• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electron-Positron Pair Production in Strong Fields Characterized by Conversion Energy?

    2017-05-18 05:56:49IbrahimSitiwaldiZiLiangLi李子良andBaiSongXie謝柏松CollegeofNuclearScienceandTechnologyBeijingNormalUniversityBeijing00875China
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:李子

    Ibrahim Sitiwaldi,Zi-Liang Li(李子良),and Bai-Song Xie(謝柏松),2,?College of Nuclear Science and Technology,Beijing Normal University,Beijing 00875,China

    2Beijing Radiation Center,Beijing 100875,China

    1 Introduction

    In quantum electrodynamics(QED),it was predicted that an external energy associated with a strong field can be converted into matter in the form of electron-positron pairs.Schwinger calculated the rate of pair production in the constant electric field using a non-perturbative approach[1]after the earlier works of Sauter,[2]Heisenberg and Euler.[3]Although the threshold of field strength is too high to reach up now,it is possible to detect the fascinating phenomena of light to directly convert into matter in the near future with the rapid development of laser technology,for example,the European extreme-lightinfrastructure(ELI)program is now advancing.[4]Therefore,the active theoretical study on electron-positron pair production is important to support the upcoming experiment.

    The Dirac equation for a force-free electron has positive solutions of energy continuumEp≥mec2as well as negative solutions of energy continuumEn≤?mec2.We call them positive states and negative states,respectively.All the positive states are empty and all the negative states are occupied in the Dirac see.In the presence of an external field there are mainly two different production mechanisms under which an electron in the negative state can get enough energy from the external field to jump into a positive state and leave behind a “hole” which is also called a positron.The first mechanism is the tunneling e ff ect,[1]it requires the external field to reach the Schwinger limit ofEc=1.32×1018V/m,The second mechanism is photon absorbtion[5?7]where time-dependence of the external field can induce quantum transitions with a key role of the photon energy.

    In past decades many theoretical methods have been employed to study electron-positron pair production,such as proper time method,[8?10]WKB approximation[11]and worldline instanton techniques.[12?13]Quantum field theoretical simulations[14?15]in the spatial and temporal inhomogeneous external field[16?24]as well as the quantum kinetic method[25?26]in the spatial homogenous and timedepending external field[27?30]received a great deal of interest in recent years.

    Study on the pair production in oscillating electric fields[31]indicates an interesting dependence of pair creation rate to the characteristic parameters associated to the tunneling or/and multiphoton processes.On the other hand in a bifrequent fields[32?34]as well as in a combined fields[35?37]the studies have shown more complicated production process composed of various production channels.So it should be important to know first that what mechanism induce or dominate the pair yielding.

    In order to represent the physical picture of a pair production process,which is still a challenging task in a more realistic and complicated field con fi guration,in this paper,we try to suggest a simple and uni fi ed method to reveal clearly the pair production process by focusing on what mechanism dominates and how the production channels are identi fi ed.We introduce first the conversion energy for a pair produced in the external field.And then we demonstrate that it is directly associated with the production mechanism of this pair.To test the feasibility of conversion energy we study the spectrum of conversion energy for the electron-positron pair production process in a static and an oscillating field via quantum field theoretical simulations in the one-dimensional space.Finally we study the pair production in a bifrequent and a combined field in the view of conversion energy.

    The paper is organized as follows:In Sec.2 we introduce the conversion energy term and its spectrum after a brief review of the computational framework.In Sec.3 we analyze the numerical results.In the last section we provide a brief conclusion.

    2 Theoretical Method

    2.1 The Quantum Field Theoretical Simulations

    To study the electron-positron pair production process,the relativistic quantum mechanical Dirac equation for a single-particle wave function is not sufficient as it assumes the existence of a particle from the beginning and the unitary time evolution would make it impossible to describe for which the number of particles can change.We employ the quantum field theoretical simulations to describe particle creation and annihilation processes in external field.We neglect the fermion interaction and work in a one-dimensional space for computational reason.We use the natural units(~=c=1)in this paper where the electron quantities as the normalized units,i.e.,length λc=1/me=3.862 × 10?13m,time 1/me=1.288×10?21s,frequency me=7.764×1020Hz,momentum me=2.73 × 10?22kg·m/s,energy me=0.511 MeV.

    The electron and positron are described by Dirac field operator that satis fi es the time-dependent Dirac equation,where V(z,t)denotes the electric potential associated with the external field acting and varying along z direction.There is no spin change in one dimension so fourcomponent Dirac spinor reduce to only two components and Dirac matrices is replaced by the usual Pauli matrices σ.We rede fi ne pz=p for simplicity.

    The time-evolved Dirac operator may be expanded in terms of the electron annihilation and positron creation operators and the force-free positive and negative energy eigenstates,

    where Wp(z)and Wn(z)represent the field-free energy eigenstates|pand|nin the spatial representation at t=0,Wp(z,t)and Wn(z,t)satisfy the single-particle time-dependent Dirac equation Eq.(1).From Eq.(2)we obtain

    where the coefficients are the elements of the time-ordered propagator U(t)=exp[?i∫tdt′[cσ1p+ σ3me+V(z,t′)]]between the energy eigenstates.The field operator also can be expanded by the instantaneous eigenstates of timedependent Hamiltonian.The interpretation of physical quantities derived from Dirac field operator depends on its expanding basis.[38]For our case where Dirac operator is expanded in terms of free particle states,we would have to regard all the quantities derived below as those properties that produced particles would take if the external field was instantaneously turned o ff.

    The produced electrons’spatial density can be obtained from the expectation value of the product of the electronic field operators,

    whereis the electronic portion of the field operator.Using the commutator relationsthe density can be expressed through the field-free energy eigenstates of the single-particle Hamiltonian as

    where Up,n= 〈p|n(t)= 〈p|U(t)|ncan be computed by using the split operator numerical technique.[14]By integrating Eq.(6)over space,we obtain the total number of the produced pairs as

    2.2 Conversion Energy and Its Spectrum

    The mass-energy of a pair produced from the vacuum in an external field can be expected to be equal to the energy it has absorbed from the external field.Note that it should be a physical process,which includes the possible inverse process of the matter to convert into energy as long as the energy conservation holds.For a pair produced in a pair production process,we take the sum of mass-energy of the electron and its conjugate positron and de fi ne it as conversion energy,

    where p and n are momentum of the electron and its conjugate positron,respectively.Equivalently,one can regard the conversion energy as follows:the electron in a negative state with energyEn=jump into a positive state with energyEp=absorbing energyEp,n=Ep?Enfrom external field.

    The expectation number of a pair of electron with momentum p and positron with momentum n produced at time t is|Up,n(t)|2,which is given above.According to our interpretation in the last subsection,one has to regard the conversion energy Eq.(8)as the total mass-energy the produced pair would take if the external field was turned o ffabruptly.We calculate the conversion energyEp,nand corresponding yields|Up,n(t)|2of produced pairs for all p and n and represent them in term of distribution of pair numbers as a function of the conversion energy,p(E,t),

    3 Numerical Results

    We simulate the pair production processes for different field con figurations and discuss the production mechanism in the view of conversion energy.

    A symmetric potential well is illustrated asV(z,t)=V(t)S(z)for external field in our simulations,whereV(t)is potential height and S(z)={tanh[(z? D/2)/W]?tanh[(z+D/2)/W]}/2 is the Sauter-type potential well,W is a measure for the width of each edge,D is the total extension of the potential well.

    For all simulations in this paper,we take W=0.3,D=8,the length of simulation space L=340 withNz=4096 grid points,total simulation time t0=40π withNt=4000 grid points.For the calculation of CES,Eq.(9),we takeNE=1000 grid points in abscissaEand take?E=0.04 to get more sensitive and smooth curves.

    3.1 The Pair Production in a Static Electric Field

    We discuss the pair production process dominated by the Schwinger mechanism to study how to characterize this process in the view of conversion energy.

    In Fig.1 we display final(after external field is turned o ff)CES of the pairs produced in a static field with potential heightV=2.5,where the tunneling e ff ect[1]is responsible for the production process.There are a peak corresponding to potential height and it contains the most yields.The peak position is 2.46,with the agreement of 1.6%with the potential height,average conversion energy of total yields is 2.58,with the agreement of 3.2%with the potential height.We repeat this simulation for the static fields with potential heightsV=3,3.5 and obtain graphics very similar to Fig.1 except the peak positions at 2.94,3.44,respectively.

    The distribution is a bit higher unexpectedly in the left side of the peak,within the area from 2.18 to 2.38,it shows that there are some pairs still inside the interaction zone and have lower conversion energy,one has to be careful that there are still some interpretational challenge about particles inside interaction zone.There is also small amount of distribution out of the peak,we believe there are some pairs produced in the beginning due to dramatic turning on the external field as we discuss below.

    In the inset of Fig.1 we display CES of the pairs produced shortly after(when t=0.01t0)turning on the external field.It is very different from the main fi gure,most of these pairs have too large or too small conversion energy to be produced by the tunneling process,indicating there is other production mechanism.We attribute it to high frequency Fourier components of the external field turning on dramatically.This phenomena is studied in a more systematic way in the next subsection.

    Fig.1 Final CES of the pairs produced in a static field with potential height V=2.5,the inset is CES shortly after turning on the electric field.

    Fig.2 Waterfall of CES of pairs produced in a static field with potential height V=2.5 in times t=(n/50)t0 with(n=1,2,3,...,50).

    To represent time evaluation of the conversion energy,in Fig.2 we display the waterfall of CES of pairs produced in a static field with potential heightV=2.5 in times t=(n/50)t0(n=1,2,3,...,50).The peak is generated at the expected position in the very beginning and keeps the position unchanged.It can be shown that the production mechanism is consistent all the interaction time.

    The conversion energy of the pair produced in a static field agree with the physical picture of the tunneling effect,the electron in the negative energy continuum travels through the edge of potential well to join to the positive energy continuum,absorbing energy in the amount of potential height from external field.The conversion energy of a pair produced by tunneling process in the static field with potential height V can be expressed as

    3.2 The Pair Production in an Oscillating Electric Field

    Now we study pair production process in the timedepending subcritical electric field,where the photon absorbtion[5?7]can be responsible for the pair production.We separately study production channels corresponding to each order of transition in the view of conversion energy.

    In Fig.3(solid line)we display final CES of the pairs produced in a oscillating field with amplitude V=1.5 and frequency ω=1.3,where the potential height oscillates as V(t)=V sin(ωt).Most yields are distributed within four narrow peaks,the positions of them areE2=2.61,E3=3.90,E4=5.21,andE5=6.50,respectively.These peaks represent the two,three,four,and fi ve-photon processes.The corresponding yields are 60.9%,29.6%,8.19%,and 1.32%of total yields 1.73,respectively,where the yields of each process is obtained by integrating corresponding peaks.The yields due to lower order photon absorbtion is more than of higher order photon absorbtion because the chance of absorbing large number of photons is smaller than the chance of absorbing small number of photons in the view of perturbation theory.[21]

    Fig.3 (Color online)Final CES of the pairs produced in oscillating field with amplitude V=1.5 for two different frequencies.

    Figure 3 is similar to multiphoton peaks in Ref.[39],but there are a signi ficant di ff erence,instead of momentum of positron we take the exact mass-energy of electron and its conjugate positron to represent how much energy this pair absorbed from external field.It is need to remind that a pair may interact again with the electric field once it is created and absorb more photons to contribute a high-order process so the physical picture of the highorder process is still not very clear.For example,we are unable to decide that a pair corresponding to the peak atE=3.90 in Fig.3 absorb three photons during its creation or absorb one more photon after created by a two-photon process.

    The signature of e ff ective mass in multiphoton pair production was discussed in Ref.[40]and demonstrated that the frequency threshold of n-photon process is higher than 2me/n due to e ff ective mass.We repeat above simulation with frequency ω=1.02 and display corresponding CES in Fig.3(dashed line),all features agree with our discussion about ω=1.3 except the rather small peak atE=2.04 corresponding to the two-photon process.We believe that frequency threshold increased due to e ff ective mass can be responsible for this suppression.

    In order to describe the multiphoton process during all the simulation time we display the waterfall of CES of the pairs produced in an oscillating field with amplitude V=1.5 and frequency ω=1.3 in times t=(n/50)t0(n=1,2,3,...,50)in Fig.4.All the peaks are generated from very beginning and the peak positions keep unchanged while the peak heights linearly increase following the simulation time,representing the production process with constant production mechanism almost all the interaction time.

    Fig.4 Waterfall of CES of the pairs produced in an oscillating field with amplitude V=1.5 and frequency ω=1.3 in times t=(n/50)t0with(n=1,2,3,...,50).

    The production process associated with each order of photon absorbtion in a time-depending external field with frequency ω can be identi fi ed speci fically by the conversion energy,which reads as follows for a pair produced by n-photon process,

    Studying a certain production channel individually is convenient with it.We study a temporal behaviour of each production channel now.

    Integrating corresponding peaks in every time steps we obtain the yields of each production channels as a function of time.In Fig.5 we represent time-dependence of the yields of each production channel in oscillating field with frequency ω=2.1 and amplitude V=1.5.We can see that there are some di ff erence in temporal behaviour of each production channel.The production rate of onephoton process decrease in early time(before t=30),while other high-order processes keep almost constant production rate,causing to decrease total production rate,where production rate(dN(t)/dt)is represented by the gradient of corresponding curves in Fig.5.

    Fig.5 (Color online)The yields of each production channel as a function of time in oscillating field with frequency ω=2.1 and amplitude V=1.5.

    We suppose that the suppression of production rate can be attribute to Pauli block and investigate the relation between suppression of production rate and pair number inside the well to test it.The yields of electrons inside the potential well as a function of time is represented by the dashed line in Fig.5,which is obtained integrating Eq.(6)inside the well.It can be seen that the number of electrons inside the well increases from 0 to about 0.75 up to t=30 and then almost keeps unchanged,while the production rate of total yields and one-photon process is decreasing before t=30 and then almost keep unchanged.It is safe to say that the production rate of one-photon process is suppressed by particles inside the well.We believe that the production of high-order processes have two sources,one is production from vacuum by multiphoton process,which can be suppressed by pairs inside the well like one-photon process,another one is acceleration of yields inside the well,which is proportional to the number of pairs inside,so there is no decrease of production rate of high-order processes.

    We mention in the last subsection that adiabatic turning on electric field can trigger pair production.Accordingly,one can expect that turning on and o ffexternal field periodically may also trigger a continuously pair production.We simulated the pair production in a binary pulsed field where a static field with potential height V=1.5 turned on and o ffperiodically with frequency ω=1.3.The time evolution of this field can be expressed as V(t)=V θ(sin ωt)where θ denotes heavyside step function.The time evolution of the yields in Fig.6(inset)indicates a continues production.We discuss the production mechanism of this process with the help of final CES in Fig.6(main).There are multiphoton peaks corresponding to sinusoidal components of the binary field,which may be expanded in terms of Fourier components as

    The multiphoton peaks corresponding to first sinusoidal term in Eq.(12)is atE=2.59,3.90,5.20 where the peak atE=3.90 is superimposed by a peak corresponding to second sinusoidal term in Eq.(12)in the same time.It can be demonstrate that a non-sinusoidal time-dependent electric field can also trigger a pair production processes associated with photon absorbtion due to its sinusoidal Fourier component.This result con fi rms our assertion about turning on electric field dramatically in last subsection.

    Fig.6 Final CES of pairs produced in a binary pulsed field where a static field with potential height V=1.5 turned on and o ffperiodically with frequency ω=1.3,the inset is time evolution of the yields.

    3.3 Pair Production in a Bifrequent Electric Field

    Electron-positron pair production in a bifrequent electric field composed of a strong low-frequency and a perturbative high-frequency mode was studied in Ref.[32],a resonant behavior depending on the frequency composition of the field was found,which indicates pair production triggered by the combination of different photons.We investigate the composition of production channels in a bifrequent field.

    In Fig.7(Solid line)we display final CES of the pairs produced in a bifrequent field composed of two oscillating fields with amplitudes V1=V2=1.5 and frequencies ω1=1.3,ω2=1.5,where the total potential height is V(t)=V1sin(ω1t)+V2sin(ω2t).There are many narrow peaks with different heights,indicating the existence of rather complicated production channels.The two,three,four-photon processes triggered by photon with frequency ω1denoted as ω1,2ω1,3ω1are represented by the peaks atE=2.61,3.90,5.20 respectively,matching with corresponding number of photon energy perfectly.The two,three,four-photon processes triggered by photon with frequency ω2denoted as ω2,2ω2,3ω2are represented by peaks atE=3.00,4.50,6.01 respectively.

    As we expect we detect the process of photon absorbtion triggered by the combination of different photons here.The corresponding two-photon process denoted as ω1+ ω2,three-photon processes denoted as 2ω1+ ω2,ω1+2ω2,and four-photon processes denoted as 3ω1+ω2,2ω1+2ω2, ω1+3ω2are represented by the peaks atE=2.80,4.10,4.30,5.40,5.60,5.81,respectively.We neglect to discuss the peaks with rather small heights,which are corresponding to higher order processes.

    Fig.7 (Color online)Final CES of the pairs produced in a bifrequent field composed of two oscillating fields with amplitudes V1=V2=1.5 and frequencies ω1=1.3,ω2=1.5.

    We find some peaks with unexpected positions in Fig.7.For example,the production mechanism of pairs corresponding to the peak atE=2.42 can not be regard as a pure photon absorbtion since its corresponding conversion energy can not be expressed as a sum of any positive integer number of ω1and ω2,but matches 3ω1? ω2very well.We explain the production process as absorbing three photons with frequency ω1and emitting one photon with frequency ω2,but we are still unable to decide that during production or after production it emits a photon.These peaks atE=3.19,3.71,4.69 can also be explained in the similar way with the processes denoted as 3ω2?ω1,4ω1?ω2,and 4ω2?ω1respectively.The underlying physical mechanism of these findings need to study further in future.

    It can be demonstrated that in a bifrequent field with frequencies ω1,ω2the multiphoton process can be triggered by the combination of same photons as well as different photons,the corresponding production channel can be identi fi ed by the conversion energy of the produced pair,where n1,n2are integer satisfyingE(ω1,ω2)≥ 2.

    For comparison we also display the CES for each single frequent field individual in Fig.7(dashed lines).The yields of production process associated only to one frequency in the bifrequent field is less than the yields of the same process in the single frequent field individual,we attribute it to the competition between the various production channels in the bifrequent field.

    3.4 Pair Production in a Combined Electric Field

    It was demonstrated that the pair production rate can be enhanced in a combined field composed of a strong slow-varying and a perturbative high-frequent field due to dynamically assisted Schwinger mechanism.[30]We simulate the pair production in a combined field to detect the signature of dynamically assisted Schwinger mechanism and investigate the exact contribution of each production channel with the help of conversion energy.

    In Fig.8 we display final CES of the pairs produced in a combined field composed of a static field with potential height V=1 and an oscillating field with amplitude V1=1,frequency ω=1.3,dashed lines are for each individual field,where the final yields of combined field,static field alone and oscillating field alone are 1.33,0.41,and 0.02,respectively.

    Fig.8 (Color online)Final CES of the pairs produced in a combined field composed of a static field with potential height V=1 and an oscillating field with amplitude V1=1,frequency ω=1.3.

    There are four narrow peaks atE=2.61,3.90,5.20,6.50 representing two,three,four,and fi ve-photon processes denoted as 2ω,3ω,4ω,5ω.As we expect,we detect the processes of dynamically assisted Schwinger mechanism denoted as ω +V,2ω +V,3ω +V,which are represented by the peaks atE=2.25,3.55,4.86 respectively.The production channel corresponding to a pair can be identi fi ed according to the conversion energy of this pair,

    where k=1 for dynamical assisted Schwinger mechanism and k=0 for pure photon absorbtion,n is integer satisfyingE(ω,V)≥ 2.

    Integrating corresponding peak we can obtain the yields of each production channel in combined field.The yields corresponding to dynamically assisted Schwinger mechanism is 0.94,71%of total yields 1.33,which is essential to the enhancement of production rate.The peak corresponding to pure photon absorbtion in combined field is smaller than the corresponding peak in the oscillating field individual,it indicates the competition between processes of dynamically assisted Schwinger mechanism and pure photon absorbtion.

    4 Conclusion and Discussion

    In the frame of computational simulation for the pair production process we introduce a simple but useful physical quantity,conversion energy as the sum of the electron’s and its conjugate positron’s mass-energy.We demonstrated that the conversion energy can not only reveal the pair production characteristics but also give the yields of each production channel.We investigated the contribution of different production mechanisms to the final yields in the pair production process.

    We detected a signature of the e ff ective mass and found an inconsistent temporal behaviour among each order of photon absorbtion in an oscillating field.We investigated the composition of production channels in a bifrequent field and demonstrated that the multiphoton process can be triggered by the combination of same photons as well as different photons.We investigated the distribution of final yields in each production channel in a combined field and demonstrated that dynamically assisted Schwinger mechanism is essential to the enhancement of production rate.We also demonstrated a competition behaviour of different production channels.It is possible to conduct more qualitative investigations on the feature of individual production channels in the term of conversion energy in the future work.

    Acknowledgments

    We enjoyed several helpful discussions with Suo Tang,and Feng Wan.Authors are also grateful to the anonymous referee for the helpful comments and suggestions.

    References

    [1]J.S.Schwinger,Phys.Rev.82(1951)664.

    [2]F.Sauter,Z.Phys.69(1931)742.

    [3]W.Heisenberg and H.Euler,Z.Phys.98(1936)714.

    [4]http://www.eli-beams.eu/.

    [5]E.Brezin and C.Itzykson,Phys.Rev.D 2(1970)1191.

    [6]V.S.Popov,JETP Lett.13(1971)185.

    [7]R.Alkofer,M.B.Hecht,C.D.Roberts,S.M.Schmidt,and D.V.Vinnik,Phys.Rev.Lett.87(2001)193902.

    [8]R.G.Newton,Phys.Rev.96(1954)523.

    [9]W.Y.Tsai and A.Yildiz,Phys.Rev.D 8(1973)3446.

    [10]V.N.Baier,V.M.Katkov,and V.M.Strakhovenko,Sov.Phys.JETP 40(1974)225.

    [11]S.P.Kim and D.N.Page,Phys.Rev.D 65(2002)105002.[12]G.V.Dunne and C.Schubert,Phys.Rev.D 72(2005)105004.

    [13]G.V.Dunne,Q.H.Wang,H.Gies,and C.Schubert,Phys.Rev.D 73(2006)065028.

    [14]Andr′e D.Bandrauk,and Hai Shen,J.Chem.Phys.99(1993)1185.

    [15]T.Cheng,Q.Su,and R.Grobe,Cont.Phys.51(2010)315.

    [16]P.Krekora,K.Cooley,Q.Su,and R.Grobe,Phys.Rev.Lett.95(2005)070403.

    [17]Y.Liu,M.Jiang,Q.Z.Lv,Y.T.Li,R.Grobe,and Q.Su,Phys.Rev.A 89(2014)012127.

    [18]Q.Z.Lv,Y.Liu,Y.J.Li,R.Grobe,and Q.Su,Phys.Rev.Lett.111(2013)183204.

    [19]Y.Liu,Q.Z.Lv,Y.T.Li,R.Grobe,and Q.Su,Phys.Rev.A 91(2015)052123.

    [20]M.Jiang,Q.Z.Lv,Z.M.Sheng,R.Grobe,and Q.Su,Phys.Rev.A 87(2013)042503.

    [21]M.Jiang,W.Su,Z.Q.Lv,X.Lu,Y.J.Li,R.Grobe,and Q.Su,Phys.Rev.A 85(2012)033408.

    [22]Suo Tang,Bai-Song Xie,Ding Lu,Hong-Yu Wang,Li-Bin Fu,and Jie Liu,Phys.Rev.A 88(2013)012106.

    [23]Fran?cois Gelis and Naoto Tanji,Phys.Rev.D 87(2013)125035.

    [24]F.Hebenstreit,J.Berges,and D.Gelfand,Phys.Rev.D 87(2013)105006.

    [25]R.Alkofer,etal.,Phys.Rev.Lett.87(2001)193902.

    [26]C.D.Roberts,S.M.Schmidt,and D.V.Vinnik,Phys.Rev.Lett.89(2002)153901.

    [27]F.Hebenstreit,R.Alkofer,G.V.Dunne,and H.Gies,Phys.Rev.Lett.102(2009)150404.

    [28]A.Nuriman,B.S.Xie,Z.L.Li,and D.Sayipjamal,Phys.Lett.B 717(2012)465.

    [29]A.Nuriman,Z.L.Li,and B.S.Xie,Phys.Lett.B 726(2013)820.

    [30]M.Orthaber,F.Hebenstreit,and R.Alkofer,Phys.Lett.B 698(2011)80.

    [31]W.Y.Wu,F.He,R.Grobe,and Q.Su,J.Opt.Soc.Am.B 32(2015)2009.

    [32]I.Akal,S.Villalba-Ch′avez,and C.M¨uller,Phys.Rev.D 90(2004)113004.

    [33]Martin J.A.Jansen and Carsten M¨uller,Phys.Rev.A 88(2013)052125.

    [34]A.Otto,D.Seipt,D.Blaschke,S.A.Smolyansky,and B.K¨ampfer,Phys.Rev.D 91(2015)105018.

    [35]R.Sch¨utzhold,H.Gies,and G.Dunne,Phys.Rev.Lett.101(2008)130404.

    [36]G.V.Dunne,H.Gies,and R.Sch¨utzhold,Phys.Rev.D 80(2009)11130.

    [37]A.Ottoa,D.Seiptc,D.Blaschked,B.K¨ampfera,and S.A.Smolyanskye,Phys.Lett.B 740(2012)335.

    [38]Robert Dabrowski and Gerald V.Dunne,Phys.Rev.D 90(2014)025021.

    [39]T.Heinzl,A.Ilderton,and M.Marklund,Phys.Lett.B 692(2010)250.

    [40]Christian Kohlf¨urst,Holger Gies,and Reinhard Alkofer,Phys.Rev.Lett.112(2014)050402.

    猜你喜歡
    李子
    其樂(lè)融融過(guò)中秋
    我戰(zhàn)勝了黑暗
    智能鼠捉鼠記
    謝謝你
    一次難忘的生日
    秋天
    李子有多少
    給“小松”洗澡
    奔跑吧!李子柒
    海峽姐妹(2020年1期)2020-03-03 13:35:52
    我的糊涂媽媽
    国内精品久久久久精免费| АⅤ资源中文在线天堂| 亚洲自拍偷在线| 免费在线观看影片大全网站| 伊人久久精品亚洲午夜| 在线国产一区二区在线| www.色视频.com| 精品久久久久久成人av| 国产欧美日韩一区二区精品| 丝袜美腿在线中文| 69人妻影院| 久久久久国内视频| 色播亚洲综合网| 亚洲一级一片aⅴ在线观看| 五月伊人婷婷丁香| 91午夜精品亚洲一区二区三区 | 中文字幕熟女人妻在线| 校园人妻丝袜中文字幕| 极品教师在线免费播放| 91精品国产九色| 国产av麻豆久久久久久久| 成人一区二区视频在线观看| 亚洲图色成人| 日本黄色片子视频| 国产精品三级大全| 国产一区二区三区av在线 | 国产精品永久免费网站| 别揉我奶头 嗯啊视频| 色尼玛亚洲综合影院| 欧美潮喷喷水| 国产成人一区二区在线| 国产熟女欧美一区二区| 亚洲成人免费电影在线观看| 国产爱豆传媒在线观看| 日韩欧美精品v在线| 国产91精品成人一区二区三区| 十八禁网站免费在线| 久久中文看片网| 一个人免费在线观看电影| 亚洲性夜色夜夜综合| 啪啪无遮挡十八禁网站| 久久久久九九精品影院| 男女视频在线观看网站免费| 一进一出抽搐动态| 欧美3d第一页| 国产又黄又爽又无遮挡在线| 久久久久久久亚洲中文字幕| 伦理电影大哥的女人| 在线观看免费视频日本深夜| 变态另类成人亚洲欧美熟女| 男人舔奶头视频| 国产不卡一卡二| 日日撸夜夜添| 国产精品精品国产色婷婷| 亚洲精品影视一区二区三区av| 欧美极品一区二区三区四区| 淫妇啪啪啪对白视频| 亚洲av二区三区四区| 国内精品久久久久精免费| 国产欧美日韩精品一区二区| 小说图片视频综合网站| 亚洲精品粉嫩美女一区| 一级黄色大片毛片| 韩国av一区二区三区四区| 联通29元200g的流量卡| 亚洲人成网站在线播| 精品一区二区三区av网在线观看| 欧美一级a爱片免费观看看| 九色国产91popny在线| 日韩在线高清观看一区二区三区 | 又黄又爽又免费观看的视频| 欧美潮喷喷水| 成人精品一区二区免费| 伊人久久精品亚洲午夜| 国产精品乱码一区二三区的特点| 日韩一区二区视频免费看| 淫妇啪啪啪对白视频| 99久久精品一区二区三区| 中文字幕高清在线视频| 午夜福利在线观看免费完整高清在 | 最新在线观看一区二区三区| 久久精品国产清高在天天线| 亚洲av成人av| 无人区码免费观看不卡| 国产免费男女视频| 91av网一区二区| 精品免费久久久久久久清纯| 99热这里只有精品一区| 国产一级毛片七仙女欲春2| 国产成年人精品一区二区| 久久午夜亚洲精品久久| 欧美高清成人免费视频www| 日韩精品青青久久久久久| 丰满乱子伦码专区| 91麻豆av在线| 成人特级黄色片久久久久久久| 国产成年人精品一区二区| 欧美色视频一区免费| 欧美潮喷喷水| 91午夜精品亚洲一区二区三区 | 中国美白少妇内射xxxbb| 精品久久久久久,| 校园人妻丝袜中文字幕| 最近最新中文字幕大全电影3| 久久香蕉精品热| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| 韩国av一区二区三区四区| 色在线成人网| 18禁裸乳无遮挡免费网站照片| 国产高清三级在线| 男人舔奶头视频| 欧美一区二区亚洲| 亚洲图色成人| 日韩人妻高清精品专区| 欧美成人性av电影在线观看| 午夜久久久久精精品| 麻豆成人av在线观看| 国产精品久久久久久精品电影| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 精品国产三级普通话版| 国产亚洲av嫩草精品影院| 亚洲av成人精品一区久久| 1000部很黄的大片| 日本爱情动作片www.在线观看 | 婷婷精品国产亚洲av| 亚洲综合色惰| 一级黄片播放器| 国产探花极品一区二区| 丰满的人妻完整版| 国产精品美女特级片免费视频播放器| 搞女人的毛片| 99热只有精品国产| 桃色一区二区三区在线观看| 99视频精品全部免费 在线| 精品乱码久久久久久99久播| 免费在线观看成人毛片| 欧美日韩综合久久久久久 | 91麻豆av在线| 亚洲一区二区三区色噜噜| 床上黄色一级片| 97超级碰碰碰精品色视频在线观看| 国产探花极品一区二区| 十八禁网站免费在线| 精品无人区乱码1区二区| 久久精品国产亚洲av涩爱 | 少妇人妻一区二区三区视频| 亚洲va在线va天堂va国产| 精品久久久久久久久久免费视频| 亚洲自拍偷在线| 欧美成人a在线观看| 久久人妻av系列| 男女啪啪激烈高潮av片| 亚洲黑人精品在线| 国产av麻豆久久久久久久| 国产精品无大码| 毛片一级片免费看久久久久 | 色噜噜av男人的天堂激情| 桃红色精品国产亚洲av| 国产伦一二天堂av在线观看| 美女黄网站色视频| 免费看日本二区| 国产黄片美女视频| 九九热线精品视视频播放| 免费看av在线观看网站| 国产一级毛片七仙女欲春2| 国产一区二区三区在线臀色熟女| 国产aⅴ精品一区二区三区波| 男女啪啪激烈高潮av片| 一边摸一边抽搐一进一小说| 国产伦在线观看视频一区| 搡女人真爽免费视频火全软件 | 国产69精品久久久久777片| 一个人看的www免费观看视频| 99热只有精品国产| 欧美成人免费av一区二区三区| 日韩中文字幕欧美一区二区| 日本爱情动作片www.在线观看 | 国内精品美女久久久久久| 综合色av麻豆| 国产色爽女视频免费观看| 亚洲精品在线观看二区| 日本一二三区视频观看| 一个人看视频在线观看www免费| 国产高清激情床上av| 真人一进一出gif抽搐免费| 亚洲国产日韩欧美精品在线观看| 欧美黑人欧美精品刺激| 欧美极品一区二区三区四区| 久久热精品热| 欧美xxxx黑人xx丫x性爽| 日日夜夜操网爽| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 老司机深夜福利视频在线观看| www.色视频.com| 18禁黄网站禁片午夜丰满| 看免费成人av毛片| or卡值多少钱| 久久久久久久亚洲中文字幕| 日韩精品有码人妻一区| 国产视频内射| 悠悠久久av| 日日干狠狠操夜夜爽| 中文字幕久久专区| 久久这里只有精品中国| aaaaa片日本免费| 变态另类成人亚洲欧美熟女| 一个人免费在线观看电影| 国产精品一区二区免费欧美| 亚洲成人中文字幕在线播放| x7x7x7水蜜桃| 变态另类成人亚洲欧美熟女| 嫩草影院新地址| 精品久久久久久久久久免费视频| 久久精品久久久久久噜噜老黄 | 精品久久久久久久久亚洲 | 精品久久久久久,| 国产亚洲av嫩草精品影院| 久久久久久久久久成人| 久久久久久国产a免费观看| 黄色视频,在线免费观看| 91麻豆av在线| av中文乱码字幕在线| 日韩高清综合在线| 亚洲国产日韩欧美精品在线观看| 国产精品免费一区二区三区在线| 老司机福利观看| 午夜福利高清视频| 成年人黄色毛片网站| 日韩国内少妇激情av| 欧美黑人欧美精品刺激| 99久久成人亚洲精品观看| 神马国产精品三级电影在线观看| 久9热在线精品视频| 日韩,欧美,国产一区二区三区 | 国产探花极品一区二区| 国产成人福利小说| 国产精品一区二区免费欧美| 久久99热这里只有精品18| 精品无人区乱码1区二区| 久久香蕉精品热| 搡老妇女老女人老熟妇| 亚洲三级黄色毛片| 国产精品av视频在线免费观看| 一进一出抽搐动态| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久 | 亚洲精品在线观看二区| 长腿黑丝高跟| 高清毛片免费观看视频网站| 99精品在免费线老司机午夜| 亚洲综合色惰| 亚洲不卡免费看| 此物有八面人人有两片| 日韩亚洲欧美综合| 亚洲人成网站在线播放欧美日韩| 亚洲最大成人av| 桃色一区二区三区在线观看| 欧美日韩国产亚洲二区| 亚洲精品成人久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 在线观看美女被高潮喷水网站| 日本黄色片子视频| 国产视频一区二区在线看| 国产精品,欧美在线| 国产真实乱freesex| 小蜜桃在线观看免费完整版高清| 精品久久久久久,| 国产一区二区激情短视频| 精品久久久久久久末码| 1024手机看黄色片| 亚洲欧美精品综合久久99| 亚洲中文日韩欧美视频| 国产精品无大码| 免费大片18禁| 欧美中文日本在线观看视频| 黄色日韩在线| 99国产极品粉嫩在线观看| 欧美成人性av电影在线观看| 又黄又爽又刺激的免费视频.| 久久久久国产精品人妻aⅴ院| 在线观看av片永久免费下载| 久久婷婷人人爽人人干人人爱| 欧美xxxx黑人xx丫x性爽| 黄色丝袜av网址大全| 日日摸夜夜添夜夜添av毛片 | 日本 欧美在线| 国产精品永久免费网站| 国产视频一区二区在线看| 我的女老师完整版在线观看| 国产美女午夜福利| 亚洲人成网站高清观看| 成人国产综合亚洲| 日本免费一区二区三区高清不卡| 成人特级av手机在线观看| 99久久成人亚洲精品观看| 久久久久久九九精品二区国产| 一级毛片久久久久久久久女| av黄色大香蕉| 成人av一区二区三区在线看| 一级毛片久久久久久久久女| 一本精品99久久精品77| 日韩精品中文字幕看吧| 老熟妇仑乱视频hdxx| 免费不卡的大黄色大毛片视频在线观看 | 很黄的视频免费| 一卡2卡三卡四卡精品乱码亚洲| 成人精品一区二区免费| 三级国产精品欧美在线观看| 九九久久精品国产亚洲av麻豆| а√天堂www在线а√下载| 一级黄片播放器| 日日夜夜操网爽| 亚洲中文字幕一区二区三区有码在线看| 成人国产麻豆网| 日韩欧美精品免费久久| 免费看日本二区| 久久久久久久久中文| 人人妻人人看人人澡| 三级国产精品欧美在线观看| 亚洲国产欧美人成| 美女cb高潮喷水在线观看| 国产精品伦人一区二区| 免费人成在线观看视频色| 日韩人妻高清精品专区| 九色成人免费人妻av| 日韩欧美精品免费久久| 亚洲国产精品久久男人天堂| 搞女人的毛片| 一级a爱片免费观看的视频| 男女视频在线观看网站免费| 精品久久久久久久久久免费视频| 免费在线观看影片大全网站| 精品久久久久久久久亚洲 | 欧美潮喷喷水| 成人av一区二区三区在线看| 久久精品国产清高在天天线| 欧美激情在线99| 免费看av在线观看网站| 看黄色毛片网站| 两个人的视频大全免费| 香蕉av资源在线| 岛国在线免费视频观看| 夜夜夜夜夜久久久久| 日韩一本色道免费dvd| 日韩中字成人| 观看美女的网站| 非洲黑人性xxxx精品又粗又长| 人妻丰满熟妇av一区二区三区| 日本成人三级电影网站| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| 国产精品一区www在线观看 | 国内揄拍国产精品人妻在线| 少妇裸体淫交视频免费看高清| 欧洲精品卡2卡3卡4卡5卡区| 国产极品精品免费视频能看的| 欧美日韩精品成人综合77777| 哪里可以看免费的av片| 国内精品宾馆在线| 男女那种视频在线观看| 婷婷精品国产亚洲av| avwww免费| 狠狠狠狠99中文字幕| 亚洲一区高清亚洲精品| 在线国产一区二区在线| 老熟妇仑乱视频hdxx| 天堂√8在线中文| 毛片女人毛片| 国产高清三级在线| 夜夜看夜夜爽夜夜摸| 高清日韩中文字幕在线| 在线观看午夜福利视频| 久久久久精品国产欧美久久久| 成年版毛片免费区| 热99在线观看视频| 日本 欧美在线| 亚洲第一电影网av| 欧美日韩综合久久久久久 | av视频在线观看入口| 99久国产av精品| 看免费成人av毛片| 久久精品国产自在天天线| 亚洲欧美日韩卡通动漫| 欧美另类亚洲清纯唯美| 欧美日韩瑟瑟在线播放| eeuss影院久久| 成人午夜高清在线视频| 特大巨黑吊av在线直播| 国产精品av视频在线免费观看| 啪啪无遮挡十八禁网站| 亚洲国产精品久久男人天堂| 一个人看的www免费观看视频| 草草在线视频免费看| 97热精品久久久久久| 国产又黄又爽又无遮挡在线| 免费观看在线日韩| 深夜精品福利| 99精品久久久久人妻精品| 精品久久久久久久久久久久久| 少妇的逼水好多| 欧美又色又爽又黄视频| 深爱激情五月婷婷| 特大巨黑吊av在线直播| 伦理电影大哥的女人| 他把我摸到了高潮在线观看| 欧美区成人在线视频| 亚洲av免费在线观看| 别揉我奶头~嗯~啊~动态视频| 真人做人爱边吃奶动态| 亚洲真实伦在线观看| 观看美女的网站| 99热这里只有精品一区| 国产高清不卡午夜福利| 国产精品,欧美在线| 精品一区二区三区视频在线| 小蜜桃在线观看免费完整版高清| 午夜福利在线在线| 精品免费久久久久久久清纯| 亚洲精品乱码久久久v下载方式| 三级男女做爰猛烈吃奶摸视频| 国产精品国产三级国产av玫瑰| 精品一区二区三区视频在线| 少妇的逼水好多| 亚洲国产精品sss在线观看| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 1000部很黄的大片| 亚洲狠狠婷婷综合久久图片| 日本在线视频免费播放| 欧美+亚洲+日韩+国产| 日日干狠狠操夜夜爽| 午夜久久久久精精品| 999久久久精品免费观看国产| 国产一区二区在线av高清观看| 国内精品久久久久久久电影| 亚洲va日本ⅴa欧美va伊人久久| 乱系列少妇在线播放| 老司机福利观看| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 熟女人妻精品中文字幕| 国产伦在线观看视频一区| 国产高清激情床上av| 一本一本综合久久| 韩国av一区二区三区四区| 少妇的逼好多水| 国产大屁股一区二区在线视频| 婷婷六月久久综合丁香| 在线免费观看不下载黄p国产 | 两性午夜刺激爽爽歪歪视频在线观看| 国产精品三级大全| 成人美女网站在线观看视频| 波多野结衣高清无吗| 男女之事视频高清在线观看| 久久精品国产鲁丝片午夜精品 | 午夜福利在线观看吧| 联通29元200g的流量卡| 少妇人妻一区二区三区视频| 最后的刺客免费高清国语| 成人欧美大片| 18禁黄网站禁片免费观看直播| 俺也久久电影网| netflix在线观看网站| 日韩中字成人| 欧美色视频一区免费| 欧美激情国产日韩精品一区| 国产私拍福利视频在线观看| 能在线免费观看的黄片| 免费看光身美女| 波多野结衣高清作品| 日本撒尿小便嘘嘘汇集6| 国产黄片美女视频| 久久久久久国产a免费观看| 成人亚洲精品av一区二区| 精品久久久久久,| 国产日本99.免费观看| 不卡一级毛片| 欧美在线一区亚洲| 中国美白少妇内射xxxbb| 十八禁网站免费在线| 一级av片app| av在线观看视频网站免费| 春色校园在线视频观看| 欧美日韩瑟瑟在线播放| 久久精品影院6| 亚洲av电影不卡..在线观看| av.在线天堂| 国产伦人伦偷精品视频| 日韩欧美国产在线观看| 亚洲精品一区av在线观看| 高清毛片免费观看视频网站| 尾随美女入室| 97超视频在线观看视频| 国产精品伦人一区二区| 1000部很黄的大片| 亚洲黑人精品在线| 午夜免费男女啪啪视频观看 | 美女免费视频网站| 99在线视频只有这里精品首页| 少妇熟女aⅴ在线视频| 国产黄a三级三级三级人| 久久精品国产亚洲av天美| 欧美+亚洲+日韩+国产| 性插视频无遮挡在线免费观看| 国产精品久久久久久久久免| 在线a可以看的网站| 色哟哟·www| 很黄的视频免费| 黄色日韩在线| 日韩欧美免费精品| 99热精品在线国产| www.色视频.com| 国产精品伦人一区二区| 一进一出抽搐gif免费好疼| 禁无遮挡网站| 99久久九九国产精品国产免费| 亚洲精品国产成人久久av| 国产又黄又爽又无遮挡在线| 自拍偷自拍亚洲精品老妇| 女的被弄到高潮叫床怎么办 | 最新在线观看一区二区三区| 人人妻人人澡欧美一区二区| 很黄的视频免费| 精品人妻1区二区| 非洲黑人性xxxx精品又粗又长| 夜夜看夜夜爽夜夜摸| 69av精品久久久久久| 日日摸夜夜添夜夜添av毛片 | 国产av一区在线观看免费| 亚洲精品一区av在线观看| 麻豆成人午夜福利视频| 一个人看的www免费观看视频| 超碰av人人做人人爽久久| 可以在线观看毛片的网站| 在线免费观看的www视频| 国产精品久久久久久久久免| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 一区二区三区高清视频在线| 亚洲欧美清纯卡通| 亚洲国产精品合色在线| 亚洲最大成人av| 可以在线观看毛片的网站| 99热只有精品国产| 国内久久婷婷六月综合欲色啪| 国产真实伦视频高清在线观看 | 在线观看免费视频日本深夜| av视频在线观看入口| 亚洲无线观看免费| 成人特级av手机在线观看| 日韩大尺度精品在线看网址| 黄色女人牲交| 亚洲人成网站在线播| 久久国产乱子免费精品| 久久精品国产亚洲网站| 午夜福利高清视频| 真人一进一出gif抽搐免费| 熟女电影av网| videossex国产| 国产精品国产高清国产av| 国产伦人伦偷精品视频| 欧美日本视频| 淫秽高清视频在线观看| 国产欧美日韩精品一区二区| 国产男人的电影天堂91| 99久久成人亚洲精品观看| 国产主播在线观看一区二区| 如何舔出高潮| 一级a爱片免费观看的视频| 欧美丝袜亚洲另类 | 99riav亚洲国产免费| 亚洲精品一卡2卡三卡4卡5卡| а√天堂www在线а√下载| 欧美日韩国产亚洲二区| 舔av片在线| 亚洲成av人片在线播放无| 淫秽高清视频在线观看| 午夜视频国产福利| 久久精品综合一区二区三区| 可以在线观看毛片的网站| 久久精品影院6| 免费观看精品视频网站| 波多野结衣高清作品| 天堂网av新在线| 十八禁网站免费在线| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 国产在线精品亚洲第一网站| 国产私拍福利视频在线观看| av黄色大香蕉| 国产91精品成人一区二区三区| 天堂影院成人在线观看| 日日撸夜夜添| 老师上课跳d突然被开到最大视频| 久久久久久伊人网av| 中文字幕人妻熟人妻熟丝袜美| 精品一区二区免费观看| 午夜久久久久精精品| 日日撸夜夜添| 国产色爽女视频免费观看| 亚州av有码| 精品国内亚洲2022精品成人| 天堂√8在线中文| 亚洲av中文字字幕乱码综合| 亚洲精品国产成人久久av| 91在线观看av| 听说在线观看完整版免费高清| 尾随美女入室| 夜夜爽天天搞| 国产视频一区二区在线看| 精品欧美国产一区二区三| 久久精品人妻少妇|