• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?

    2017-05-18 05:56:03ZhongHan韓眾andYongChen陳勇
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:陳勇

    Zhong Han(韓眾)and Yong Chen(陳勇)

    Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China(Received September 19,2016)

    1 Introduction

    Group theoretic methods are useful to study similarity reductions and exact solutions of partial differential equations(PDEs).[1?4]The classical symmetry methods due to Lie have been generalized to the nonclassical case by Bluman and Cole.[5]Generally,an s-parameter subgroup of the full symmetry group of a system of PDEs with n>s independent variables leads to a family of group invariant solutions.Unfortunately,it is usually not practicable to list all possible group invariant solutions of the system as there exist almost an in fi nite number of subgroups.Therefore,to construct all the inequivalent group invariant solutions is anticipated,or equivalently,to give them a classi fication,which leads to the concept of optimal system.In practical,an optimal system of the Lie algebra is constructed,from which the corresponding optimal systems for group invariant solutions are obtained.The adjoint representation of a Lie group on its Lie algebra is known to Lie and its application in classifying group invariant solutions appears from Ovsiannikov.[2]By using a global matrix for the adjoint transformation,Ovsiannikov demonstrates the construction of a one-dimensional optimal system and sketches the construction of higherdimensional optimal systems.Olver adopts a slightly different and elegant way by taking a table of adjoint operators to simplify a general element from the Lie algebra as much as possible.[3]Following Olver’s method,we have obtained the optimal systems as well as some interesting exact solutions for several important PDEs appeared in hydrodynamics and atmosphere.[6?8]Some other works on optimal systems can also be found in Refs.[9–11].Very recently,a direct algorithm of one-dimensional and twodimensional optimal system is introduced in Refs.[12]and[23],respectively.The algorithm can guarantee both comprehensiveness and inequivalence of the elements in the optimal system obtained,need no further proofs.

    As a matter of fact,the two-dimensional unsteady fl ow of an incompressible viscous fl uid is governed by the wellknow Navier–Stokes equations where u≡u(x,y,t)and v≡v(x,y,t)are velocity components in the x-and y-directions,respectively.p≡p(x,y,t)is fl uid pressure and ν is kinematic viscosity.Here and further the subscripts denote partial differentiation with respect to corr

    esponding variables.For simplicity,we can set ν=1 by choosing suitable units for length and time.

    About a century ago,Prandtl found that boundary layers play an important role in determining precisely the flow of certain fl uids.[14]He demonstrated that for slightly viscous fl ows the viscosity plays a key role near boundaries,although it can be negligible in the most of the flow.For an incompressible two-dimensional viscous fl uid over a fl at plate with the latter taken as y=0,the unsteady laminar boundary-layer equations for fl ow of high Reynolds number are given by

    In addition,for the stationary fl at plate,the boundary conditions can be taken as

    The external inviscid fl ow w(x,t)is related to the pressure p through

    and it is usually obtained via inviscid fl ow calculations.Besides the boundary conditions,an initial value of u is needed to form a well-posed problem.However,in studying similarity solutions,the initial condition is determined rather than prescribed.

    The quest for similarity reductions and exact solutions of the boundary-layer equations is signi ficant and also has a long history.[2,14?21]The motivation of the current paper is to perform symmetry analysis of the boundarylayer equations(2)along with the boundary conditions(3).A Lie subalgebra of the full symmetry group of the boundary-layer equations which also leaves the boundary conditions(3)invariant is considered.To get intrinsically different symmetry reductions and inequivalent group invariant solutions,a two-dimensional optimal system of the subalgebra is constructed.It is necessary to point that similarity reductions have many important values other than as mere mathematical exercises.Actually,reductions and exact solutions of physically important PDEs(including the boundary-layer equations)are signi ficant.Some exact solutions describe an important physical phenomenon and solutions of a system asymptotically tend to the solutions of the corresponding lower dimensional system obtained through similarity reductions.What is more,exact solutions also provide valuable checks on the accuracy and reliability of numerical algorithms.

    The layout of this paper is as follows:In Sec.2,symmetry analysis and a two-dimensional optimal system of the boundary-layer equations(2)and(3)are presented.Then with aid of the optimal system obtained,symmetry reductions and exact solutions of the boundary-layer equations are performed in Sec.3.The last section is a short conclusion.

    2 Construction of a Two-Dimensional Optimal System

    2.1 Lie Algebra of the Boundary-Layer Equations

    To perform Lie symmetry analysis of Eqs.(2),we consider the one-parameter Lie group of in fi nitesimal transformations in the form

    with ?? 1 is the group parameter.It is required that the set of solutions of Eqs.(2)is invariant under the transformation(5),which leads to a system of over-determined,linear equations for the in fi nitesimals ξx, ξy, ξt, ηu, ηv,and ηw.The associated Lie algebra of in fi nitesimal transformations is spanned by the set of vector fields

    Here,the vector fields(6)have no relationship to the velocity variable v.For Eqs.(2),the solution of the determining equations is given by

    where ci,i=1,2,3 are constants,r≡r(t)and s≡s(x,t)are arbitrary smooth functions,and the prime denotes derivative with respect to time t.So the Lie algebra of the symmetry group of Eqs.(2)is spanned by the following vector fields

    Remark 1Comparing with Ovsiannikov’s solution,[2]one can see that his solution is not the most general solution as it loses the x dependence of the function s.Ma and Hui also get the Lie symmetry algebra of Eqs.(2).[20]Their solution is slightly different from our’s,as the calculation of the optimal system is simpler in terms of Eq.(8),so we consider(8)in this paper.

    To leave the boundary conditions(3)invariant,[4]we must take r=constant and s=0.Hence,in the subsection,a subalgebra of Eq.(8)spanned by the following four vector fields will be considered

    The commutation relations between the vector fields viand vjin Eq.(9)are given in Table 1.In which,the entry in row i and column j representing[vi,vj]=vivj?vjvi.

    To compute the adjoint representation,we use the Lie series in conjunction with Table 1.Applying the formula

    one can construct the following adjoint representation table with the(i,j)-th entry indicating Adexp(?vi)vj.

    Table 1 Commutator table of the Lie algebra(9).

    In conjunction with Table 2,the general adjoint transformation matrix A can be obtained,which is the product of the matrices of the separate adjoint actions A1,A2,A3,A4in any order and it is useful in the construction of an optimal system.The orders of the product of A1,A2,A3,A4are not important since only the existence of the elements of the group is needed in the algorithm.

    Table 2 Adjoint representation table of the Lie algebra(9).

    Applying the adjoint action of v1to

    we have

    with

    In a similar way,we can get A2,A3and A4,

    So the general adjoint transformation matrix A is given by

    2.2 Construction of a Two-Dimensional Optimal System

    In this subsection,using the algorithm in Ref.[13],a two-dimensional optimal system of the Lie algebra(9)is constructed.First,we brie fl y recall the method.

    Consider an n-dimensional Lie algebra G,which is spanned by the vector fields{v1,v2,...,vn}.The corresponding n-parameter Lie group of G is denoted as G.A family of two-dimensional subalgebras{gα}form an optimal system denoted as O2if:(i)A two-dimensional subalgebra is equivalent to some gα,and(ii)gαand gβare inequivalent for distinct α and β.Each element gα∈ O2is a collection of two linear combinations of the generators.Let

    be a general two-dimensional subalgebra,which remains closed under commutation.Two elements{w1,w2}andare called equivalent if we can find some transformation g∈G and four constants k1,k2,k3,k4,such that

    Sinceandare linearly independent,it requires that k1k4?k2k3/=0 in Eq.(16).In addition,for any element{w1,w2}∈O2,it requires that w1and w2constitute a two-dimensional subalgebra,i.e.[w1,w2]= λw1+ μw2with λ and μ being constants.Galas re fi nes this selection by demonstrating that w2must be an element from the normalizer of w1.That is to say we can select w2for[w1,w2]=λw1.Furthermore,for any two-dimensional subalgebra{w1,w2}with[w1,w2]=λw1,we can easily find an equivalent one=0 orHence,to find the inequivalent elements in the optimal system O2,without loss of generality,we require each member{w1,w2}∈O2satisfy[w1,w2]=0 or[w1,w2]=w1.It has been shown that for any two equivalent subalgebras{w1,w2}andthere is=0 if and only if[w1,w2]=0,=0 if and only if[w1,w2]≠0.For the later case,we have the following remark.

    Remark 2 If two subalgebras{w1,w2}andwith[w1,w2]=w1andare equivalent in the form of Eq.(16),there must be k2=0 and k4=1.

    To find all the inequivalent elements in the twodimensional optimal system O2,we first require each{w1,w2}∈O2satisfy

    Thus,when take

    the restriction(17)produces a set of equations of aiand bjfor two different cases.

    For any two-dimensional subalgebra

    a2n-dimensionalfunctionof?(a1,...,an,b1,...,bn)is called an invariant if it satis fi es ?(a11Adg(w1)+a12Adg(w2),a21Adg(w1)+a22Adg(w2))=?(w1,w2)for all g∈G with a11,a12,a21,a22being arbitrary constants.

    Taking a general subgroup g=exp(?v),(v=to act on w1,we have

    in which(a1,...,an,c1,...,cn)can be easily get with the commutator table.In the same way,we have

    More intuitively,the following notations are adopted

    For a two-dimensional subalgebra{w1,w2},according to the Definition of an invariant,we have

    In addition,to guarantee a11Adg(w1)+a12Adg(w2)=w1and a21Adg(w1)+a22Adg(w2)=w2after the substitution of ?=0,it requires that

    Thus Eq.(22)becomes

    The following two distinct cases need to be considered to determine the invariants ?.

    (i)When[w1,w2]=0,substituting(21)into Eq.(24),then taking the derivative of Eq.(24)with respect to ? and setting ?=0,extracting all the coefficients of ci,a11,a12,a21,a22,a set of linear differential equations about ? are achieved.Solving these equations,all the invariants ? on[w1,w2]=0 can be obtained.

    (ii)When[w1,w2]=w1, firstly taking a12=0 and a22=0 in Eq.(24),then making the same procedure just as case(i).

    For the Lie algebra(9),we take

    Let v=be a general element from G,in conjunction with Table 1,we have

    where

    Similarly,applying v=to w2,we get

    with

    According to the algorithm,the following two cases need to be considered.

    (i)When[w1,w2]=0,taking the derivative of Eq.(24)with respect to ? and then setting ?=0,extracting all the coefficients of ci(i=1,2,3,4),a11,a12,a21,a22,eight differential equations of ? ≡ ?(a1,...,a4,b1,...,b4)can be got,

    (ii)When[w1,w2]=w1,plugging a12=a22=0 into Eq.(24)and making the same process in case(i),six equations about ? are obtained,which are just Eqs.(30).

    Substituting Eq.(25)into[w1,w2]=δw1,the following restrictive equations are obtained respective invariants and select the corresponding eligible representative elements For ease of calculations,we rewrite Eq.(16)as

    For two distinct classes δ=0 and δ=1,in terms of every restricted condition given by Eqs.(32),compute their

    More intuitively,Eqs.(33)are usually expressed as

    where the general adjoint transformation matrix A is given in Eq.(15).If Eqs.(34)have solution with repect to(i=1,2,3,4),it implies that the selected representative elementis correct;if Eqs.(34)have no solution,another representative elementneed to be selected.Repeat the process until all the cases are if nished.

    (i)The case of δ=0 in the restrictive equations(32).

    Substituting δ=0 into Eqs.(32),we have

    For this case,two different situations need to be considered.

    Case 1 Not all a3and b3are zeros.Without loss of generality,we take a3≠0,then b1=a1(b3/a3).In this case,there exist three subclasses.

    Case 1.1 When a2≠0,then we have b4=a4(b2/a2).Substituting b1=a1(b3/a3)and b4=a4(b2/a2)into Eqs.(30)and Eqs.(31),we find that ?=constant.The representative element{v2,v3}can be selected,since Eqs.(34)have the solution

    Case 1.2 When a2=0,b2≠0,then it must have a4=0.In a similar way,we find that ?=constant.We select the representative element{v3,v2},then Eqs.(34)have the solution

    It is obvious that Cases 1.1 and 1.2 are equivalent.

    Case 1.3 When a2=b2=0.In this case,{v4,v3}can be selected as the representative element since Eqs.(34)hold for

    Case 2When a3=b3=0.This case can be further divided into two subclasses.

    Case 2.1Not all a2and b2are zeros.Without loss of generality,we take a2≠0,then b4=a4(b2/a2).We choose a representative element{v1,v2},then Eqs.(34)have the solution

    Case 2.2 When a2=b2=0,{v1,v4}can be selected as the representative element since Eqs.(34)hold for

    (ii)The case of δ=1 in the restrictive equations(32).

    Substituting δ=1 into Eqs.(32),it must have a2=a3=0.Then Eqs.(32)become to

    Case 3When a1=0,it must have a4≠0,thus we get b2=1.In this case,by solving Eqs.(30),we get an invariant ? = ?1=b3.This case can be further divided into two subclasses according to the values of?1.

    Case 3.1 If?1= α/=0,we can select the representative element{v4,v2+αv3},then Eqs.(34)have the solution

    Case 3.2 If?1=α=0,there exist three circumstances in terms of the sign of b1.

    (a)When b1>0,{v4,v1+v2}can be chosen as the representative element since Eqs.(34)hold for

    (b)When b1<0,we select the representative element{v4,?v1+v2}and Eqs.(34)have the solution

    (c)When b1=0,we select the representative element{v4,v2}and Eqs.(34)hold for

    Case 4When a1≠0,a4=0,then we have b3=1.In this case,by solving Eqs.(30),we get an invariant ?=?2=b2.This case can also be further divided into two subclasses according to the values of?2.

    Case 4.1If ?2= α/=0,we select the representative element{v1,αv2+v3},then Eqs.(34)have the solution

    Case 4.2 If?2=α=0,there exist three circumstances in terms of the sign of b4.

    (a)When b4>0,{v1,v3+v4}can be chosen as the representative element since Eqs.(34)hold for

    (b)When b4<0,we select the representative element{v1,v3?v4}and Eqs.(34)have the solution

    (c)When b4=0,we select the representative element{v1,v3}and Eqs.(34)have the solution

    Case 5 When a1≠0,a4≠0,then we have b2=b3=1.Solving Eqs.(30),we find that ?=constant.In this case,there exist two circumstances in terms of the sign of a1a4.

    (a)When a1a4>0,we select the representative element{v1+v4,v2+v3}and Eqs.(34)have the solution

    (b)When a1a4<0,{v1?v4,v2+v3}can be chosen as the representative element since Eqs.(34)hold for

    In summary,a two-dimensional optimal system O2of the Lie algebra(9)is obtained

    The value in parentheses does not denote disallowed value,it denotes the value of the parameter that needs not to be considered,because it is considered elsewhere.This information is important in the calculation of the similarity variables.

    3 Symmetry Reductions and Exact Solutions

    By virtue of the two-dimensional optimal system O2(37),the boundary-layer equations(2)and(3)can be directly reduced to different classes of ODEs.This is achieved by solving the invariant surface condition equations to find all the similarity invariants,which are then used as new variables.

    For g1={v2,v3},the invariant surface condition equations are given by

    Solving Eq.(38),we have

    where z=is a similarity variable.Substituting Eq.(39)into Eqs.(2),a system of ODEs is obtained

    The boundary conditions(3)then require

    From the third equation in Eq.(40),we conclude that W(z)=E,Eis a constant.Using the transformation V(z)= ?Ef(z),from Eqs.(39)–(41),we can get

    where f(z)satis fi es

    This solution has been obtained by Ma and Hui,they refer this solution as the unsteady separated staparated-point flow solution(USSP)and study it in detail.

    In a similar way,for g2={v3,v4},an analytic solution can be obtained

    where C is an arbitrary constant.It is easy to verify that this solution also satis fi es the Navier–Stokes equations(1)with the pressure given by

    For g3={v1,v2},it is easy to get

    where f(y)satis fi es

    which is the Hiemenz stagnation-point fl ow solution.

    By virtue of g5={v2+ αv3,v4}(α/=0),we can get that

    with f(z)satis fi es

    where q=1/α?1.The solution given by Eqs.(48)and(49)also satis fi es the Navier–Stokes equations(1)with the pressure

    An analytic solution of Eq.(49)is given in Ref.[20]when q is a positive integer.Here,we consider three special cases when q is not a positive integer.

    When α=1(q=0),Eq.(49)admits an error function solution

    where the error function erf(x)is de fi ned as

    This case results in the Rayleigh solution.

    When α=2/3(q=1/2),Eq.(49)has a solution of the form

    In this case,the stream function Ψ of the fl ow Eq.(48)is given by

    When α =2(q= ?1/2),another solution of Eq.(49)is obtained

    For this case,the stream function Ψ is given by

    The solutions(53)and(55)are not reported in Ref.[20].More analytic solutions to Eq.(49)for other values of α can also be obtained,but for brevity,we do not present here.

    From g6={v1+v2,v4},the following solution can be achieved

    The solution(57)also satis fi es the Navier–Stokes equations(1)with the pressure

    For g13={v1+v4,v2+v3},we get

    where f(z)and g(z)satisfy

    In addition,by the transformation f(z)=(1/E)(1?h′(z)),Eq.(60)can be converted to

    With g(z)is given by

    From Eq.(62),it is obvious that g(0)=0.

    For g14={v1?v4,v2+v3},we have

    where f(z)and g(z)satisfy

    Similarly,by the transformation f(z)=(1/E)(h′(z)? 1),Eqs.(64)become to

    In this case,g(z)also meets(62).These two reductions from g13and g14are not obtained in Ref.[20],as far as we know,they may be previously unknown.

    More reductions and exact solutions of the boundarylayer equations can be found by virtue of the other elements in the optimal system(37).For instants,using g9,g10,g11and g12,the steady boundary-layer fl ow solutions may be obtained.For volumes,we do not present here as all the existing group invariant steady solutions have been listed in Ref.[20],and no new group invariant solutions can be found.While only trivial solution can be found from g4,g7and g8.

    4 Conclusion

    In conclusion,the boundary-layer equations which are important models in fl uid mechanics are studied through the classical Lie symmetry method.Its symmetry group is narrowed down to a subgroup under which the boundary conditions are also invariant.To find intrinsically different similarity reductions and inequivalent group invariant solutions,a two-dimensional optimal system is constructed.Since all the representative elements in the optimal system are attached to different values of the invariants,it can ensure the optimality of the optimal system obtained,need no further proofs.We notice that in almost all of the existing literatures,a one-dimensional optimal system is required for the construction of a two-dimensional optimal system,which usually takes too much work.In this paper,the construction starts from the Lie algebra directly and only depends on fragments of the theory of Lie algebras,without a prior one-dimensional optimal system.Then with the aid of the optimal system,some symmetry reductions and exact solutions of the boundary-layer equations are obtained.It has been shown that not only do we recover many of the known results but also find some new solutions,which may be previously unknown.In Ref.[20],the authors investigated the boundary-layer equations using a two-step reduction procedure,and some of the reductions obtained are overlapped.In our paper,due to the two-dimensional optimal system,the original equations are reduced to a system of ODEs via only one step.What is more,the reduced systems are intrinsically different and the solutions obtained are inequivalent,and some repetitive works are also avoided.

    As we know,the nonclassical symmetry(also known as conditional symmetry)method generalizes and includes the classical method in studying reductions and solutions of PDEs.[5]So the nonclassical symmetry analysis of the boundary-layer equations may generate more new solutions,which is interesting and deserves our further study.

    References

    [1]S.Lie,Arch.Math.6(1881)328.

    [2]L.V.Ovsiannikov,Group Analysis of differential Equations,Academic,New York(1982).

    [3]P.J.Olver,Applications of Lie Groups to differential Equations,Springer,New York(1993).

    [4]G.W.Bluman and S.C.Anco,Symmetry and Integration Methods for differential Equations,Springer,New York(2002).

    [5]G.W.Bluman and J.D.Cole,J.Math.Mech.18(1969)1025.

    [6]X.R.Hu,Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.A 65(2010)504.

    [7]Z.Z.Dong,F.Huang,and Y.Chen,Z.Naturforsch.A 66(2011)75.

    [8]Z.Z.Dong,Y.Chen,D.X.Kong,etal.,Chin.Ann.Math.B 33(2012)309.

    [9]K.S.Chou,G.X.Li,and C.Z.Qu,J.Math.Anal.Appl.261(2001)741.

    [10]K.S.Chou and C.Z.Qu,Acta Appl.Math.83(2004)257.

    [11]Q.Huang and C.Z.Qu,J.Phys.A:Math.Theor.40(2007)9343.

    [12]X.R.Hu,Y.Q.Li,and Y.Chen,J.Math.Phys.56(2015)053504.

    [13]X.R.Hu,Y.Q.Li,and Y.Chen,J.Math.Phys.57(2016)023518.

    [14]H.Schlichting,Boundary Layer Theory,McGraw-Hill,New York(1968).

    [15]K.Hiemenz,Dinglers J.326(1911)321.

    [16]L.Rayleigh,Phil.Mag.21(1911)697.

    [17]V.M.Falkneb and S.W.Skan,Phil.Mag.12(1931)865.

    [18]M.B.Glauert,J.Fluid Mech.1(1956)97.

    [19]J.C.Williams and W.D.Johnson,AIAA J.12(1974)1388.

    [20]P.K.H.Ma and W.H.Hui,J.Fluid Mech.216(1990)537.

    [21]D.K.Ludlow,P.A.Clarkson,and A.P.Bassom,Quart.J.Mech.Appl.Math.53(2000)175.

    猜你喜歡
    陳勇
    信陽市審計局 開展“我們的節(jié)日·清明”主題活動
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    High-order rational solutions and resonance solutions for a(3+1)-dimensional Kudryashov–Sinelshchikov equation*
    Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations?
    The impact of spatial autocorrelation on CPUE standardization between two different fi sheries*
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    苗嶺花山謠
    歌海(2017年2期)2017-05-30 22:22:10
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    亚洲av电影不卡..在线观看| 亚洲熟妇熟女久久| 国内精品一区二区在线观看| 午夜福利成人在线免费观看| 国产成人影院久久av| 久久婷婷人人爽人人干人人爱| 精品国产亚洲在线| 99热这里只有是精品50| 夜夜夜夜夜久久久久| 观看美女的网站| 最新中文字幕久久久久 | 激情在线观看视频在线高清| 在线播放国产精品三级| 欧美3d第一页| 久久久国产成人免费| 深夜精品福利| 激情在线观看视频在线高清| 欧美大码av| 99热6这里只有精品| 成年女人永久免费观看视频| 亚洲熟妇熟女久久| 国产欧美日韩精品亚洲av| 欧美日韩中文字幕国产精品一区二区三区| 变态另类丝袜制服| 午夜福利高清视频| 三级男女做爰猛烈吃奶摸视频| 国内久久婷婷六月综合欲色啪| 老司机福利观看| 老司机午夜十八禁免费视频| 91在线精品国自产拍蜜月 | 美女午夜性视频免费| 亚洲 国产 在线| 国产极品精品免费视频能看的| 亚洲专区字幕在线| 啦啦啦韩国在线观看视频| 久久九九热精品免费| 一边摸一边抽搐一进一小说| 久久久久久国产a免费观看| 男女下面进入的视频免费午夜| 18禁观看日本| 中文亚洲av片在线观看爽| 色老头精品视频在线观看| 午夜两性在线视频| 少妇的逼水好多| 亚洲国产精品久久男人天堂| 久99久视频精品免费| 中国美女看黄片| 久久久久久大精品| 黄色女人牲交| 悠悠久久av| 日韩欧美在线乱码| 午夜福利成人在线免费观看| 麻豆成人午夜福利视频| 精品国产乱码久久久久久男人| 国产精品av视频在线免费观看| 国内精品美女久久久久久| 熟妇人妻久久中文字幕3abv| 天堂影院成人在线观看| 桃色一区二区三区在线观看| 狠狠狠狠99中文字幕| 麻豆国产97在线/欧美| 12—13女人毛片做爰片一| 久久精品亚洲精品国产色婷小说| 国产精品 欧美亚洲| bbb黄色大片| a级毛片在线看网站| 偷拍熟女少妇极品色| 美女高潮喷水抽搐中文字幕| 2021天堂中文幕一二区在线观| 麻豆久久精品国产亚洲av| 特级一级黄色大片| 免费在线观看日本一区| 成熟少妇高潮喷水视频| 久99久视频精品免费| 国产精品 国内视频| 90打野战视频偷拍视频| 一进一出好大好爽视频| 97碰自拍视频| 中文亚洲av片在线观看爽| 成人永久免费在线观看视频| 久久久精品大字幕| 久久草成人影院| 精品一区二区三区视频在线 | 在线永久观看黄色视频| 日韩免费av在线播放| 日韩精品中文字幕看吧| 丁香六月欧美| 国产av一区在线观看免费| xxxwww97欧美| 青草久久国产| 欧美成人性av电影在线观看| 国产黄a三级三级三级人| 婷婷六月久久综合丁香| 每晚都被弄得嗷嗷叫到高潮| 国产熟女xx| 欧美最黄视频在线播放免费| 欧美中文综合在线视频| 久久这里只有精品19| 亚洲欧美一区二区三区黑人| 久久久久久大精品| 免费高清视频大片| 噜噜噜噜噜久久久久久91| 91av网站免费观看| 一二三四社区在线视频社区8| 久久人人精品亚洲av| 12—13女人毛片做爰片一| 黄色日韩在线| 国产熟女xx| 一级毛片女人18水好多| 免费看日本二区| 欧美3d第一页| 中文字幕精品亚洲无线码一区| 久久午夜亚洲精品久久| 这个男人来自地球电影免费观看| 国产黄色小视频在线观看| 国产亚洲欧美在线一区二区| 88av欧美| 日韩欧美三级三区| 热99在线观看视频| 国产成人系列免费观看| 婷婷精品国产亚洲av在线| 亚洲国产精品sss在线观看| 人人妻人人澡欧美一区二区| 亚洲 国产 在线| 成人国产一区最新在线观看| 国产一级毛片七仙女欲春2| 国产亚洲av高清不卡| 国产探花在线观看一区二区| 久久久久久久久中文| 91老司机精品| 亚洲国产精品久久男人天堂| 久久久久性生活片| 免费在线观看成人毛片| 久久亚洲真实| 日日干狠狠操夜夜爽| 99精品欧美一区二区三区四区| 亚洲中文字幕日韩| 中文字幕久久专区| 一边摸一边抽搐一进一小说| 日韩欧美三级三区| 欧美日韩精品网址| 99久国产av精品| 淫秽高清视频在线观看| 亚洲中文字幕一区二区三区有码在线看 | 国产亚洲av高清不卡| 99久久综合精品五月天人人| 免费人成视频x8x8入口观看| 国产毛片a区久久久久| 成人精品一区二区免费| 美女扒开内裤让男人捅视频| 免费在线观看成人毛片| 久久久久九九精品影院| 免费搜索国产男女视频| 观看美女的网站| 99在线人妻在线中文字幕| 无遮挡黄片免费观看| 国产三级中文精品| 激情在线观看视频在线高清| 中文字幕av在线有码专区| 人妻丰满熟妇av一区二区三区| 欧美中文综合在线视频| 在线看三级毛片| 99久久国产精品久久久| 亚洲国产色片| 久9热在线精品视频| 亚洲成人久久爱视频| 三级毛片av免费| 99热6这里只有精品| 老司机午夜十八禁免费视频| 99久久国产精品久久久| 狂野欧美白嫩少妇大欣赏| 女警被强在线播放| 桃色一区二区三区在线观看| 久久草成人影院| 制服人妻中文乱码| 麻豆一二三区av精品| 国产精品一区二区三区四区免费观看 | 亚洲 欧美一区二区三区| 级片在线观看| 女人被狂操c到高潮| 亚洲av成人精品一区久久| 美女扒开内裤让男人捅视频| 亚洲国产精品久久男人天堂| 欧美国产日韩亚洲一区| 久久久久精品国产欧美久久久| 国产又黄又爽又无遮挡在线| 国内精品久久久久精免费| 国产熟女xx| 国产精品国产高清国产av| 小说图片视频综合网站| 久久人人精品亚洲av| 老汉色av国产亚洲站长工具| 91在线精品国自产拍蜜月 | 亚洲精品粉嫩美女一区| 国产av不卡久久| 综合色av麻豆| 狠狠狠狠99中文字幕| 国产成人影院久久av| 在线观看免费午夜福利视频| 亚洲第一欧美日韩一区二区三区| 国产精品野战在线观看| 欧美精品啪啪一区二区三区| 在线十欧美十亚洲十日本专区| 曰老女人黄片| 在线观看66精品国产| 九九在线视频观看精品| 欧美日韩黄片免| 亚洲精品一区av在线观看| 香蕉av资源在线| 床上黄色一级片| 91在线精品国自产拍蜜月 | 99在线人妻在线中文字幕| 91久久精品国产一区二区成人 | 成人三级黄色视频| 国产主播在线观看一区二区| 九九热线精品视视频播放| 亚洲人成电影免费在线| 久久久久久久久中文| 久久久国产欧美日韩av| 少妇丰满av| 黄片小视频在线播放| a级毛片a级免费在线| 国产精品久久久久久人妻精品电影| 一本一本综合久久| 欧美色欧美亚洲另类二区| 可以在线观看毛片的网站| 亚洲成人久久性| 中文字幕人成人乱码亚洲影| 成人特级av手机在线观看| 亚洲欧美日韩卡通动漫| 91久久精品国产一区二区成人 | 国产真人三级小视频在线观看| 床上黄色一级片| 久久香蕉国产精品| 国产精品自产拍在线观看55亚洲| 99国产精品一区二区蜜桃av| 免费观看的影片在线观看| 两性夫妻黄色片| 岛国在线免费视频观看| 给我免费播放毛片高清在线观看| 国产成人aa在线观看| 成年女人毛片免费观看观看9| 日韩欧美国产在线观看| 成人一区二区视频在线观看| 热99re8久久精品国产| 久久这里只有精品19| 熟女少妇亚洲综合色aaa.| 真实男女啪啪啪动态图| 在线国产一区二区在线| 亚洲中文字幕日韩| 啦啦啦免费观看视频1| 亚洲精品色激情综合| 91在线精品国自产拍蜜月 | 日韩av在线大香蕉| 亚洲人成电影免费在线| 精品久久久久久久久久久久久| 亚洲中文日韩欧美视频| 全区人妻精品视频| 国产一区在线观看成人免费| 麻豆国产97在线/欧美| 日韩高清综合在线| 免费看日本二区| 看黄色毛片网站| 成年版毛片免费区| 美女免费视频网站| 亚洲av电影在线进入| 99热6这里只有精品| 脱女人内裤的视频| 国产亚洲av高清不卡| 美女免费视频网站| 欧美性猛交╳xxx乱大交人| tocl精华| 黑人欧美特级aaaaaa片| 亚洲色图av天堂| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲熟妇熟女久久| a在线观看视频网站| 久久久久国产一级毛片高清牌| 午夜精品一区二区三区免费看| 亚洲av五月六月丁香网| ponron亚洲| 香蕉av资源在线| 51午夜福利影视在线观看| 国产真实乱freesex| 亚洲男人的天堂狠狠| 午夜日韩欧美国产| 亚洲专区国产一区二区| 国产野战对白在线观看| 亚洲精品美女久久久久99蜜臀| a在线观看视频网站| 国产又黄又爽又无遮挡在线| 夜夜看夜夜爽夜夜摸| 亚洲精品美女久久av网站| 久久午夜亚洲精品久久| 最新美女视频免费是黄的| 99国产精品一区二区三区| 悠悠久久av| 88av欧美| 午夜福利在线观看吧| 少妇的丰满在线观看| 亚洲欧美日韩东京热| 国产男靠女视频免费网站| 综合色av麻豆| 毛片女人毛片| 午夜成年电影在线免费观看| 久久久久久久久中文| 免费在线观看影片大全网站| 久久亚洲精品不卡| 久久久久九九精品影院| 亚洲 欧美一区二区三区| 一区二区三区高清视频在线| 欧美黑人欧美精品刺激| 禁无遮挡网站| 日本一本二区三区精品| 小说图片视频综合网站| 他把我摸到了高潮在线观看| 亚洲国产精品成人综合色| 最新在线观看一区二区三区| 在线观看舔阴道视频| 97碰自拍视频| 国产精品精品国产色婷婷| 国产欧美日韩一区二区精品| 九色国产91popny在线| 欧美日韩综合久久久久久 | 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 精品日产1卡2卡| 成年版毛片免费区| 男女做爰动态图高潮gif福利片| 精品国产乱码久久久久久男人| 免费在线观看亚洲国产| 亚洲av成人一区二区三| 国产精品久久久久久亚洲av鲁大| 女生性感内裤真人,穿戴方法视频| 久99久视频精品免费| 国产97色在线日韩免费| 亚洲午夜理论影院| 日韩人妻高清精品专区| 99精品欧美一区二区三区四区| 亚洲五月婷婷丁香| 亚洲av成人精品一区久久| 亚洲专区中文字幕在线| 成在线人永久免费视频| 国产成人av教育| 成人欧美大片| 两个人的视频大全免费| 一二三四社区在线视频社区8| 99在线视频只有这里精品首页| av黄色大香蕉| 在线观看免费视频日本深夜| 午夜免费观看网址| 亚洲五月婷婷丁香| 日韩大尺度精品在线看网址| 99视频精品全部免费 在线 | 操出白浆在线播放| 天堂网av新在线| 国内精品美女久久久久久| 久久中文看片网| 午夜福利视频1000在线观看| 国产高清三级在线| 人妻夜夜爽99麻豆av| 99在线人妻在线中文字幕| 国产成人av教育| 99国产精品99久久久久| 国产av在哪里看| 少妇裸体淫交视频免费看高清| 精品乱码久久久久久99久播| 啪啪无遮挡十八禁网站| 国产人伦9x9x在线观看| 动漫黄色视频在线观看| 亚洲精品粉嫩美女一区| 99久久国产精品久久久| 日日夜夜操网爽| 97碰自拍视频| 搡老妇女老女人老熟妇| 亚洲第一欧美日韩一区二区三区| 搡老熟女国产l中国老女人| 91av网一区二区| cao死你这个sao货| 久久伊人香网站| 精品国产超薄肉色丝袜足j| 亚洲国产欧洲综合997久久,| 操出白浆在线播放| 一本综合久久免费| 国产伦精品一区二区三区视频9 | 我的老师免费观看完整版| 欧美黑人欧美精品刺激| 中文字幕精品亚洲无线码一区| 国产精品亚洲美女久久久| 亚洲国产精品sss在线观看| 亚洲欧美日韩卡通动漫| 亚洲天堂国产精品一区在线| av在线蜜桃| 成在线人永久免费视频| 人妻久久中文字幕网| 一二三四在线观看免费中文在| 在线免费观看的www视频| 国产真实乱freesex| 丁香六月欧美| 亚洲 国产 在线| 午夜亚洲福利在线播放| 精品午夜福利视频在线观看一区| 国产毛片a区久久久久| 在线永久观看黄色视频| www.www免费av| 日韩大尺度精品在线看网址| 欧美又色又爽又黄视频| 51午夜福利影视在线观看| 成人18禁在线播放| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 久久精品91蜜桃| 欧美一区二区国产精品久久精品| 中文字幕精品亚洲无线码一区| 亚洲自偷自拍图片 自拍| 丰满的人妻完整版| 久久久国产成人免费| 香蕉久久夜色| 亚洲美女视频黄频| 美女cb高潮喷水在线观看 | 宅男免费午夜| 国产麻豆成人av免费视频| 国语自产精品视频在线第100页| 亚洲熟妇熟女久久| 国产成人欧美在线观看| 亚洲人成网站在线播放欧美日韩| 天堂√8在线中文| 成年免费大片在线观看| 国产亚洲精品久久久久久毛片| 国产精品九九99| 日韩欧美在线二视频| www.自偷自拍.com| 色精品久久人妻99蜜桃| 欧美一级a爱片免费观看看| av中文乱码字幕在线| 免费搜索国产男女视频| 国产探花在线观看一区二区| 搡老岳熟女国产| 1024手机看黄色片| 国产成+人综合+亚洲专区| 香蕉av资源在线| 操出白浆在线播放| 国内精品一区二区在线观看| 岛国视频午夜一区免费看| xxxwww97欧美| 夜夜看夜夜爽夜夜摸| 91在线精品国自产拍蜜月 | 色尼玛亚洲综合影院| 在线观看一区二区三区| 国产成人欧美在线观看| 欧美+亚洲+日韩+国产| 麻豆国产av国片精品| 亚洲最大成人中文| 亚洲精品美女久久久久99蜜臀| 国产精品永久免费网站| 国产精品久久久久久亚洲av鲁大| 在线观看午夜福利视频| 中文字幕av在线有码专区| 热99在线观看视频| 成人性生交大片免费视频hd| 婷婷精品国产亚洲av| 伊人久久大香线蕉亚洲五| cao死你这个sao货| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 非洲黑人性xxxx精品又粗又长| av天堂中文字幕网| 黄频高清免费视频| 精品一区二区三区av网在线观看| 日韩 欧美 亚洲 中文字幕| 国产亚洲精品久久久com| 国产毛片a区久久久久| 国产精品日韩av在线免费观看| 特大巨黑吊av在线直播| 一区二区三区高清视频在线| 青草久久国产| 日本黄色视频三级网站网址| 国模一区二区三区四区视频 | 国产欧美日韩精品亚洲av| 欧美国产日韩亚洲一区| 国产精品1区2区在线观看.| 亚洲精品粉嫩美女一区| 欧美丝袜亚洲另类 | 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 两性夫妻黄色片| 国产精品一区二区三区四区免费观看 | 亚洲专区字幕在线| 国产私拍福利视频在线观看| 老司机午夜十八禁免费视频| 欧美三级亚洲精品| 老鸭窝网址在线观看| 日日摸夜夜添夜夜添小说| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 999久久久国产精品视频| 这个男人来自地球电影免费观看| 中文资源天堂在线| 哪里可以看免费的av片| 伦理电影免费视频| 亚洲国产精品999在线| 欧美乱妇无乱码| av天堂中文字幕网| 18禁美女被吸乳视频| 99热这里只有是精品50| 午夜福利欧美成人| 久久这里只有精品19| 亚洲 欧美 日韩 在线 免费| 国产高清有码在线观看视频| 成人欧美大片| 99精品欧美一区二区三区四区| 婷婷丁香在线五月| 伊人久久大香线蕉亚洲五| 亚洲成av人片免费观看| 亚洲国产精品合色在线| 欧美性猛交╳xxx乱大交人| 人妻丰满熟妇av一区二区三区| 国内揄拍国产精品人妻在线| 国产视频内射| 国产爱豆传媒在线观看| 香蕉国产在线看| 亚洲 欧美 日韩 在线 免费| 欧美在线一区亚洲| 好看av亚洲va欧美ⅴa在| 女生性感内裤真人,穿戴方法视频| av黄色大香蕉| 午夜a级毛片| 女人被狂操c到高潮| 男人舔女人的私密视频| 国产亚洲精品久久久com| 免费av不卡在线播放| 欧美日韩乱码在线| 少妇的逼水好多| 十八禁网站免费在线| 级片在线观看| 亚洲片人在线观看| 狂野欧美激情性xxxx| 久久久国产欧美日韩av| 性欧美人与动物交配| www日本黄色视频网| 法律面前人人平等表现在哪些方面| 一进一出好大好爽视频| 天堂网av新在线| 日韩欧美三级三区| 亚洲精品乱码久久久v下载方式 | 国产精品久久久久久久电影 | 欧美日韩乱码在线| 麻豆一二三区av精品| 亚洲av成人av| 国产 一区 欧美 日韩| 99久久精品热视频| 精品99又大又爽又粗少妇毛片 | 亚洲国产看品久久| 国产单亲对白刺激| 欧美日本亚洲视频在线播放| 热99re8久久精品国产| 国产爱豆传媒在线观看| 欧美色视频一区免费| 国产精品亚洲一级av第二区| cao死你这个sao货| 99久久99久久久精品蜜桃| 久久精品影院6| 啦啦啦韩国在线观看视频| 国产精品日韩av在线免费观看| 窝窝影院91人妻| 国产精品日韩av在线免费观看| 天堂网av新在线| 中文字幕人妻丝袜一区二区| 美女扒开内裤让男人捅视频| 亚洲自拍偷在线| 国产视频内射| 此物有八面人人有两片| 美女 人体艺术 gogo| 国产99白浆流出| 性色avwww在线观看| 九九在线视频观看精品| 亚洲精品久久国产高清桃花| 精品不卡国产一区二区三区| 一边摸一边抽搐一进一小说| 在线观看66精品国产| 欧美乱妇无乱码| 两个人的视频大全免费| 精品一区二区三区视频在线 | 激情在线观看视频在线高清| 国产高清有码在线观看视频| 国产精品国产高清国产av| 国产成人精品无人区| 亚洲国产精品合色在线| 欧美激情在线99| h日本视频在线播放| 18美女黄网站色大片免费观看| 国产精品98久久久久久宅男小说| 中亚洲国语对白在线视频| 麻豆成人av在线观看| 香蕉国产在线看| 国产精品综合久久久久久久免费| 1024手机看黄色片| 久久久久久九九精品二区国产| 99精品久久久久人妻精品| 欧美一区二区精品小视频在线| 国产真实乱freesex| 精品电影一区二区在线| 久久这里只有精品19| 婷婷精品国产亚洲av在线| 在线看三级毛片| 精品久久久久久,| 精品日产1卡2卡| 久久亚洲精品不卡| 99久久成人亚洲精品观看| 午夜免费观看网址| 精品久久久久久久久久免费视频| 免费高清视频大片| 天堂av国产一区二区熟女人妻| 亚洲av电影在线进入|