线观看| 久久精品国产99精品国产亚洲性色| 伊人久久精品亚洲午夜| 3wmmmm亚洲av在线观看| АⅤ资源中文在线天堂| 精品久久久久久久末码| 尤物成人国产欧美一区二区三区| 国产午夜福利久久久久久| 久久久精品欧美日韩精品| 免费看av在线观看网站| 亚洲成人免费电影在线观看| 禁无遮挡网站| 国产aⅴ精品一区二区三区波| 午夜福利在线在线| 一级毛片久久久久久久久女| x7x7x7水蜜桃| 联通29元200g的流量卡| 国产亚洲精品久久久久久毛片| 99热只有精品国产| 狂野欧美白嫩少妇大欣赏| 亚洲色图av天堂| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 12—13女人毛片做爰片一| 听说在线观看完整版免费高清| 麻豆成人午夜福利视频| 亚洲av中文字字幕乱码综合| 亚洲真实伦在线观看| av在线天堂中文字幕| 久久精品国产鲁丝片午夜精品 | 日本爱情动作片www.在线观看 | 人妻少妇偷人精品九色| 午夜精品一区二区三区免费看| 老熟妇仑乱视频hdxx| 国产精品女同一区二区软件 | 欧美日韩精品成人综合77777| 欧美xxxx黑人xx丫x性爽| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 日韩欧美免费精品| 成年免费大片在线观看| 色综合色国产| 露出奶头的视频| 最近最新中文字幕大全电影3| 草草在线视频免费看| 国产综合懂色| 国产一区二区亚洲精品在线观看| 国产精品亚洲美女久久久| 岛国在线免费视频观看| 国产亚洲精品久久久久久毛片| 日韩高清综合在线| 国语自产精品视频在线第100页| 99九九线精品视频在线观看视频| 精品一区二区三区av网在线观看| av国产免费在线观看| 欧美成人一区二区免费高清观看| 亚洲av中文字字幕乱码综合| 男人舔女人下体高潮全视频| 亚洲国产色片| 免费av不卡在线播放| 琪琪午夜伦伦电影理论片6080| 国内久久婷婷六月综合欲色啪| 国产三级在线视频| 免费看日本二区| 国产精品无大码| bbb黄色大片| 网址你懂的国产日韩在线| 少妇的逼好多水| 亚洲一区高清亚洲精品| 一级黄色大片毛片| 成人三级黄色视频| 中文字幕熟女人妻在线| 春色校园在线视频观看| 日韩一本色道免费dvd| 国产日本99.免费观看| 中文字幕av成人在线电影| 国内精品宾馆在线| h日本视频在线播放| 免费看美女性在线毛片视频| 中文在线观看免费www的网站| 波多野结衣高清无吗| 午夜福利在线观看吧| 日日夜夜操网爽| 少妇丰满av| 日韩 亚洲 欧美在线| 亚洲中文字幕日韩| 少妇裸体淫交视频免费看高清| 中文字幕高清在线视频| 天堂动漫精品| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 在线观看美女被高潮喷水网站| 久久久久久久久久久丰满 | 久久精品久久久久久噜噜老黄 | 天堂影院成人在线观看| 国产精品三级大全| av专区在线播放| 国产av不卡久久| 亚洲在线自拍视频| 男女做爰动态图高潮gif福利片| 干丝袜人妻中文字幕| 看十八女毛片水多多多| 丰满人妻一区二区三区视频av| 麻豆成人午夜福利视频| 国产在线男女| 精品一区二区免费观看| 欧美成人免费av一区二区三区| 日日啪夜夜撸| bbb黄色大片| 搡老岳熟女国产| 国产又黄又爽又无遮挡在线| 日韩强制内射视频| 看十八女毛片水多多多| 午夜爱爱视频在线播放| 国产精品久久久久久亚洲av鲁大| 午夜激情欧美在线| 日日啪夜夜撸| 亚洲黑人精品在线| 日韩av在线大香蕉| av在线老鸭窝| 久久亚洲精品不卡| 日本三级黄在线观看| 少妇丰满av| 久久精品国产99精品国产亚洲性色| 波多野结衣高清无吗| 国产中年淑女户外野战色| 成年版毛片免费区| 中国美白少妇内射xxxbb| 国产一区二区激情短视频| 国产色爽女视频免费观看| 亚洲成人精品中文字幕电影| 乱系列少妇在线播放| 日韩中文字幕欧美一区二区| 一区二区三区四区激情视频 | 日韩欧美精品v在线| 乱系列少妇在线播放| 三级国产精品欧美在线观看| 日本一二三区视频观看| 亚洲精品一区av在线观看| 直男gayav资源| 久久久久久久午夜电影| 国产精品98久久久久久宅男小说| 久99久视频精品免费| 色噜噜av男人的天堂激情| 免费观看精品视频网站| 91在线精品国自产拍蜜月| 国产一级毛片七仙女欲春2| 国产成人aa在线观看| 日韩一本色道免费dvd| 亚洲人成伊人成综合网2020| 免费看a级黄色片| aaaaa片日本免费| 久久久久久九九精品二区国产| 欧美成人一区二区免费高清观看| 成人国产综合亚洲| 制服丝袜大香蕉在线| 三级国产精品欧美在线观看| videossex国产| 亚洲精品一卡2卡三卡4卡5卡| 极品教师在线免费播放| 尾随美女入室| 免费大片18禁| 成人永久免费在线观看视频| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| av在线天堂中文字幕| 日日摸夜夜添夜夜添av毛片 | 99久国产av精品| 国产免费一级a男人的天堂| 午夜福利视频1000在线观看| 成年女人看的毛片在线观看| 久久九九热精品免费| 此物有八面人人有两片| 99热这里只有是精品在线观看| 亚洲自拍偷在线| 国产日本99.免费观看| 三级国产精品欧美在线观看| 国产精华一区二区三区| 变态另类成人亚洲欧美熟女| 色播亚洲综合网| 黄色配什么色好看| 成人午夜高清在线视频| 欧美激情久久久久久爽电影| 久久6这里有精品| 亚洲成人久久性| 99热这里只有精品一区| a级毛片a级免费在线| 久久香蕉精品热| 久久久国产成人精品二区| 国产成年人精品一区二区| 日日摸夜夜添夜夜添小说| 91久久精品国产一区二区三区| 在线国产一区二区在线| 亚洲无线在线观看| 国产精品野战在线观看| 99在线人妻在线中文字幕| av专区在线播放| 亚洲熟妇熟女久久| 可以在线观看毛片的网站| 色综合站精品国产| 国产伦一二天堂av在线观看| 亚洲av熟女| 久久久久久九九精品二区国产| 色尼玛亚洲综合影院| 99九九线精品视频在线观看视频| 亚洲色图av天堂| 给我免费播放毛片高清在线观看| 国产精品综合久久久久久久免费| 国产人妻一区二区三区在| 两个人的视频大全免费| 成年人黄色毛片网站| 麻豆久久精品国产亚洲av| 狂野欧美白嫩少妇大欣赏| 人人妻人人澡欧美一区二区| 国产亚洲欧美98| 国产真实伦视频高清在线观看 | 亚洲中文字幕一区二区三区有码在线看| 春色校园在线视频观看| 国产爱豆传媒在线观看| 很黄的视频免费| 国产一区二区在线观看日韩| 尤物成人国产欧美一区二区三区| 色吧在线观看| 啦啦啦观看免费观看视频高清| 日本精品一区二区三区蜜桃| 日日夜夜操网爽| 嫩草影院精品99| 欧美激情久久久久久爽电影| 久久久久九九精品影院| 午夜免费成人在线视频| 亚洲欧美日韩高清在线视频| 欧美黑人巨大hd| 无遮挡黄片免费观看| 亚洲在线自拍视频| 嫩草影院精品99| 国产精品一区二区三区四区免费观看 | 全区人妻精品视频| av女优亚洲男人天堂| 日本免费一区二区三区高清不卡| 国产亚洲欧美98| 国内揄拍国产精品人妻在线|