• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?

    2017-05-18 05:56:03ZhongHan韓眾andYongChen陳勇
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:陳勇

    Zhong Han(韓眾)and Yong Chen(陳勇)

    Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China(Received September 19,2016)

    1 Introduction

    Group theoretic methods are useful to study similarity reductions and exact solutions of partial differential equations(PDEs).[1?4]The classical symmetry methods due to Lie have been generalized to the nonclassical case by Bluman and Cole.[5]Generally,an s-parameter subgroup of the full symmetry group of a system of PDEs with n>s independent variables leads to a family of group invariant solutions.Unfortunately,it is usually not practicable to list all possible group invariant solutions of the system as there exist almost an in fi nite number of subgroups.Therefore,to construct all the inequivalent group invariant solutions is anticipated,or equivalently,to give them a classi fication,which leads to the concept of optimal system.In practical,an optimal system of the Lie algebra is constructed,from which the corresponding optimal systems for group invariant solutions are obtained.The adjoint representation of a Lie group on its Lie algebra is known to Lie and its application in classifying group invariant solutions appears from Ovsiannikov.[2]By using a global matrix for the adjoint transformation,Ovsiannikov demonstrates the construction of a one-dimensional optimal system and sketches the construction of higherdimensional optimal systems.Olver adopts a slightly different and elegant way by taking a table of adjoint operators to simplify a general element from the Lie algebra as much as possible.[3]Following Olver’s method,we have obtained the optimal systems as well as some interesting exact solutions for several important PDEs appeared in hydrodynamics and atmosphere.[6?8]Some other works on optimal systems can also be found in Refs.[9–11].Very recently,a direct algorithm of one-dimensional and twodimensional optimal system is introduced in Refs.[12]and[23],respectively.The algorithm can guarantee both comprehensiveness and inequivalence of the elements in the optimal system obtained,need no further proofs.

    As a matter of fact,the two-dimensional unsteady fl ow of an incompressible viscous fl uid is governed by the wellknow Navier–Stokes equations where u≡u(x,y,t)and v≡v(x,y,t)are velocity components in the x-and y-directions,respectively.p≡p(x,y,t)is fl uid pressure and ν is kinematic viscosity.Here and further the subscripts denote partial differentiation with respect to corr

    esponding variables.For simplicity,we can set ν=1 by choosing suitable units for length and time.

    About a century ago,Prandtl found that boundary layers play an important role in determining precisely the flow of certain fl uids.[14]He demonstrated that for slightly viscous fl ows the viscosity plays a key role near boundaries,although it can be negligible in the most of the flow.For an incompressible two-dimensional viscous fl uid over a fl at plate with the latter taken as y=0,the unsteady laminar boundary-layer equations for fl ow of high Reynolds number are given by

    In addition,for the stationary fl at plate,the boundary conditions can be taken as

    The external inviscid fl ow w(x,t)is related to the pressure p through

    and it is usually obtained via inviscid fl ow calculations.Besides the boundary conditions,an initial value of u is needed to form a well-posed problem.However,in studying similarity solutions,the initial condition is determined rather than prescribed.

    The quest for similarity reductions and exact solutions of the boundary-layer equations is signi ficant and also has a long history.[2,14?21]The motivation of the current paper is to perform symmetry analysis of the boundarylayer equations(2)along with the boundary conditions(3).A Lie subalgebra of the full symmetry group of the boundary-layer equations which also leaves the boundary conditions(3)invariant is considered.To get intrinsically different symmetry reductions and inequivalent group invariant solutions,a two-dimensional optimal system of the subalgebra is constructed.It is necessary to point that similarity reductions have many important values other than as mere mathematical exercises.Actually,reductions and exact solutions of physically important PDEs(including the boundary-layer equations)are signi ficant.Some exact solutions describe an important physical phenomenon and solutions of a system asymptotically tend to the solutions of the corresponding lower dimensional system obtained through similarity reductions.What is more,exact solutions also provide valuable checks on the accuracy and reliability of numerical algorithms.

    The layout of this paper is as follows:In Sec.2,symmetry analysis and a two-dimensional optimal system of the boundary-layer equations(2)and(3)are presented.Then with aid of the optimal system obtained,symmetry reductions and exact solutions of the boundary-layer equations are performed in Sec.3.The last section is a short conclusion.

    2 Construction of a Two-Dimensional Optimal System

    2.1 Lie Algebra of the Boundary-Layer Equations

    To perform Lie symmetry analysis of Eqs.(2),we consider the one-parameter Lie group of in fi nitesimal transformations in the form

    with ?? 1 is the group parameter.It is required that the set of solutions of Eqs.(2)is invariant under the transformation(5),which leads to a system of over-determined,linear equations for the in fi nitesimals ξx, ξy, ξt, ηu, ηv,and ηw.The associated Lie algebra of in fi nitesimal transformations is spanned by the set of vector fields

    Here,the vector fields(6)have no relationship to the velocity variable v.For Eqs.(2),the solution of the determining equations is given by

    where ci,i=1,2,3 are constants,r≡r(t)and s≡s(x,t)are arbitrary smooth functions,and the prime denotes derivative with respect to time t.So the Lie algebra of the symmetry group of Eqs.(2)is spanned by the following vector fields

    Remark 1Comparing with Ovsiannikov’s solution,[2]one can see that his solution is not the most general solution as it loses the x dependence of the function s.Ma and Hui also get the Lie symmetry algebra of Eqs.(2).[20]Their solution is slightly different from our’s,as the calculation of the optimal system is simpler in terms of Eq.(8),so we consider(8)in this paper.

    To leave the boundary conditions(3)invariant,[4]we must take r=constant and s=0.Hence,in the subsection,a subalgebra of Eq.(8)spanned by the following four vector fields will be considered

    The commutation relations between the vector fields viand vjin Eq.(9)are given in Table 1.In which,the entry in row i and column j representing[vi,vj]=vivj?vjvi.

    To compute the adjoint representation,we use the Lie series in conjunction with Table 1.Applying the formula

    one can construct the following adjoint representation table with the(i,j)-th entry indicating Adexp(?vi)vj.

    Table 1 Commutator table of the Lie algebra(9).

    In conjunction with Table 2,the general adjoint transformation matrix A can be obtained,which is the product of the matrices of the separate adjoint actions A1,A2,A3,A4in any order and it is useful in the construction of an optimal system.The orders of the product of A1,A2,A3,A4are not important since only the existence of the elements of the group is needed in the algorithm.

    Table 2 Adjoint representation table of the Lie algebra(9).

    Applying the adjoint action of v1to

    we have

    with

    In a similar way,we can get A2,A3and A4,

    So the general adjoint transformation matrix A is given by

    2.2 Construction of a Two-Dimensional Optimal System

    In this subsection,using the algorithm in Ref.[13],a two-dimensional optimal system of the Lie algebra(9)is constructed.First,we brie fl y recall the method.

    Consider an n-dimensional Lie algebra G,which is spanned by the vector fields{v1,v2,...,vn}.The corresponding n-parameter Lie group of G is denoted as G.A family of two-dimensional subalgebras{gα}form an optimal system denoted as O2if:(i)A two-dimensional subalgebra is equivalent to some gα,and(ii)gαand gβare inequivalent for distinct α and β.Each element gα∈ O2is a collection of two linear combinations of the generators.Let

    be a general two-dimensional subalgebra,which remains closed under commutation.Two elements{w1,w2}andare called equivalent if we can find some transformation g∈G and four constants k1,k2,k3,k4,such that

    Sinceandare linearly independent,it requires that k1k4?k2k3/=0 in Eq.(16).In addition,for any element{w1,w2}∈O2,it requires that w1and w2constitute a two-dimensional subalgebra,i.e.[w1,w2]= λw1+ μw2with λ and μ being constants.Galas re fi nes this selection by demonstrating that w2must be an element from the normalizer of w1.That is to say we can select w2for[w1,w2]=λw1.Furthermore,for any two-dimensional subalgebra{w1,w2}with[w1,w2]=λw1,we can easily find an equivalent one=0 orHence,to find the inequivalent elements in the optimal system O2,without loss of generality,we require each member{w1,w2}∈O2satisfy[w1,w2]=0 or[w1,w2]=w1.It has been shown that for any two equivalent subalgebras{w1,w2}andthere is=0 if and only if[w1,w2]=0,=0 if and only if[w1,w2]≠0.For the later case,we have the following remark.

    Remark 2 If two subalgebras{w1,w2}andwith[w1,w2]=w1andare equivalent in the form of Eq.(16),there must be k2=0 and k4=1.

    To find all the inequivalent elements in the twodimensional optimal system O2,we first require each{w1,w2}∈O2satisfy

    Thus,when take

    the restriction(17)produces a set of equations of aiand bjfor two different cases.

    For any two-dimensional subalgebra

    a2n-dimensionalfunctionof?(a1,...,an,b1,...,bn)is called an invariant if it satis fi es ?(a11Adg(w1)+a12Adg(w2),a21Adg(w1)+a22Adg(w2))=?(w1,w2)for all g∈G with a11,a12,a21,a22being arbitrary constants.

    Taking a general subgroup g=exp(?v),(v=to act on w1,we have

    in which(a1,...,an,c1,...,cn)can be easily get with the commutator table.In the same way,we have

    More intuitively,the following notations are adopted

    For a two-dimensional subalgebra{w1,w2},according to the Definition of an invariant,we have

    In addition,to guarantee a11Adg(w1)+a12Adg(w2)=w1and a21Adg(w1)+a22Adg(w2)=w2after the substitution of ?=0,it requires that

    Thus Eq.(22)becomes

    The following two distinct cases need to be considered to determine the invariants ?.

    (i)When[w1,w2]=0,substituting(21)into Eq.(24),then taking the derivative of Eq.(24)with respect to ? and setting ?=0,extracting all the coefficients of ci,a11,a12,a21,a22,a set of linear differential equations about ? are achieved.Solving these equations,all the invariants ? on[w1,w2]=0 can be obtained.

    (ii)When[w1,w2]=w1, firstly taking a12=0 and a22=0 in Eq.(24),then making the same procedure just as case(i).

    For the Lie algebra(9),we take

    Let v=be a general element from G,in conjunction with Table 1,we have

    where

    Similarly,applying v=to w2,we get

    with

    According to the algorithm,the following two cases need to be considered.

    (i)When[w1,w2]=0,taking the derivative of Eq.(24)with respect to ? and then setting ?=0,extracting all the coefficients of ci(i=1,2,3,4),a11,a12,a21,a22,eight differential equations of ? ≡ ?(a1,...,a4,b1,...,b4)can be got,

    (ii)When[w1,w2]=w1,plugging a12=a22=0 into Eq.(24)and making the same process in case(i),six equations about ? are obtained,which are just Eqs.(30).

    Substituting Eq.(25)into[w1,w2]=δw1,the following restrictive equations are obtained respective invariants and select the corresponding eligible representative elements For ease of calculations,we rewrite Eq.(16)as

    For two distinct classes δ=0 and δ=1,in terms of every restricted condition given by Eqs.(32),compute their

    More intuitively,Eqs.(33)are usually expressed as

    where the general adjoint transformation matrix A is given in Eq.(15).If Eqs.(34)have solution with repect to(i=1,2,3,4),it implies that the selected representative elementis correct;if Eqs.(34)have no solution,another representative elementneed to be selected.Repeat the process until all the cases are if nished.

    (i)The case of δ=0 in the restrictive equations(32).

    Substituting δ=0 into Eqs.(32),we have

    For this case,two different situations need to be considered.

    Case 1 Not all a3and b3are zeros.Without loss of generality,we take a3≠0,then b1=a1(b3/a3).In this case,there exist three subclasses.

    Case 1.1 When a2≠0,then we have b4=a4(b2/a2).Substituting b1=a1(b3/a3)and b4=a4(b2/a2)into Eqs.(30)and Eqs.(31),we find that ?=constant.The representative element{v2,v3}can be selected,since Eqs.(34)have the solution

    Case 1.2 When a2=0,b2≠0,then it must have a4=0.In a similar way,we find that ?=constant.We select the representative element{v3,v2},then Eqs.(34)have the solution

    It is obvious that Cases 1.1 and 1.2 are equivalent.

    Case 1.3 When a2=b2=0.In this case,{v4,v3}can be selected as the representative element since Eqs.(34)hold for

    Case 2When a3=b3=0.This case can be further divided into two subclasses.

    Case 2.1Not all a2and b2are zeros.Without loss of generality,we take a2≠0,then b4=a4(b2/a2).We choose a representative element{v1,v2},then Eqs.(34)have the solution

    Case 2.2 When a2=b2=0,{v1,v4}can be selected as the representative element since Eqs.(34)hold for

    (ii)The case of δ=1 in the restrictive equations(32).

    Substituting δ=1 into Eqs.(32),it must have a2=a3=0.Then Eqs.(32)become to

    Case 3When a1=0,it must have a4≠0,thus we get b2=1.In this case,by solving Eqs.(30),we get an invariant ? = ?1=b3.This case can be further divided into two subclasses according to the values of?1.

    Case 3.1 If?1= α/=0,we can select the representative element{v4,v2+αv3},then Eqs.(34)have the solution

    Case 3.2 If?1=α=0,there exist three circumstances in terms of the sign of b1.

    (a)When b1>0,{v4,v1+v2}can be chosen as the representative element since Eqs.(34)hold for

    (b)When b1<0,we select the representative element{v4,?v1+v2}and Eqs.(34)have the solution

    (c)When b1=0,we select the representative element{v4,v2}and Eqs.(34)hold for

    Case 4When a1≠0,a4=0,then we have b3=1.In this case,by solving Eqs.(30),we get an invariant ?=?2=b2.This case can also be further divided into two subclasses according to the values of?2.

    Case 4.1If ?2= α/=0,we select the representative element{v1,αv2+v3},then Eqs.(34)have the solution

    Case 4.2 If?2=α=0,there exist three circumstances in terms of the sign of b4.

    (a)When b4>0,{v1,v3+v4}can be chosen as the representative element since Eqs.(34)hold for

    (b)When b4<0,we select the representative element{v1,v3?v4}and Eqs.(34)have the solution

    (c)When b4=0,we select the representative element{v1,v3}and Eqs.(34)have the solution

    Case 5 When a1≠0,a4≠0,then we have b2=b3=1.Solving Eqs.(30),we find that ?=constant.In this case,there exist two circumstances in terms of the sign of a1a4.

    (a)When a1a4>0,we select the representative element{v1+v4,v2+v3}and Eqs.(34)have the solution

    (b)When a1a4<0,{v1?v4,v2+v3}can be chosen as the representative element since Eqs.(34)hold for

    In summary,a two-dimensional optimal system O2of the Lie algebra(9)is obtained

    The value in parentheses does not denote disallowed value,it denotes the value of the parameter that needs not to be considered,because it is considered elsewhere.This information is important in the calculation of the similarity variables.

    3 Symmetry Reductions and Exact Solutions

    By virtue of the two-dimensional optimal system O2(37),the boundary-layer equations(2)and(3)can be directly reduced to different classes of ODEs.This is achieved by solving the invariant surface condition equations to find all the similarity invariants,which are then used as new variables.

    For g1={v2,v3},the invariant surface condition equations are given by

    Solving Eq.(38),we have

    where z=is a similarity variable.Substituting Eq.(39)into Eqs.(2),a system of ODEs is obtained

    The boundary conditions(3)then require

    From the third equation in Eq.(40),we conclude that W(z)=E,Eis a constant.Using the transformation V(z)= ?Ef(z),from Eqs.(39)–(41),we can get

    where f(z)satis fi es

    This solution has been obtained by Ma and Hui,they refer this solution as the unsteady separated staparated-point flow solution(USSP)and study it in detail.

    In a similar way,for g2={v3,v4},an analytic solution can be obtained

    where C is an arbitrary constant.It is easy to verify that this solution also satis fi es the Navier–Stokes equations(1)with the pressure given by

    For g3={v1,v2},it is easy to get

    where f(y)satis fi es

    which is the Hiemenz stagnation-point fl ow solution.

    By virtue of g5={v2+ αv3,v4}(α/=0),we can get that

    with f(z)satis fi es

    where q=1/α?1.The solution given by Eqs.(48)and(49)also satis fi es the Navier–Stokes equations(1)with the pressure

    An analytic solution of Eq.(49)is given in Ref.[20]when q is a positive integer.Here,we consider three special cases when q is not a positive integer.

    When α=1(q=0),Eq.(49)admits an error function solution

    where the error function erf(x)is de fi ned as

    This case results in the Rayleigh solution.

    When α=2/3(q=1/2),Eq.(49)has a solution of the form

    In this case,the stream function Ψ of the fl ow Eq.(48)is given by

    When α =2(q= ?1/2),another solution of Eq.(49)is obtained

    For this case,the stream function Ψ is given by

    The solutions(53)and(55)are not reported in Ref.[20].More analytic solutions to Eq.(49)for other values of α can also be obtained,but for brevity,we do not present here.

    From g6={v1+v2,v4},the following solution can be achieved

    The solution(57)also satis fi es the Navier–Stokes equations(1)with the pressure

    For g13={v1+v4,v2+v3},we get

    where f(z)and g(z)satisfy

    In addition,by the transformation f(z)=(1/E)(1?h′(z)),Eq.(60)can be converted to

    With g(z)is given by

    From Eq.(62),it is obvious that g(0)=0.

    For g14={v1?v4,v2+v3},we have

    where f(z)and g(z)satisfy

    Similarly,by the transformation f(z)=(1/E)(h′(z)? 1),Eqs.(64)become to

    In this case,g(z)also meets(62).These two reductions from g13and g14are not obtained in Ref.[20],as far as we know,they may be previously unknown.

    More reductions and exact solutions of the boundarylayer equations can be found by virtue of the other elements in the optimal system(37).For instants,using g9,g10,g11and g12,the steady boundary-layer fl ow solutions may be obtained.For volumes,we do not present here as all the existing group invariant steady solutions have been listed in Ref.[20],and no new group invariant solutions can be found.While only trivial solution can be found from g4,g7and g8.

    4 Conclusion

    In conclusion,the boundary-layer equations which are important models in fl uid mechanics are studied through the classical Lie symmetry method.Its symmetry group is narrowed down to a subgroup under which the boundary conditions are also invariant.To find intrinsically different similarity reductions and inequivalent group invariant solutions,a two-dimensional optimal system is constructed.Since all the representative elements in the optimal system are attached to different values of the invariants,it can ensure the optimality of the optimal system obtained,need no further proofs.We notice that in almost all of the existing literatures,a one-dimensional optimal system is required for the construction of a two-dimensional optimal system,which usually takes too much work.In this paper,the construction starts from the Lie algebra directly and only depends on fragments of the theory of Lie algebras,without a prior one-dimensional optimal system.Then with the aid of the optimal system,some symmetry reductions and exact solutions of the boundary-layer equations are obtained.It has been shown that not only do we recover many of the known results but also find some new solutions,which may be previously unknown.In Ref.[20],the authors investigated the boundary-layer equations using a two-step reduction procedure,and some of the reductions obtained are overlapped.In our paper,due to the two-dimensional optimal system,the original equations are reduced to a system of ODEs via only one step.What is more,the reduced systems are intrinsically different and the solutions obtained are inequivalent,and some repetitive works are also avoided.

    As we know,the nonclassical symmetry(also known as conditional symmetry)method generalizes and includes the classical method in studying reductions and solutions of PDEs.[5]So the nonclassical symmetry analysis of the boundary-layer equations may generate more new solutions,which is interesting and deserves our further study.

    References

    [1]S.Lie,Arch.Math.6(1881)328.

    [2]L.V.Ovsiannikov,Group Analysis of differential Equations,Academic,New York(1982).

    [3]P.J.Olver,Applications of Lie Groups to differential Equations,Springer,New York(1993).

    [4]G.W.Bluman and S.C.Anco,Symmetry and Integration Methods for differential Equations,Springer,New York(2002).

    [5]G.W.Bluman and J.D.Cole,J.Math.Mech.18(1969)1025.

    [6]X.R.Hu,Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.A 65(2010)504.

    [7]Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.A 66(2011)75.

    [8]Z.Z.Dong,Y.Chen,D.X.Kong,etal.,Chin.Ann.Math.B 33(2012)309.

    [9]K.S.Chou,G.X.Li,and C.Z.Qu,J.Math.Anal.Appl.261(2001)741.

    [10]K.S.Chou and C.Z.Qu,Acta Appl.Math.83(2004)257.

    [11]Q.Huang and C.Z.Qu,J.Phys.A:Math.Theor.40(2007)9343.

    [12]X.R.Hu,Y.Q.Li,and Y.Chen,J.Math.Phys.56(2015)053504.

    [13]X.R.Hu,Y.Q.Li,and Y.Chen,J.Math.Phys.57(2016)023518.

    [14]H.Schlichting,Boundary Layer Theory,McGraw-Hill,New York(1968).

    [15]K.Hiemenz,Dinglers J.326(1911)321.

    [16]L.Rayleigh,Phil.Mag.21(1911)697.

    [17]V.M.Falkneb and S.W.Skan,Phil.Mag.12(1931)865.

    [18]M.B.Glauert,J.Fluid Mech.1(1956)97.

    [19]J.C.Williams and W.D.Johnson,AIAA J.12(1974)1388.

    [20]P.K.H.Ma and W.H.Hui,J.Fluid Mech.216(1990)537.

    [21]D.K.Ludlow,P.A.Clarkson,and A.P.Bassom,Quart.J.Mech.Appl.Math.53(2000)175.

    猜你喜歡
    陳勇
    信陽市審計局 開展“我們的節(jié)日·清明”主題活動
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    High-order rational solutions and resonance solutions for a(3+1)-dimensional Kudryashov–Sinelshchikov equation*
    Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations?
    The impact of spatial autocorrelation on CPUE standardization between two different fi sheries*
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    苗嶺花山謠
    歌海(2017年2期)2017-05-30 22:22:10
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    亚洲va日本ⅴa欧美va伊人久久| 少妇熟女aⅴ在线视频| 日本a在线网址| 亚洲成人国产一区在线观看| 午夜a级毛片| 1024香蕉在线观看| 亚洲成av片中文字幕在线观看| 色在线成人网| 91在线观看av| 1024手机看黄色片| 久久久久九九精品影院| 精品欧美国产一区二区三| 精品无人区乱码1区二区| 国产精华一区二区三区| 精品久久久久久久末码| 国产欧美日韩精品亚洲av| 哪里可以看免费的av片| 国产私拍福利视频在线观看| 久久亚洲精品不卡| 久久中文看片网| 亚洲国产欧洲综合997久久, | 在线观看免费日韩欧美大片| 国产久久久一区二区三区| 不卡av一区二区三区| 久久欧美精品欧美久久欧美| 99国产综合亚洲精品| 国产极品粉嫩免费观看在线| 9191精品国产免费久久| 亚洲国产精品999在线| 国产精品精品国产色婷婷| 操出白浆在线播放| 亚洲av成人一区二区三| 精品久久久久久,| 一个人免费在线观看的高清视频| 欧美色欧美亚洲另类二区| 一区二区三区国产精品乱码| 男女午夜视频在线观看| 午夜亚洲福利在线播放| 法律面前人人平等表现在哪些方面| 天天一区二区日本电影三级| 国产高清激情床上av| 亚洲一码二码三码区别大吗| av片东京热男人的天堂| 欧美性长视频在线观看| av欧美777| 免费高清在线观看日韩| 欧美zozozo另类| 欧美性猛交╳xxx乱大交人| 黄片小视频在线播放| 一区二区日韩欧美中文字幕| 啦啦啦免费观看视频1| 99re在线观看精品视频| 国产男靠女视频免费网站| 成人国产一区最新在线观看| 亚洲成人久久性| 欧美黄色片欧美黄色片| 一区二区三区精品91| 中文字幕最新亚洲高清| 老司机靠b影院| 88av欧美| 99久久国产精品久久久| 亚洲精品久久国产高清桃花| av视频在线观看入口| 91国产中文字幕| 老司机午夜十八禁免费视频| 亚洲国产中文字幕在线视频| 真人做人爱边吃奶动态| 老熟妇乱子伦视频在线观看| 嫩草影视91久久| 91麻豆精品激情在线观看国产| av在线天堂中文字幕| 三级毛片av免费| 热re99久久国产66热| 女同久久另类99精品国产91| 国产亚洲av高清不卡| 热re99久久国产66热| netflix在线观看网站| 久久久久久久久中文| 又黄又粗又硬又大视频| 国产黄片美女视频| 亚洲va日本ⅴa欧美va伊人久久| 亚洲人成网站在线播放欧美日韩| 波多野结衣高清无吗| 一区二区日韩欧美中文字幕| 欧美黄色片欧美黄色片| 性色av乱码一区二区三区2| 制服诱惑二区| 性欧美人与动物交配| 中文在线观看免费www的网站 | a在线观看视频网站| av福利片在线| 精品无人区乱码1区二区| 久久午夜亚洲精品久久| 老司机午夜十八禁免费视频| 免费在线观看黄色视频的| 亚洲av日韩精品久久久久久密| 国产伦一二天堂av在线观看| 久久久久国产精品人妻aⅴ院| 手机成人av网站| 欧美又色又爽又黄视频| 在线观看一区二区三区| 十八禁网站免费在线| 国产亚洲精品久久久久5区| 丝袜人妻中文字幕| 国产国语露脸激情在线看| 母亲3免费完整高清在线观看| 久久性视频一级片| 女警被强在线播放| 国产日本99.免费观看| 99在线视频只有这里精品首页| 91国产中文字幕| 亚洲人成伊人成综合网2020| 男女那种视频在线观看| 手机成人av网站| 村上凉子中文字幕在线| 亚洲精品粉嫩美女一区| 免费看十八禁软件| 可以免费在线观看a视频的电影网站| 国产激情偷乱视频一区二区| 麻豆成人av在线观看| 国产不卡一卡二| 亚洲精品国产精品久久久不卡| 黄色视频,在线免费观看| 欧美成人一区二区免费高清观看 | 国产成+人综合+亚洲专区| 国产精品 欧美亚洲| 色综合欧美亚洲国产小说| 亚洲熟妇熟女久久| 69av精品久久久久久| www.999成人在线观看| 国产一区二区三区在线臀色熟女| 欧美午夜高清在线| 国产精品日韩av在线免费观看| 在线天堂中文资源库| 国产伦人伦偷精品视频| а√天堂www在线а√下载| 日本五十路高清| 国产1区2区3区精品| 成人永久免费在线观看视频| 国产一区二区三区视频了| 精品久久久久久,| 久久国产精品男人的天堂亚洲| 97碰自拍视频| 欧美成人午夜精品| 国产乱人伦免费视频| 日韩精品中文字幕看吧| 一本大道久久a久久精品| 看黄色毛片网站| 可以在线观看毛片的网站| 男女那种视频在线观看| 久久午夜综合久久蜜桃| 好看av亚洲va欧美ⅴa在| 久久久久国产精品人妻aⅴ院| 变态另类成人亚洲欧美熟女| 久久久精品国产亚洲av高清涩受| 可以在线观看的亚洲视频| 欧美成人免费av一区二区三区| 一区二区三区国产精品乱码| 女同久久另类99精品国产91| 在线永久观看黄色视频| 性色av乱码一区二区三区2| 久久这里只有精品19| 久久久水蜜桃国产精品网| 长腿黑丝高跟| 国产精品 国内视频| 色av中文字幕| 欧美乱码精品一区二区三区| 久久久久久九九精品二区国产 | 日本三级黄在线观看| 欧美绝顶高潮抽搐喷水| 国产精品影院久久| 亚洲成av片中文字幕在线观看| 黄色视频,在线免费观看| 性色av乱码一区二区三区2| 操出白浆在线播放| 淫妇啪啪啪对白视频| 亚洲欧美精品综合一区二区三区| 18禁黄网站禁片免费观看直播| 91成年电影在线观看| 99精品久久久久人妻精品| 人妻丰满熟妇av一区二区三区| 男人舔女人的私密视频| 丝袜人妻中文字幕| 中文字幕高清在线视频| 亚洲第一青青草原| 可以免费在线观看a视频的电影网站| 国产精品亚洲一级av第二区| 露出奶头的视频| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 18禁国产床啪视频网站| 免费看美女性在线毛片视频| 听说在线观看完整版免费高清| 亚洲精品中文字幕一二三四区| 操出白浆在线播放| 午夜久久久在线观看| 黄色a级毛片大全视频| 亚洲精品粉嫩美女一区| 99riav亚洲国产免费| 亚洲国产中文字幕在线视频| 日韩国内少妇激情av| 亚洲成人精品中文字幕电影| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 亚洲一区二区三区不卡视频| 精华霜和精华液先用哪个| 精品国产乱码久久久久久男人| 午夜激情福利司机影院| 亚洲国产欧美网| av中文乱码字幕在线| 免费看美女性在线毛片视频| 成人国语在线视频| 在线十欧美十亚洲十日本专区| 中文字幕人成人乱码亚洲影| 国产精品久久久久久人妻精品电影| 两人在一起打扑克的视频| 黑人操中国人逼视频| 曰老女人黄片| 美女免费视频网站| 少妇裸体淫交视频免费看高清 | 国产午夜精品久久久久久| 一区二区三区精品91| 中文字幕av电影在线播放| 男人舔女人下体高潮全视频| 久久久久久亚洲精品国产蜜桃av| 日韩免费av在线播放| 母亲3免费完整高清在线观看| 国产激情偷乱视频一区二区| 深夜精品福利| 国产精品 欧美亚洲| 午夜福利在线在线| 丝袜人妻中文字幕| 白带黄色成豆腐渣| 叶爱在线成人免费视频播放| 精品久久久久久久人妻蜜臀av| avwww免费| 国产成人av教育| 在线观看免费视频日本深夜| 免费搜索国产男女视频| 亚洲自偷自拍图片 自拍| 国产精品二区激情视频| 国产精品永久免费网站| 国产一区在线观看成人免费| e午夜精品久久久久久久| 亚洲精品在线美女| 中亚洲国语对白在线视频| 午夜日韩欧美国产| 哪里可以看免费的av片| 国产在线精品亚洲第一网站| 日韩 欧美 亚洲 中文字幕| 中文字幕人妻熟女乱码| 精品福利观看| 狠狠狠狠99中文字幕| 99国产精品99久久久久| 久久久水蜜桃国产精品网| 欧美国产日韩亚洲一区| 此物有八面人人有两片| 国产真实乱freesex| 777久久人妻少妇嫩草av网站| 日韩视频一区二区在线观看| 精品久久久久久久久久免费视频| 日韩欧美一区二区三区在线观看| 熟女少妇亚洲综合色aaa.| av中文乱码字幕在线| tocl精华| 成人特级黄色片久久久久久久| 两个人视频免费观看高清| 国产1区2区3区精品| 宅男免费午夜| 高清在线国产一区| 一区福利在线观看| 久久久久久亚洲精品国产蜜桃av| 久久久久亚洲av毛片大全| 亚洲五月婷婷丁香| 黑人巨大精品欧美一区二区mp4| 免费看美女性在线毛片视频| netflix在线观看网站| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 久久人人精品亚洲av| 国产熟女午夜一区二区三区| 变态另类成人亚洲欧美熟女| 国产精品 国内视频| 无限看片的www在线观看| 国产精品日韩av在线免费观看| 成人18禁高潮啪啪吃奶动态图| 日韩 欧美 亚洲 中文字幕| 欧美色欧美亚洲另类二区| 99久久久亚洲精品蜜臀av| 国产精品 国内视频| 国产免费男女视频| 俄罗斯特黄特色一大片| 9191精品国产免费久久| 精品久久久久久久毛片微露脸| 精品久久久久久久久久免费视频| 亚洲,欧美精品.| 国产精品久久电影中文字幕| 一区福利在线观看| 熟女少妇亚洲综合色aaa.| 国产亚洲精品第一综合不卡| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 91成人精品电影| 国产精品1区2区在线观看.| 亚洲国产精品999在线| 免费观看人在逋| 欧美一级毛片孕妇| 一本大道久久a久久精品| 伦理电影免费视频| 亚洲精品中文字幕在线视频| 国产一区二区激情短视频| 欧美中文日本在线观看视频| 国产精品98久久久久久宅男小说| 亚洲熟妇熟女久久| 国产精品久久久久久人妻精品电影| 国产精品影院久久| 91av网站免费观看| 法律面前人人平等表现在哪些方面| 亚洲电影在线观看av| 欧美日韩亚洲综合一区二区三区_| 久久久久精品国产欧美久久久| 老司机靠b影院| 最近最新中文字幕大全免费视频| 欧美一级a爱片免费观看看 | 一区二区三区高清视频在线| 叶爱在线成人免费视频播放| 国产成人av激情在线播放| 精华霜和精华液先用哪个| 亚洲成av人片免费观看| 国产精品亚洲美女久久久| 久久天堂一区二区三区四区| 可以在线观看的亚洲视频| 欧美国产精品va在线观看不卡| 久久国产精品男人的天堂亚洲| 一区二区三区高清视频在线| 日韩视频一区二区在线观看| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜一区二区| 桃色一区二区三区在线观看| 久久国产精品影院| videosex国产| 欧美成人免费av一区二区三区| 动漫黄色视频在线观看| 免费看美女性在线毛片视频| 黄色毛片三级朝国网站| 女性生殖器流出的白浆| netflix在线观看网站| 国产精品爽爽va在线观看网站 | 伊人久久大香线蕉亚洲五| 亚洲人成电影免费在线| 欧美+亚洲+日韩+国产| 国产麻豆成人av免费视频| 午夜视频精品福利| 亚洲成人久久爱视频| 久久久久久九九精品二区国产 | 亚洲 欧美一区二区三区| 99精品欧美一区二区三区四区| 久久午夜综合久久蜜桃| 国产精品一区二区三区四区久久 | avwww免费| 婷婷丁香在线五月| www日本黄色视频网| www国产在线视频色| 亚洲成人精品中文字幕电影| 色av中文字幕| 在线永久观看黄色视频| 日本一本二区三区精品| 久久久水蜜桃国产精品网| 我的亚洲天堂| 国产亚洲欧美在线一区二区| 中文资源天堂在线| 欧美日韩乱码在线| 亚洲av五月六月丁香网| 久久亚洲真实| 亚洲五月色婷婷综合| 国产精品久久视频播放| 亚洲国产高清在线一区二区三 | 欧美性长视频在线观看| 亚洲av熟女| www日本在线高清视频| 大型av网站在线播放| 女性被躁到高潮视频| 亚洲欧美一区二区三区黑人| 美女国产高潮福利片在线看| 在线观看午夜福利视频| 亚洲一区中文字幕在线| 夜夜爽天天搞| 亚洲欧美精品综合一区二区三区| a在线观看视频网站| 日韩中文字幕欧美一区二区| 99精品久久久久人妻精品| 18禁观看日本| 在线av久久热| 一区福利在线观看| 成人18禁高潮啪啪吃奶动态图| 国产成年人精品一区二区| 一级毛片女人18水好多| 亚洲狠狠婷婷综合久久图片| 天天一区二区日本电影三级| 欧美黑人巨大hd| 亚洲午夜精品一区,二区,三区| 90打野战视频偷拍视频| 日韩av在线大香蕉| 成人亚洲精品av一区二区| 国产成人欧美| av视频在线观看入口| 久久青草综合色| 久热这里只有精品99| 免费在线观看亚洲国产| 身体一侧抽搐| av视频在线观看入口| 国产精品野战在线观看| 国内揄拍国产精品人妻在线 | svipshipincom国产片| 午夜福利在线在线| 欧美成狂野欧美在线观看| 国产乱人伦免费视频| 免费观看人在逋| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 中文字幕av电影在线播放| 久热这里只有精品99| 久久伊人香网站| 天天躁夜夜躁狠狠躁躁| av超薄肉色丝袜交足视频| 一本大道久久a久久精品| 视频区欧美日本亚洲| 久久国产精品人妻蜜桃| 午夜影院日韩av| 99热6这里只有精品| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 女人爽到高潮嗷嗷叫在线视频| 日本精品一区二区三区蜜桃| 日本三级黄在线观看| 久久久国产欧美日韩av| 欧美日韩福利视频一区二区| 国产成人精品无人区| 国产亚洲精品综合一区在线观看 | 国产色视频综合| 999久久久国产精品视频| 久久这里只有精品19| 美女大奶头视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区三区四区久久 | www.999成人在线观看| 男男h啪啪无遮挡| 免费观看人在逋| 国产精品99久久99久久久不卡| 黄片大片在线免费观看| 精品电影一区二区在线| 99久久综合精品五月天人人| 亚洲成人国产一区在线观看| 成人精品一区二区免费| 亚洲av第一区精品v没综合| 婷婷精品国产亚洲av| 免费看十八禁软件| 久久久久久九九精品二区国产 | 中文字幕人妻熟女乱码| 亚洲欧美精品综合一区二区三区| а√天堂www在线а√下载| 中文资源天堂在线| 久久久久久久午夜电影| 啦啦啦观看免费观看视频高清| 岛国视频午夜一区免费看| 91大片在线观看| 国产欧美日韩一区二区三| 精品久久久久久成人av| 中文字幕人成人乱码亚洲影| 色综合欧美亚洲国产小说| 国产又爽黄色视频| 精品午夜福利视频在线观看一区| 国产又爽黄色视频| 久久精品国产99精品国产亚洲性色| 欧美又色又爽又黄视频| 在线观看日韩欧美| 丝袜在线中文字幕| 两性夫妻黄色片| 亚洲一区高清亚洲精品| 亚洲中文字幕日韩| а√天堂www在线а√下载| 亚洲中文日韩欧美视频| 欧美激情极品国产一区二区三区| 九色国产91popny在线| 欧美+亚洲+日韩+国产| 亚洲黑人精品在线| 九色国产91popny在线| 精品电影一区二区在线| 久久精品国产亚洲av高清一级| 日日夜夜操网爽| 国产不卡一卡二| e午夜精品久久久久久久| 18禁观看日本| 免费在线观看黄色视频的| 一进一出抽搐gif免费好疼| 久9热在线精品视频| 亚洲精品中文字幕在线视频| 一本一本综合久久| 丝袜在线中文字幕| 一本一本综合久久| 日韩欧美国产一区二区入口| 国产精品 欧美亚洲| 亚洲精品国产精品久久久不卡| 亚洲一区二区三区不卡视频| a在线观看视频网站| 欧美又色又爽又黄视频| 久久久国产成人精品二区| 欧美日本亚洲视频在线播放| 欧美成人免费av一区二区三区| 深夜精品福利| 精品卡一卡二卡四卡免费| 成在线人永久免费视频| 老司机深夜福利视频在线观看| 国产成人影院久久av| 日韩精品青青久久久久久| 欧美中文综合在线视频| 美女高潮到喷水免费观看| 国产精品国产高清国产av| 好男人在线观看高清免费视频 | 国产成人一区二区三区免费视频网站| 国产主播在线观看一区二区| 真人做人爱边吃奶动态| 日本 欧美在线| 大型黄色视频在线免费观看| 亚洲国产精品久久男人天堂| 久久久久久大精品| 变态另类成人亚洲欧美熟女| 免费在线观看成人毛片| 18禁国产床啪视频网站| 国产亚洲精品一区二区www| 一本久久中文字幕| 亚洲欧美日韩无卡精品| 国内精品久久久久精免费| а√天堂www在线а√下载| 久久婷婷成人综合色麻豆| 中出人妻视频一区二区| 久久久水蜜桃国产精品网| 亚洲一区中文字幕在线| 国产精品美女特级片免费视频播放器 | 日韩一卡2卡3卡4卡2021年| 午夜福利一区二区在线看| 亚洲中文日韩欧美视频| 丝袜人妻中文字幕| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 亚洲欧美一区二区三区黑人| 一区二区三区高清视频在线| 国产成人啪精品午夜网站| 欧美性猛交黑人性爽| 亚洲专区国产一区二区| 两人在一起打扑克的视频| 免费在线观看完整版高清| 熟妇人妻久久中文字幕3abv| 欧美黑人巨大hd| 日韩中文字幕欧美一区二区| 婷婷六月久久综合丁香| 国产成人一区二区三区免费视频网站| 午夜福利在线在线| 久久久久国产一级毛片高清牌| 国产又爽黄色视频| 国产av又大| 日韩精品青青久久久久久| 国产亚洲欧美精品永久| av欧美777| 黄片播放在线免费| 亚洲av电影在线进入| 岛国在线观看网站| 一本久久中文字幕| 午夜福利在线在线| 国产97色在线日韩免费| 国产精品香港三级国产av潘金莲| 制服人妻中文乱码| 亚洲精品美女久久av网站| 亚洲av成人一区二区三| 亚洲av熟女| av电影中文网址| 免费人成视频x8x8入口观看| 亚洲 欧美 日韩 在线 免费| 别揉我奶头~嗯~啊~动态视频| 波多野结衣高清无吗| 亚洲第一欧美日韩一区二区三区| av欧美777| 欧美一级a爱片免费观看看 | 90打野战视频偷拍视频| 国产精品乱码一区二三区的特点| 18美女黄网站色大片免费观看| 老司机靠b影院| 亚洲免费av在线视频| 亚洲精品久久成人aⅴ小说| 国产在线精品亚洲第一网站| 91成年电影在线观看| 久久久久国产精品人妻aⅴ院| 国产成人影院久久av| 精品电影一区二区在线| 欧美中文日本在线观看视频| 日韩欧美一区视频在线观看| 黄色a级毛片大全视频| 成在线人永久免费视频| 在线十欧美十亚洲十日本专区| 18禁裸乳无遮挡免费网站照片 | 久久精品影院6| 国产1区2区3区精品| 久久中文字幕人妻熟女| 国产精品国产高清国产av| 在线观看免费日韩欧美大片| 亚洲全国av大片| www国产在线视频色| 在线永久观看黄色视频| 99国产精品99久久久久| 久久精品国产亚洲av高清一级| 午夜两性在线视频| 黄色片一级片一级黄色片| 一级毛片精品| 国产又色又爽无遮挡免费看|