• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An Improved Singularity Free Self-Similar Model of Proton Structure Function

    2017-05-18 05:56:40BaishaliSaikiaandChoudhuryDepartmentofPhysicsGauhatiUniversityGuwahati781014AssamIndia
    Communications in Theoretical Physics 2017年1期

    Baishali Saikiaand D.K.ChoudhuryDepartment of Physics,Gauhati University,Guwahati 781 014,Assam,India

    2Physics Academy of North-East,Guwahati 781 014,Assam,India

    1 Introduction

    Although renormalization group equation of quantum if eld theory[1]exhibits self-similarity,[2]it is not yet established rigorously in QCD,the accepted fundamental quantum field theory of strong interaction.However,because of its wide applicability in other areas of physics,[3]study of self-similarity in the structure of the proton is worth pursuing.In this spirit,Lastovicka[4]in 2002, first suggested the self-similarity as a possible feature of multipartons specially in the kinematical region of small Bjorken x,which in later years was pursued in Refs.[5–15].Specifically,how quarks and gluons share the momentum fractions of the proton was studied in Refs.[11–12],behavior of double parton distribution functions,longitudinal structure function FL[14]and Froissart bound.[15]

    One of the limitations of the phenomenological analysis of Ref.[4]is that it has a singularity at x ~ 0.019,[11?12]which is well within the kinematical range of x;0

    In the present paper,we therefore make a re-analysis of the model of Ref.[4],demanding it to be singularity free in the entire x-range;0

    2 Formalism

    2.1 Proton Structure Function Based on Self-Similarity

    The self-similarity based model of the proton structure function of Ref.[4]is based on Parton Distribution Function qi(x,Q2)where qiis the virtualities of the quark hit by the photon.In Refs.[13,15],it has been shown that if one assumes that the TMDPDF has similar formula like Lastovicka used,[4]one can obtain the same form of structure function although the two models are different.Such identical form of the PDF of structure function has been obtained because the relation between unintegrated parton distribution function(uPDF)and the TMD with PDF are assumed to be identical,which is in general may not be true.With such assumption,we follow the reformulated model[13,15]of Ref.[4](Model 1,Model 1A)and see its possible consequences.Choosing the magni fication factors(1/x)andit is written as:[13,15](reformulated Lastovicka model)

    where i denotes a quark fl avor.Here D1,D2,D3are the three fl avor independent model parameters whileis the only fl avor dependent normalization constant.M2(=1 GeV2)is introduced to make(PDF)qi(x,Q2)as defi ned below(in Eq.(2))dimensionless.The integrated quark densities then de fi ned as:

    As a result,the following analytical parametrization of a quark density is obtained by using Eq.(2):[12](Model 1A)

    where

    is fl avor independent.Using Eq.(3)in the usual Definition of the structure function F2(x,Q2),one can get

    or it can be written as

    whereEquation(5)involves quarks and anti-quarks as in Ref.[4]we use the same parametrization both for quarks and anti-quarks.

    From HERA data,[17?18]Eq.(6)was fi tted in Ref.[4]with

    in the kinematical region,

    We note that the parameters in Eqs.(7)and(8)are same as Ref.[4].We call it to be the reformulated version of Model 1 except the Definition of Eq.(1)because it is PDF not TMD,which occurs in the Definition of structure function in Ref.[4].

    2.2 Singularity Free Structure Function(Model 2)

    The de fi ning equations of the model of Ref.[4](Eqs.(1)–(4)above)do not ascertain the numerical values and signs of the parameters Djs.These are determined from data[17?18]leading to the set of Eq.(7)in the kinematic range(Eq.(8)).However,the phenomenological analysis has one inherent limitation:due to the negative value of D3,Eq.(6)develops a singularity at x0v 0.019[11?12]as it satis fi es the condition 1+D3+D1log(1/x0)=0,contrary to the expectation of a physically viable form of structure function.

    Rede fi ning the model parameters Djs bys(j=1,2,3)and(PDF)qi(x,Q2)by(x,Q2)and also structure function F2(x,Q2)by(x,Q2)in the present analysis,we observe that it can be made singularity free under the following speci fic conditions:

    Case 1 Ifin Eq.(1)then the PDF Eq.(3)and the Structure Function Eq.(6)will be of the form:

    Case 2 In this casein Eq.(1)then the corresponding expressions for the PDF and Structure Function in this limit are respectively:

    Case 3 In this case,in Eq.(1)then the corresponding PDF and the Structure Function are set in the form:

    respectively.

    Case 4 This is the most general case for the singularity free model of Parton Distribution Function(PDF)Eq.(3)and Structure Function Eq.(6)under the condition thatare positive.

    3 Results

    3.1 Analysis of Singularity Free Model(Model 2)

    To determine the parameters of the modelwe use recently compiled HERA data[16]instead of earlier data[17?18]used in Ref.[4].Following this procedure of Ref.[4],we make χ2-analysis of the data and find the following results.Case 1We note that=1 is ruled out since it will make the structure function Eq.(10)x-independent.In Table 1 we show the results.From the χ2-analysis,it is obtained that the model in case 1 is con fi ned well with data for 0.35 GeV2≤Q2≤70 GeV2and 6.62×10?6≤x≤0.08.andare taken to be zero in this limit.Here the number ofdata points is 222.

    Table 1 Results of the fi t of case 1;Eq.(10).

    Case 2 The parametersare determined(given in Table 2)in the similar manner as in case 1 and the range of validity has been obtained as:0.35 GeV2≤Q2≤27 GeV2and 6.62× 10?6≤ x≤0.032.As in case 1,here too D2=1 is ruled out since it will make Eq.(12)x-independent.The number ofdata points is 174.

    Table 2 Results of the fi t of case 2;Eq.(12).

    Case 3 Here,parameters are best fi tted in the range:0.35 GeV2≤ Q2≤ 15 GeV2and 6.62×10?6≤x≤ 0.02 and given in Table 3.The number ofdata points is 146.

    Table 3 Results of the fi t of case 3;Eq.(14).

    Case 4 Parametersare determined and given in Table 4 and obtained in a more restrictive range:0.85 GeV2≤Q2≤10 GeV2and 2×10?5≤x≤0.02.The number ofdata points is 95.

    Table 4 Results of the fi t of case 4;Eq.(16).

    In Fig.1,we plotof the present model(Model 2)for case 4 as a function of x for eight representative values of Q2(Q2=(1.5,2,2.7,3.5,4.5,6.5,8.5,10)GeV2)in the phenomenologically allowed range 0.85 GeV2≤Q2≤10 GeV2.We also show the corresponding available data from Ref.[16].

    It shows that as the model parameters have lesser restrictive constraint except for the positivity,the range of validity shrinks from Q2=120 GeV2to Q2=10 GeV2.Thus our analysis indicates that the phenomenological range of validity of the present version of the model is more restrictive:0.85 GeV2≤Q2≤10 GeV2and 2×10?5≤ x ≤ 0.02 to be compared with Eq.(8)of the previous version of Ref.[4].Also,the individual χ2at Q2=8.5 GeV2and 10 GeV2is minimum to be compared with Q2=4.5 GeV2and 10 GeV2,which is quite larger than that of 10 GeV2.It is same for Q2=1.5 GeV2too.Basically,our results valid in small area in between Q2of 8.5 GeV2and 10 GeV2.But due to the unavailability of the experimental data points,the di ff erence can not be shown explicitly.

    We also observe the following features of the model compared to data:at Q2=1.5 GeV2data overshoots the theory.But as Q2increases,the theoretical curve comes closer to data.At Q2=10 GeV2,on the other hand,the theory exceeds data.Main reason of this feature is that the x-slope of the model is less than that of the data.Speci fically,due to positive D3,the growth of the structure function with Q2becomes faster than a linear growth as can be seen from Eq.(4)i.e.

    at higher values of Q2>1 GeV2to be compared with

    of Ref.[4],which is faster than data.This is the major limitation of the present singularity free version of the model,which calls for further improvement.

    Fig.1 Comparison of the structure function(Model 2)Eq.(16)as a function of x in bins of Q2for case 4 with measured data of F2from HERAPDF1.0.[16]

    4 An Improved Singularity Free Model

    Let us discuss a possible way of removing the short coming of the models under discussion.As noted in Ref.[4],this approach has taken the notion of selfsimilarity to parametrize Parton Distribution Function(PDF)and eventually the structure function.However,the variables in which the supposed fractal scaling of the quark distributions and F2(x,Q2)occur are not known from the underlying theory.In Ref.[4],the choice of 1/x is presumably because of the power law form of the quark distributions at small x found in Gl¨uck–Reya–Vogt(GRV)[19]distribution.However,this form is not derived theoretically but rather follows from the power law distributions in x assumed for the input quark distributions used by the GRV distribution for the QCD evolution.The choice of 1/x as the proper scaling variable is therefore not established from the underlying theory.Instead,if log1/x is chosen as the scaling variable[20]then asymptotic Froissart saturation like[21]behavior can be achieved in such self-similar model.[15]Same is true for the magni fication factor M1=as occurred in de fi ning TMD(Eq.(1)).In the present case,a proper choice of M1seems necessary to allow an expression of proper singularity free version of the models.

    The magni fication factor M1can be considered as special case of a more general form:

    Only in a speci fic case,where α1=1 and all other coefficients cases vanish lead to the original M1as de fi ned in Eq.(1).

    The de fi ning TMD therefore can be generalized to instead of Eq.(1),such that the generalized TMD will take the form

    If,on the other hand,αi(i=0,1,2,...,n)vanish or negligibly small thenbecome

    where

    Taking only the two terms of Eq.(20),can be written as

    and the corresponding TMD(Eq.(19))becomes

    Assuming the convergence of the polynomials as occurred in Eq.(23),we obtain:(Model 3)

    After integration overit yields the desired PDF

    Using Eq.(25)in Eq.(5),the usual Definition of structure function,it gives

    with the condition that

    as the equality will yield an undesired singularity.

    The above model of structure function(Model 3)has new 7 independent parameters B1,B2,to be fi tted from data and compared with the previous models(Models 1 and 2).If the model parametersandsatisfy the additional condition

    then the resultant TMD becomes:(Model 4)

    while the integration overleads to the PDF

    And the corresponding structure function is

    which is completely free from singularity except for≥1.Such singularity is,however,consistent with the usual Regge expectation.[22?26]The model has now got 4 parameters:

    Furthermore,if the magni fication factor 1/x is also generalized to(1/x?1)for large x as suggested in Ref.[13]then one has got TMDPDF,PDF and structure function as:

    which leads to

    Generalizing the magni fication factor?M1as in Eq.(22)and taking only the two terms and assuming the convergence of the polynomials occurring in the expression as in Eq.(23),we obtain the generalized TMD as:(Model 5)

    And hence corresponding PDF(ˉqi)and structure function(ˉF2)will be

    Imposing the condition

    will lead to corresponding TMD,PDF and structure function as:(Model 6)

    Corresponding PDF

    and corresponding structure function

    which is our improved form and also has slower logarithmic raise in Q2with the large x behavior

    consistent with QCD.[23?27]Equations(31)and(40)are the main results,which are singularity free and have the logarithmic rise in virtually Q2.

    5 Comparison of the Structure Function of Models 4 and 6 with Data and Determination of the Model Parameters

    In this section,we make a comparison of structure function of Models 4 and 6 since only these two have logarithmic Q2rise in PDF and structure function.Model 6 is the large x extrapolation of Model 4.

    To determine the parameters of Model 4 and Model 6,we have used the compiled HERA data[16]as used in earlier work(Model 2).We make χ2-analysis of the data and obtain the phenomenological range of validity of Q2and x.

    For Model 4,the fi tted parameters are given in Table 5.The range of validity is found within:1.2 GeV2≤Q2≤ 800 GeV2and 2×10?5≤ x≤ 0.4.The number of data points of?F2is 284.Similarly for Model 6,the range of validity is:1.2 GeV2≤Q2≤1200 GeV2and 2×10?5≤ x≤ 0.4,which is quite larger in comparative to earlier works(Models 1 and 2).The fi tted parameters for Model 6 are given in Table 6.The number of data points ofis 302.

    In Figs.2 and 3,we plotandof Models 4 and 6 respectively as a function of x for few representative values of Q2

    We note that some experimental values cannot be well described by Model 4 in Fig.2.Figure 2 shows the model 4 is suitable for small x but not the large x.The main reason is:the model 4 is by construction for small x whereas the model 6 is extrapolated to large x.From Fig.2,this feature can be seen prominently:as the experimental values of Q2increase the corresponding experimental ranges of x also increase.At Q2=150 GeV2,x range is 6 10?1whereas at Q2=800 GeV2,the corresponding range goes up to x 6 0.4,which is well above the small x-range.Thus at higher Q2,the agreement is less than that of lower Q2.However,in Fig.3,where the model 6 is applied,the experimental agreement at high Q2is better.

    The above analysis indicates that a singularity free version of a self-similarity based model in Proton is possible if proper choice of magni fication factor is made.It has allowed such a wider phenomenological range of validity in Q2than that of the model of Ref.[4].It has also logarithmic rise in virtually Q2instead of power law.

    Fig.2 Comparison of the structure function(Model 4)Eq.(31)as a function of x in bins of Q2with measured data of F2from HERAPDF1.0.[16]

    Fig.3 Comparison of structure function(Model 6)Eq.(40)as a function of x in bins of Q2with measured data of F2from HERAPDF1.0.[16]

    Table 5 Results of the fi t of Model 4;Eq.(31).

    Table 6 Results of the fi t of Model 6;Eq.(40).

    6 Summary

    In the present paper,we have made a reanalysis of a structure function(x,Q2)based on self-similarity using the more recently compiled HERA data.[16]The present study is based on the notion that a physically viable model of Proton should be fi nite in the x-range;0

    Our first analysis,however,indicates that the range of validity of such singularity free version of the model is much narrower in Q2:0.85 GeV2≤Q2≤10 GeV2to be compared with that of Ref.[4].

    We have then explored the possible way of improving the model phenomenologically.As noted in Ref.[15],this approach of Ref.[4]has taken the notion of self-similarity to parametrize Parton Distribution Function(PDF)and eventually the structure function.However,the variables in which the supposed fractal scaling of the quark distribution and F2(x,Q2)occurs are not known from the underlying theory.In Ref.[4],the choice of 1/x is presumably because of the power law form of the quark distributions at small x found in Gl¨uck–Reya–Vogt(GRV)[19]distribution.However,this form is not derived theoretically but rather followed from the power law distribution in x assumed for the input quark distribution used by the GRV distribution for the QCD evolution.A more plausible variable appears instead to be ln(1/x)as has been used by Block etal,.[20]which is consistent with Froissart bound.[21]It also results in similar Froissart bound in the self-similar model.[15]

    In this spirit,we have modi fi ed magni fication factor M1properly so as to yield a singularity free version of the model,which has also logarithmic rise of Q2instead of power law as in Ref.[4].The phenomenological range of validity is also much larger:1.2 GeV2≤Q2≤800 GeV2than the previous singularity free version:0.85 GeV2≤Q2≤10 GeV2.A parameter free extrapolation to large x increases the phenomenological range further 1.2 GeV2≤Q2≤1200 GeV2.

    We now report the possible prediction of the model.

    (i)Using this model,one can obtain the corresponding form of gluon distribution which then can be used to calculate the Longitudinal Structure Function FL(x,Q2),using the Altarelli and Martinelli equation[28]as an improvement of our earlier result of model 1.[14]

    (ii)It can also predict the corresponding partial momentum fraction carried by quarks and gluons in Proton and test how far such pattern di ff ers from the QCD based models.[20]

    Let us end this section with a comment regarding the theoretical limitation of the present work:

    As noted in the introduction,self-similarity is not a general property of QCD and is not established properly,either theoretically or experimentally.In this work,we have merely made a use of fractal techniques to parametrize a multivariable function like structure function as a method of generalization as in Ref.[4].We have shown,under speci fic condition among the de fi ning parameters,a slower logarithmic rise in Q2of structure function is achievable,which is closer to QCD expectation than the earlier power law growth of Ref.[4]and has a wider phenomenological range of x and Q2.It implies,in a limited kinematical range,the notion of self-similarity makes some sense.However,unlike perturbative QCD where the corresponding Lagrangian is well de fi ned,Feynman rules are derivable and the asymptotic freedom can be established by using the Renormalization Group Equation leading to such logQ2terms,it is beyond the scope of the present work and hence can not be considered as a first principle result.

    Acknowledgments

    Final part of this work was completed when one of us(DKC)visited the Rudolf Peirels Center of Theoretical Physics,University of Oxford.He thanks Professor Subir Sarkar for hospitality and useful discussion.We also thank Dr.Kushal Kalita for useful comments.One of the authors(BS)acknowledges the UGC-RFSMS for fi nancial support.

    References

    [1]M.Gell Mann and F.Low,Phys.Rev.D 95(1954)1300.

    [2]D.V.Shirkov,Sov.Phys.Dokl.27(1982)197;K.Kr¨oger,Phys.Reports 323(2000)81.

    [3]Xu Cai and Long Guo,Chin.Phys.Lett.26(2009)088901;Jian-Chao Cai,etal.,Chin.Phys.Lett.27(2010)024705;Yu Zhou,Zu-Guo Yu,and Yee Leung,Chin.Phys.B 20(2011)090507;Ching-Hung Yuen and Wong Kwok-Wo,Chin.Phys.B 21(2012)010502;Chao Wang,Wan-Ting Xiong,and You-Gui Wang,Chin.Phys.Lett.29(2012)128903;Hui-Lin Shang,Acta Physica Sinica 61(2012)180506;Chuan-Feng Li and Feng Bi,Chin.Phys.Lett.30(2013)010306;Jian-Chao Cai,Chin.Phys.B 23(2014)044701.

    [4]T.Lastovicka,Euro.Phys.J.C 24(2002)529,hepph/0203260.

    [5]D.K.Choudhury and Rupjyoti Gogoi,hep-ph/0310260;hep-ph/0503047.

    [6]D.K.Choudhury and Rupjyoti Gogoi,Ind.J.Phys.80(2006)823.

    [7]D.K.Choudhury and Rupjyoti Gogoi,Ind.J.Phys.81(2007)607.

    [8]A.Jahan and D.K.Choudhury,hep-ph/1106.1145.

    [9]A.Jahan and D.K.Choudhury,Proceedings of the 3rd International Workshop on Multiple Partonic Interactions at the LHC,(2012)145;DOI:10.3204/DESY HUMBERG-PROC-2012-03/94.

    [10]A.Jahan and D.K.Choudhury,Ind.J.Phys.85(2011)587,hep-ph/1101.0069.

    [11]A.Jahan and D.K.Choudhury,Mod.Phys.Lett.A 27(2012)1250193,hep-ph/1304.6882.

    [12]A.Jahan and D.K.Choudhury,Mod.Phys.Lett.A 28(2013)1350056,hep-ph/1306.1891.

    [13]D.K.Choudhury and A.Jahan,Int.J.Mod.Phys.A 28(2013)1350079,hep-ph/1305.6180.

    [14]A.Jahan and D.K.Choudhury,Commun.Theor.Phys.61(2014)644,hep-ph/1404.0808.

    [15]A.Jahan and D.K.Choudhury,Phys.Rev.D 89(2014)014014,hep-ph/1401.4327.

    [16]H1 and ZEUS Collaborations,F.D.Aaron,etal.,J.High Energy Phys.1001(2010)109,hep-ex/0911.0884.

    [17]H1:C.Adlo ff,etal.,Euro.Phys.J.C 21(2001)33,hepex/0012053.

    [18]ZEUS:J.Breitweg,etal.,Phys.Lett.B 487(2000)53,hep-ex/0005018.

    [19]M.Gl¨uck,E.Reya,and A.Vogt,Euro.Phys.J.C 5(1998)461;hep-ph/9806404

    [20]M.M.Block,L.Durand,P.Ha,and D.W.McKay,Phys.Rev.D 84(2011)094010,hep-ph/1108.1232.

    [21]M.Froissart,Phys.Rev.123(1961)1053.

    [22]T.Regge,Nuovo Cim.14(1959)951.

    [23]Richard D.Ball,Emanuele R.Nocera,and Juan Rojo,arXiv:hep-ph/1604.00024.

    [24]R.G.Roberts,The Structure of the Proton:Deep Inelastic Scattering,Cambridge University Press,Cambridge(1994).

    [25]R.Devenish and A.Cooper-Sarkar,Deep Inelastic Scattering,Oxford University Press,Oxford(2004).

    [26]F.J.Yndurain,Theory of Quark and Gluon Interactions,Springer Verlag,Berlin(1992)p.129.

    [27]S.J.Brodsky and G.R.Farrar,Phys.Rev.Lett.31(1973)1153.

    [28]G.Altarelli and G.Martinelli,Phys.Lett.B 76(1978)89.

    国产精品乱码一区二三区的特点| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 国产精品一区二区免费欧美| 中文资源天堂在线| 欧美色欧美亚洲另类二区| 欧美色欧美亚洲另类二区| 国产精品亚洲av一区麻豆| 99久国产av精品| 欧美丝袜亚洲另类 | 国产精品久久久久久精品电影| 亚洲成人中文字幕在线播放| 嫩草影视91久久| 国产精品香港三级国产av潘金莲| 日本黄大片高清| 精品国产亚洲在线| 亚洲av五月六月丁香网| 婷婷精品国产亚洲av| 日韩中文字幕欧美一区二区| 日韩人妻高清精品专区| 亚洲国产精品999在线| 日本 av在线| 国产精品一及| 嫩草影院精品99| 啪啪无遮挡十八禁网站| 久久久色成人| 日本撒尿小便嘘嘘汇集6| 一卡2卡三卡四卡精品乱码亚洲| 亚洲天堂国产精品一区在线| 日韩大尺度精品在线看网址| 亚洲 国产 在线| 九色成人免费人妻av| 好男人在线观看高清免费视频| 久久国产精品人妻蜜桃| 日韩欧美 国产精品| 岛国视频午夜一区免费看| 日韩高清综合在线| 啦啦啦观看免费观看视频高清| 国产亚洲精品久久久久久毛片| 久久精品aⅴ一区二区三区四区| 日日干狠狠操夜夜爽| 国产97色在线日韩免费| 国产免费男女视频| 最好的美女福利视频网| 男女做爰动态图高潮gif福利片| 亚洲成人久久爱视频| 亚洲性夜色夜夜综合| 国产蜜桃级精品一区二区三区| 精品国产美女av久久久久小说| 18禁国产床啪视频网站| 婷婷六月久久综合丁香| 一区福利在线观看| www.自偷自拍.com| 1000部很黄的大片| 国产伦在线观看视频一区| 看黄色毛片网站| 免费看光身美女| 日韩国内少妇激情av| 九九在线视频观看精品| 成人国产一区最新在线观看| 啦啦啦免费观看视频1| 波多野结衣高清作品| 制服丝袜大香蕉在线| 高清毛片免费观看视频网站| 久久久国产成人免费| 色视频www国产| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 久久这里只有精品中国| 一边摸一边抽搐一进一小说| svipshipincom国产片| 国产精品98久久久久久宅男小说| 中文字幕人妻丝袜一区二区| 国产精品久久视频播放| www.熟女人妻精品国产| 日韩欧美 国产精品| 国产一区二区激情短视频| 国产欧美日韩一区二区精品| 看黄色毛片网站| 亚洲精品一区av在线观看| 亚洲性夜色夜夜综合| 老司机午夜十八禁免费视频| netflix在线观看网站| 人人妻人人澡欧美一区二区| 色播亚洲综合网| 国产精品 欧美亚洲| 精品福利观看| 1024香蕉在线观看| 此物有八面人人有两片| 国产精品,欧美在线| 欧美乱妇无乱码| 窝窝影院91人妻| www.自偷自拍.com| 亚洲国产精品成人综合色| 成人18禁在线播放| 午夜福利高清视频| 日本a在线网址| 校园春色视频在线观看| 亚洲精品在线美女| 久久久精品欧美日韩精品| 首页视频小说图片口味搜索| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 亚洲精品456在线播放app | 国产av不卡久久| 国产精品美女特级片免费视频播放器 | 国产激情偷乱视频一区二区| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 亚洲avbb在线观看| 999久久久精品免费观看国产| 床上黄色一级片| 久久这里只有精品19| 成人精品一区二区免费| 变态另类成人亚洲欧美熟女| 国产男靠女视频免费网站| 19禁男女啪啪无遮挡网站| 18禁裸乳无遮挡免费网站照片| xxxwww97欧美| 成熟少妇高潮喷水视频| 国产精品亚洲美女久久久| 一区二区三区激情视频| avwww免费| 在线永久观看黄色视频| 国产精品,欧美在线| 国产黄色小视频在线观看| 欧美另类亚洲清纯唯美| 免费在线观看影片大全网站| 观看美女的网站| www.精华液| 精品国产亚洲在线| 午夜亚洲福利在线播放| 中文字幕最新亚洲高清| 午夜福利在线在线| 久久久久国内视频| 久久精品国产综合久久久| 久久国产乱子伦精品免费另类| 国产精品九九99| 后天国语完整版免费观看| 国产aⅴ精品一区二区三区波| 免费在线观看视频国产中文字幕亚洲| 国产av在哪里看| or卡值多少钱| 男人和女人高潮做爰伦理| 国产亚洲欧美98| 成人欧美大片| 成年女人看的毛片在线观看| 国产亚洲精品av在线| 国内久久婷婷六月综合欲色啪| 亚洲午夜理论影院| 日韩欧美 国产精品| 国产精品一及| 国产精品久久久久久人妻精品电影| 久久久久性生活片| 国产人伦9x9x在线观看| 婷婷亚洲欧美| 午夜福利18| 国产欧美日韩精品亚洲av| 精品熟女少妇八av免费久了| 亚洲专区字幕在线| av黄色大香蕉| 悠悠久久av| 日韩欧美免费精品| 人妻丰满熟妇av一区二区三区| av天堂在线播放| 欧美在线一区亚洲| 色综合婷婷激情| 精品国产三级普通话版| 午夜激情福利司机影院| 日本成人三级电影网站| 欧美日韩乱码在线| 成人欧美大片| 日韩 欧美 亚洲 中文字幕| 亚洲五月婷婷丁香| 少妇熟女aⅴ在线视频| 国产私拍福利视频在线观看| 亚洲欧美激情综合另类| 黄色日韩在线| 午夜免费成人在线视频| 国产精品一区二区三区四区久久| 51午夜福利影视在线观看| 桃红色精品国产亚洲av| 国产精品 欧美亚洲| 日韩欧美在线乱码| 精品电影一区二区在线| 亚洲精品粉嫩美女一区| 欧美日韩福利视频一区二区| 黄色丝袜av网址大全| 国产伦精品一区二区三区四那| 在线a可以看的网站| 国产主播在线观看一区二区| 国产伦人伦偷精品视频| 97超级碰碰碰精品色视频在线观看| 成人欧美大片| 两个人的视频大全免费| 男人舔女人下体高潮全视频| 免费高清视频大片| 亚洲欧美一区二区三区黑人| 欧美日韩福利视频一区二区| 国内久久婷婷六月综合欲色啪| 日韩精品中文字幕看吧| 亚洲成人中文字幕在线播放| 一夜夜www| 一卡2卡三卡四卡精品乱码亚洲| 三级国产精品欧美在线观看 | 日韩欧美在线乱码| 久久99热这里只有精品18| 国产美女午夜福利| 欧美三级亚洲精品| 黄频高清免费视频| 波多野结衣巨乳人妻| 热99在线观看视频| 成年女人毛片免费观看观看9| 嫩草影院精品99| 性欧美人与动物交配| 熟女电影av网| 国产高清有码在线观看视频| 日韩欧美在线乱码| 99在线人妻在线中文字幕| 亚洲av电影不卡..在线观看| 好男人电影高清在线观看| 男女视频在线观看网站免费| 一区二区三区国产精品乱码| 国产成年人精品一区二区| 91麻豆av在线| 精品人妻1区二区| 性色avwww在线观看| 国产熟女xx| 美女高潮喷水抽搐中文字幕| 国产精品 欧美亚洲| av在线蜜桃| 国内少妇人妻偷人精品xxx网站 | 麻豆久久精品国产亚洲av| 午夜影院日韩av| 九九热线精品视视频播放| 黄色片一级片一级黄色片| 一区二区三区国产精品乱码| 神马国产精品三级电影在线观看| 99riav亚洲国产免费| 一本综合久久免费| 久久久水蜜桃国产精品网| 精品日产1卡2卡| 久久久久久人人人人人| 两性夫妻黄色片| 国产毛片a区久久久久| 琪琪午夜伦伦电影理论片6080| 欧美国产日韩亚洲一区| 午夜福利欧美成人| 久久精品国产99精品国产亚洲性色| 国内精品美女久久久久久| 日韩av在线大香蕉| 日韩欧美在线乱码| 国产精品九九99| av黄色大香蕉| 草草在线视频免费看| 亚洲成a人片在线一区二区| 精品一区二区三区视频在线观看免费| 最近最新免费中文字幕在线| 成人国产综合亚洲| 黄频高清免费视频| 国产亚洲精品一区二区www| 亚洲18禁久久av| 欧美日韩亚洲国产一区二区在线观看| 美女大奶头视频| 亚洲人成电影免费在线| 三级国产精品欧美在线观看 | 12—13女人毛片做爰片一| 日本 欧美在线| 国产免费男女视频| 欧美性猛交黑人性爽| 国产又黄又爽又无遮挡在线| 国产精品久久久人人做人人爽| 亚洲一区高清亚洲精品| 亚洲精品在线观看二区| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久久久毛片| а√天堂www在线а√下载| 伦理电影免费视频| 免费在线观看影片大全网站| 中文字幕熟女人妻在线| 美女扒开内裤让男人捅视频| 亚洲欧美日韩东京热| 好男人电影高清在线观看| 国产精品一区二区三区四区久久| 后天国语完整版免费观看| 国产精品乱码一区二三区的特点| 国产精品,欧美在线| 午夜激情福利司机影院| 999久久久国产精品视频| 丝袜人妻中文字幕| 亚洲专区国产一区二区| 一个人观看的视频www高清免费观看 | 此物有八面人人有两片| 国产麻豆成人av免费视频| 国产极品精品免费视频能看的| 国产精品久久久久久人妻精品电影| 香蕉久久夜色| 麻豆国产97在线/欧美| 最新美女视频免费是黄的| 一a级毛片在线观看| 日本撒尿小便嘘嘘汇集6| 午夜福利高清视频| 熟女人妻精品中文字幕| 久久久久久人人人人人| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 国产精品久久久久久人妻精品电影| 国产成+人综合+亚洲专区| 色综合站精品国产| 99精品在免费线老司机午夜| 老汉色av国产亚洲站长工具| av黄色大香蕉| 九九久久精品国产亚洲av麻豆 | 成人国产一区最新在线观看| 欧美成狂野欧美在线观看| 超碰成人久久| 免费av毛片视频| 国产成人av教育| 国产伦在线观看视频一区| 欧美av亚洲av综合av国产av| 国产精品女同一区二区软件 | 两个人看的免费小视频| 久久精品aⅴ一区二区三区四区| 久久草成人影院| 亚洲精品一区av在线观看| bbb黄色大片| 两个人的视频大全免费| 青草久久国产| 999久久久精品免费观看国产| 久久久久国内视频| 成人特级黄色片久久久久久久| 欧美xxxx黑人xx丫x性爽| 手机成人av网站| 黄频高清免费视频| www日本在线高清视频| 日韩欧美免费精品| 亚洲欧美日韩东京热| 91av网站免费观看| 老司机深夜福利视频在线观看| 成在线人永久免费视频| 国产午夜精品论理片| 国产一区二区三区在线臀色熟女| 黑人操中国人逼视频| 久久久久久久午夜电影| 国产1区2区3区精品| 国产黄a三级三级三级人| 久久久精品大字幕| 19禁男女啪啪无遮挡网站| 免费观看精品视频网站| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 久久香蕉国产精品| 亚洲国产欧美网| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添小说| 99在线人妻在线中文字幕| 一级毛片女人18水好多| 欧美一区二区国产精品久久精品| 亚洲午夜理论影院| 日本免费a在线| 国产午夜精品论理片| 俄罗斯特黄特色一大片| 一个人看视频在线观看www免费 | svipshipincom国产片| 久久精品aⅴ一区二区三区四区| 亚洲男人的天堂狠狠| 在线观看一区二区三区| 精品久久久久久久久久久久久| 久久这里只有精品中国| e午夜精品久久久久久久| 日韩中文字幕欧美一区二区| 俄罗斯特黄特色一大片| 看片在线看免费视频| 啦啦啦免费观看视频1| 美女 人体艺术 gogo| 天天一区二区日本电影三级| 91av网一区二区| 亚洲成av人片免费观看| 久久久久久久久中文| 在线观看一区二区三区| 给我免费播放毛片高清在线观看| 91九色精品人成在线观看| 欧美黑人欧美精品刺激| 国产免费av片在线观看野外av| 美女cb高潮喷水在线观看 | 国产又色又爽无遮挡免费看| 欧美xxxx黑人xx丫x性爽| 一级毛片精品| 国产单亲对白刺激| 国产精品99久久99久久久不卡| 欧美av亚洲av综合av国产av| 日韩高清综合在线| 成年女人毛片免费观看观看9| 日本熟妇午夜| 国产一区二区在线av高清观看| 国产精品永久免费网站| 亚洲精品一区av在线观看| 男人的好看免费观看在线视频| 搡老熟女国产l中国老女人| 亚洲av免费在线观看| 亚洲成人中文字幕在线播放| 亚洲黑人精品在线| 91老司机精品| 精品久久久久久,| 1024手机看黄色片| 老熟妇乱子伦视频在线观看| 男人舔女人下体高潮全视频| aaaaa片日本免费| 国产一区二区三区视频了| 亚洲国产精品成人综合色| 亚洲av中文字字幕乱码综合| 中文字幕人妻丝袜一区二区| 在线免费观看不下载黄p国产 | 精品欧美国产一区二区三| 国产亚洲精品一区二区www| 亚洲熟妇熟女久久| 国产综合懂色| 18禁黄网站禁片免费观看直播| 久9热在线精品视频| 老司机在亚洲福利影院| 免费看美女性在线毛片视频| 欧美一级a爱片免费观看看| 亚洲国产看品久久| 狂野欧美白嫩少妇大欣赏| 夜夜看夜夜爽夜夜摸| 国产成人精品久久二区二区91| 成人18禁在线播放| 99国产精品一区二区三区| 日本精品一区二区三区蜜桃| 久久久国产成人精品二区| 在线观看免费视频日本深夜| 欧美性猛交╳xxx乱大交人| 国产人伦9x9x在线观看| 国产三级在线视频| 母亲3免费完整高清在线观看| 中文字幕av在线有码专区| 99精品欧美一区二区三区四区| 欧美丝袜亚洲另类 | 美女 人体艺术 gogo| 在线观看66精品国产| 国产一区二区三区在线臀色熟女| 伦理电影免费视频| 亚洲真实伦在线观看| 亚洲欧美日韩高清专用| 老司机在亚洲福利影院| 国产黄色小视频在线观看| 国产伦一二天堂av在线观看| 亚洲精品美女久久av网站| ponron亚洲| 女人高潮潮喷娇喘18禁视频| 欧美中文日本在线观看视频| 男人舔女人下体高潮全视频| 久久国产精品人妻蜜桃| 国产欧美日韩精品亚洲av| 国产av麻豆久久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 欧美日本视频| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 午夜福利在线观看吧| 午夜福利在线观看免费完整高清在 | 又爽又黄无遮挡网站| 一区福利在线观看| 免费观看精品视频网站| 观看美女的网站| 久久国产精品影院| 可以在线观看的亚洲视频| 天天躁狠狠躁夜夜躁狠狠躁| www.熟女人妻精品国产| 女生性感内裤真人,穿戴方法视频| 国产成+人综合+亚洲专区| 亚洲精华国产精华精| 色哟哟哟哟哟哟| 99久久精品国产亚洲精品| 国产不卡一卡二| xxx96com| 成在线人永久免费视频| 变态另类成人亚洲欧美熟女| 女警被强在线播放| 一a级毛片在线观看| 亚洲在线自拍视频| 91av网站免费观看| 成人特级黄色片久久久久久久| 无人区码免费观看不卡| 男女下面进入的视频免费午夜| 淫妇啪啪啪对白视频| 舔av片在线| 亚洲精品一卡2卡三卡4卡5卡| 久久久国产成人免费| 精品久久久久久,| 日韩欧美国产在线观看| 久久久久久大精品| 精品福利观看| 熟女人妻精品中文字幕| 在线观看一区二区三区| 啦啦啦韩国在线观看视频| 一个人免费在线观看电影 | 在线免费观看不下载黄p国产 | 欧美高清成人免费视频www| 国产成人aa在线观看| 成人av一区二区三区在线看| 欧美在线一区亚洲| 精品日产1卡2卡| 国产男靠女视频免费网站| 最新在线观看一区二区三区| 男女午夜视频在线观看| 中文字幕精品亚洲无线码一区| 国产精品综合久久久久久久免费| 最近在线观看免费完整版| 99久久久亚洲精品蜜臀av| 久久久色成人| 1000部很黄的大片| 成人av在线播放网站| 嫩草影视91久久| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 九色国产91popny在线| 99国产综合亚洲精品| 超碰成人久久| 91久久精品国产一区二区成人 | 巨乳人妻的诱惑在线观看| 后天国语完整版免费观看| 亚洲中文字幕一区二区三区有码在线看 | 欧美中文日本在线观看视频| 免费看a级黄色片| 两人在一起打扑克的视频| 午夜影院日韩av| 中出人妻视频一区二区| 色噜噜av男人的天堂激情| 欧美另类亚洲清纯唯美| 久久精品国产亚洲av香蕉五月| 国产av一区在线观看免费| 日韩欧美三级三区| 熟妇人妻久久中文字幕3abv| 久久久色成人| 国产不卡一卡二| 丁香六月欧美| 中亚洲国语对白在线视频| ponron亚洲| 国产久久久一区二区三区| 亚洲中文av在线| 国产精品1区2区在线观看.| 国产成人av教育| 久久久成人免费电影| 国产亚洲精品综合一区在线观看| 在线观看午夜福利视频| 免费看a级黄色片| 黑人欧美特级aaaaaa片| 日本a在线网址| 午夜视频精品福利| 久久伊人香网站| 综合色av麻豆| 亚洲成人免费电影在线观看| 国产精品亚洲av一区麻豆| 亚洲国产欧洲综合997久久,| 又黄又爽又免费观看的视频| 18禁黄网站禁片午夜丰满| 国产免费av片在线观看野外av| 99久久99久久久精品蜜桃| 嫁个100分男人电影在线观看| 亚洲成人精品中文字幕电影| 日韩大尺度精品在线看网址| cao死你这个sao货| 波多野结衣高清无吗| 欧美成人免费av一区二区三区| 久久婷婷人人爽人人干人人爱| 黑人欧美特级aaaaaa片| 成人特级av手机在线观看| 日韩国内少妇激情av| 亚洲精品久久国产高清桃花| 欧美日韩黄片免| 精品无人区乱码1区二区| av国产免费在线观看| 久久久国产成人精品二区| 九九久久精品国产亚洲av麻豆 | 99视频精品全部免费 在线 | 老熟妇仑乱视频hdxx| 免费在线观看成人毛片| 一级a爱片免费观看的视频| 色尼玛亚洲综合影院| 国产高清视频在线观看网站| 看片在线看免费视频| 久久久久国内视频| 国产精品久久久av美女十八| 欧美最黄视频在线播放免费| 中亚洲国语对白在线视频| 久久人人精品亚洲av| 国产探花在线观看一区二区| 久久天躁狠狠躁夜夜2o2o| 国产野战对白在线观看| 免费在线观看日本一区| 精品久久久久久久末码| 久久久国产欧美日韩av| 亚洲 欧美一区二区三区| 18美女黄网站色大片免费观看| 午夜福利在线在线| 国产成人av激情在线播放| 免费人成视频x8x8入口观看| 国产男靠女视频免费网站| 看免费av毛片| 在线观看午夜福利视频| 精华霜和精华液先用哪个| 国产成人精品久久二区二区免费| 久久性视频一级片| 国内揄拍国产精品人妻在线| 中文资源天堂在线| 99精品久久久久人妻精品| 1024香蕉在线观看| 久久久久国产精品人妻aⅴ院| 精品无人区乱码1区二区| 亚洲熟妇中文字幕五十中出| av福利片在线观看| 久久久国产成人精品二区|