• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laser Polarization E ff ect on Molecular Harmonic and Elliptically Polarized Attosecond Pulse Generation?

    2017-05-18 05:56:59LiQiangFeng馮立強(qiáng)WenLiangLi李文亮andHangLiu劉航
    Communications in Theoretical Physics 2017年1期
    關(guān)鍵詞:李文亮陳雷水利部

    Li-Qiang Feng(馮立強(qiáng)),Wen-Liang Li(李文亮),and Hang Liu(劉航)

    1College of Science,Liaoning University of Technology,Jinzhou 121001,China

    2State Key Laboratory of Molecular Reaction Dynamics,Dalian Institute of Chemical Physics Chinese Academy of Sciences,Dalian 116023,China

    3School of Chemical and Environmental Engineering,Liaoning University of Technology,Jinzhou 121001,China

    4Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region for New Energy Materials,Xinjiang Institute of Engineering,Urumqi 830091,China

    1 Introduction

    High-order harmonic generation(HHG)as one of the most important intense laser-matter physics has been widely investigated owing to its potential of producing ultrashort EUV and X-ray attosecond pulses.[1?8]The HHG process from atom and symmetrical molecule(e.g.H+2)can be explained through the recollision model[9]with the steps of ionization,acceleration and recombination.In detail,(i)an electron is first released into continuum by tunneling ionization.(ii)Once free,it oscillates and gains kinetic energy in the continuum in response to the laser field.(iii)Finally,the ionized electron may recombine with the parent ions and emit a harmonic with the energy up to Ip+3.17Upfor the single-color field,where Ipis the ionization potential and Up=Ilaser/4ω2is the ponderomotive energy of the electron.

    The most important application for atomic harmonics is to produce the linearly polarized attosecond pulses with higher photon energy(e.g.the X-ray region).Therefore,many schemes have been paid to extend the harmonic cuto ff,such as the ionization gating method,[10?12]the polarization gating scheme,[13?17]the attosecond lighthouse,[18?19]the non-collinear harmonic generation,[20?21]the two-color or multi-color controlling field scheme,[22?24]the mid-infrared field controlling scheme,[25?27]the unipolar pulse assisted harmonic extension,[28?30]the chirp pulse controlling scheme,[31?33]and the spatially inhomogeneous field e ff ect,[34?39]etc.However,as we know,when the atom is exposed to the circularly polarized lasers,no circularly or elliptically polarized harmonics can be generated because of the conservation of angular momentum and the suppression of the recollision.

    Molecular harmonics show a more complicated structure in comparison with the atomic harmonics,such as the extended harmonic cuto ffcaused by the multi-channel harmonic emission[40]and the resonant peaks caused by the laser induced electron transfer[41]etc.Most impor-tantly,due to the non-spherical geometry of molecules,the restrictions of the conservation of angular momentum and the recombination for atomic system are avoided,rendering molecules ideal candidates for the generations of the elliptically and the circularly polarized harmonics and attosecond pulses.[42]For instance,Yuan and Bandrauk[43?46]theoretically investigated the generation of the circularly or elliptically polarized harmonics and obtained an isolated circularly polarized attosecond pulse with the combination of a few cycle elliptically polarized laser pulse and a terahertz field.[47]Miloˇsevi′c,etal.[48]investigated the generation of circularly polarized harmonics by using a bichromatic circularly polarized laser pulse with the opposite rotation polarization directions.So far,by using a linearly polarized laser pulse,the elliptically polarized harmonics have also been experimentally and theoretically produced for aligned,N2and CO2molecules.[49?53]

    However,the durations of the produced circularly or elliptically polarized pulses are still signi ficantly longer than 1 atomic unit of time(the atomic unit of time is 24as)and the photon energies mainly cover in the EUV region.Therefore,in this paper,we theoretically investigate the molecular harmonics fromdriven by the linearly polarized laser pulses with different orientation angles.Firstly,the below and above-threshold harmonics show the resonant enhanced peak around the 7th harmonic and many maxima and minima,respectively.Moreover,a series of anomalous elliptically polarized harmonics can be obtained with the introduction of the polarized angle.Secondly,with the introduction of the spatial inhomogeneous e ff ect(which is a current hot issue on harmonics and attosecond pulses generations[34?39,54]),the harmonic cuto ff s are extended,and the harmonic modulations are reduced.Most importantly,the ellipticities of the harmonics become stable with the values from ε=0.1 to ε=0.3.As a result,four supercontinua with the bandwidths of 407 eV,310 eV,389 eV and 581 eV can be obtained.Finally,by Fourier transforming the harmonics,a series of sub-25as elliptically polarized attosecond X-ray pulses with elliptically from 0.1 to 0.3 can be obtained.

    2 Method

    Fig.1 The geometry of the and molecular axis is along the x axis,which forms the angles θ1and θ2with the directions of the laser fields.

    The molecular harmonic spectra and the attosecond pulse generations are explored on the basis of the single active electron approximation by numerically solving the two-dimensional time-dependent Schr¨odinger equation(2D-TDSE),[55]

    whereEi,ωiand τi(i=1,2)are the amplitudes,the frequencies and the pulse durations of the two input pulses. θ1,2are the angles between the directions of the laser pulses and the molecular axis(x),as shown in Fig.1.c is the spatial inhomogeneous parameter.The initial wave function φinitial(x,y,t)is constructed by the imaginary time-propagation method and the time dependent wave function φ(x,y,t)can be propagated by using the standard second-order splitoperator method.[56?59]

    Once the time dependent wave function is determined,the dipole acceleration can be expressed as,[60]

    HHG spectra can be obtained by Fourier transforming the time-dependent dipole acceleration,

    The ellipticities ε of the harmonics can be expressed as,[61]

    國家防總副總指揮、水利部部長陳雷就貫徹落實(shí)回良玉副總理講話及會議精神提出三點(diǎn)要求:第一,深刻領(lǐng)會回良玉副總理重要講話精神,統(tǒng)一思想,提高認(rèn)識,切實(shí)增強(qiáng)使命感責(zé)任感;第二,緊緊圍繞今年防汛抗旱目標(biāo)任務(wù),突出重點(diǎn),抓住關(guān)鍵,最大程度減輕災(zāi)害損失;第三,立足防大汛抗大旱搶大險救大災(zāi),超前謀劃,周密部署,確保各項(xiàng)措施落實(shí)到位。

    where,k=and δ=arg[ay(ω)]?arg[ax(ω)]are the amplitude ratio and the phase di ff erence of the two components,respectively.The linearly,elliptically and circularly polarized harmonics or pulses correspond to ε =0,0< ε <1 and ε =1,respectively.

    Time-frequency analyses of the harmonic generation can be obtained by means of the wavelet transformation of the dipole acceleration dA(t),[62]

    where W(x)=is the Morlet wavelet with the wavelet window function fixed at ξ=20 in this paper.

    Temporal pro fi le of the attosecond pulse can be generated through the Fourier transformation of the spectral continuum,

    where q means the order of the harmonics.

    3 Results and Discussion

    3.1 Below-Threshold Molecular Harmonic Characteristic

    Figure 2(a)shows the below-threshold(the harmonic energies/orders are lower than the ionization potential of)molecular harmonic yields versus the single-color polarized angle θ1.The laser field is 5 fs/800 nm spatial homogeneous pulse(c=0.0)with I1=1.0×1015W/cm2.For the equilibrium internuclear distance(R=2 a.u.),the ionization potential ofis?29.9 eV,thus the belowthreshold harmonics span the range of H3(4.65 eV)to H17(26.35 eV)orders.As one can see,most of below-threshold harmonics exhibit the anomalous radiation intensities,but there is one visible enhanced peak around the H7 order.Figure 2(b)shows the part of the HHG spectra fromdriven by the single linearly polarized pulse(θ1=0.0π)with different internuclear distances.The harmonic yields have been multiplied by factors of 1,10?3,and 10?6from top to bottom for the purpose of clarity.We see that the visible resonant enhanced peak around the H7 order will move toward to the lower harmonic order(even disappearance)with the increase of internuclear distance.As we know that the excited state plays an important role in molecular harmonic generation.[42,63?65]Thus,through analyzing the energies of the ground state(GS)and the 1st excited state(ES)of(that is 30 eV and 18 eV at R=2.0 a.u.),we see that the location of the H7 order is equal to the di ff erence between the GS and the 1st ES.Moreover,the energies of these two states become nearly degenerate at larger R(i.e.17.6 eV and 17.4 eV at R=7.0 a.u.),which agrees well with the above red-shift(even disappeared)resonant peak.Thus,we believe that this enhanced peak is caused by the laser-induced electron transfer between the GS and the 1st ES.

    Fig.2 (a)The intensities of the below-threshold molecular harmonics scaling with the polarized angle θ1.The laser field is 5 fs/800 nm spatial homogeneous pulse(c=0.0)with I1=1.0×1015W/cm2.The internuclear distance is chosen to be R=2.0 a.u.(b)Part of the harmonic spectra driven by the above field with θ1=0.0π and R=2.0 a.u.,3.0 a.u.,7.0 a.u.The harmonic yields have been multiplied by factors of 1,10?3,and 10?6from top to bottom for the purpose of clarity.

    Fig.3 Below-threshold molecular harmonics and their components in x and y directions for the cases of the single linearly polarized pulses with(a) θ1=0.1π;(b) θ1=0.2π;(c) θ1=0.3π;(d) θ1=0.4π.

    Fig.4 (a)Above-threshold molecular harmonics driven by the single linearly polarized pulses with θ1=0.0π–0.4π.(b)Above-threshold molecular harmonics driven by the two-color linearly polarized pulses with θ1=0.1π, θ2=0.1π;θ1=0.1π,θ2=0.3π;θ1=0.3π,θ2=0.1π;θ1=0.3π,θ2=0.3π.The second controlling pulse is 10 fs/1200 nm spatial homogeneous pulse(c=0.0)with I2=1.0×1014W/cm2.The harmonic yields have been multiplied by factors of 1,10?3,10?6,and so on from top to bottom for the purpose of clarity.(c)Laser pro fi les of the single linearly polarized pulses with θ1=0.0π (case I), θ1=0.3π in x direction(case II)and two-color linearly polarized pulses with θ1= θ2=0.0π(case III).T means the optical cycle of 800 nm field.

    3.2 Above-threshold Molecular Harmonic Characteristic

    Figure 4(a)shows the above-threshold(the harmonic energies/orders are larger than the ionization potential of)molecular harmonics driven by the single linearly polarized pulses with θ1=0.0π–0.4π.Clearly,the harmonic spectra reveal two harmonic plateaus,and the maximum harmonic cuto ff s are decreased with the increase of the polarized angle θ1(i.e.Ecutoff(θ1=0.0π)=147ω1;Ecutoff(θ1=0.1π)=145ω1;Ecutoff(θ1=0.3π)=143ω1).Moreover,the harmonics exhibit many minima.This is because that the electron can experience the recombination with two nucleus,which means the contributions to the recombination amplitude from both nuclei are added coherently,thus giving rise to the interference structure in the harmonic spectra,which is called as the two-center interference.[66?68]Here,one can obtain the interference minima or maxima by using the recombination model,[69?70]

    whereEω1is the emitted harmonic energy(here we assume all the kinetic energy of the electron is transformed into the harmonic emission during the recombination),and θ is the angle between the laser polarization and the molecular axis.The calculated results are shown in Table 1.As seen in Table 1,for the present paper,n=1,3,5,...in Eq.(13)correspond to the minima,and n=2,4,6,...in Eq.(12)correspond to the maxima.For instance,for θ1=0.0π–0.4π cases,(i)the minima for n=1,3 are respective 22ω1,198ω1(for θ1=0.0π);24ω1,219ω1(for θ1=0.1π);33ω1,302 ω1(for θ1=0.2π);63ω1,573ω1(for θ1=0.3π);and 230ω1,2076ω1(for θ1=0.4π).(ii)The maxima for n=2,4 are respective 88ω1,352ω1(for θ1=0.0π);97ω1,389ω1(for θ1=0.1π);134ω1,538ω1(for θ1=0.2π);255ω1,1020ω1(for θ1=0.3π);and 922ω1,3691ω1(for θ1=0.4π).We note that the minima or the maxima harmonics obtained from Eq.(13)for the larger polarized angles and higher number n are too high to observe in the present laser intensity.Moreover,as we know that the positions of the maxima are hardly to see.Therefore,we only choose the smaller polarized angles(θ1=0.0π–0.3π)with n=1 to analyze the minima in the harmonic spectra.Clearly,we see that the predictions of the minima shown in Table 1 are in fair agreement with our quantum calculations shown in Fig.4(a).And a blueshift of these points can be found with the increase of the polarized angle.Figure 4(b)shows the above-threshold molecular harmonics driven by the two-color linearly polarized pulses with different polarized angles.The second controlling pulse is 10 fs/1200 nm spatial homogeneous pulse(c=0.0)with I2=1.0×1014W/cm2.It shows that with the introduction of the second controlling pulse,the harmonic cuto ff s are extended and the maxima and the minima can also be found on the harmonics but with an energy shift.For instance,(i)for θ1=0.1π,θ2=0.1π case,the 1st minima is around the 24ω1,which agrees well with the single polarized pulse case(θ1=0.1π).However,with the increase of the second polarized angle at θ1=0.1π, θ2=0.3π,a blue-shift of the 1st minima has been obtained around the 28ω1.(ii)For θ1=0.3π,θ2=0.3π case,the minima around the 66ω1can be obtained as same as that generated from the single polarized pulse with θ1=0.3π.But,with the decrease of the second polarized angle at θ1=0.3π,θ2=0.1π,the minima with the red-shift around the 41ω1can be found.Figure 4(c)shows the laser pro fi les of the single linearly polarized pulses with θ1=0.0π (case I), θ1=0.3π in x direction(case II)and two-color linearly polarized pulses with θ1= θ2=0.0π (case III).According to the recollision model,[9]the ionization of the electron occurs near the amplitude of the laser(such as A point).Further,the acceleration and the recombination of the ionized electron can be achieved during the later half optical cycle(such as the B-C process).Finally,it can recombine with its parent ion emitting a photon as the harmonic radiation energy.Through analyzing the laser pro fi les shown in Fig.4(c),the envelopes of the A-B-C amplitudes are respectively decreased(case II)or increased(case III)as the polarized angle θ1increased or with the introduction of the second controlling pulse,thus,the free electron will obtain and release less(case II)or more(case III)energies in its accelerating and returning process,which is responsible for the decrease and extension of the harmonic cuto ff s shown in Figs.4(a)and 4(b).

    Table 1 Minima or maxima of the harmonics at different polarized angles calculated from Eq.(13).The internuclear distance is chosen to be R=2.0 a.u.

    Fig.5 Time-frequency analyses of the harmonic generation for the cases of the single-color polarized pulses with(a)θ1=0.1π;(b) θ1=0.2π;(c) θ1=0.3π;(d) θ1=0.4π.

    Fig.6 Time-frequency analyses of the harmonic generation for the cases of the two-color linearly polarized pulses with(a) θ1=0.1π,θ2=0.1π;(b) θ1=0.1π,θ2=0.3π;(c) θ1=0.3π,θ2=0.1π;(d) θ1=0.3π,θ2=0.3π.

    Figures 5(a)–5(d)depict the time-frequency analyses of the harmonic generation for the cases of the single linearly polarized pulses with θ1=0.1π–0.4π.We see that for the present short pulses,there are three main harmonic emission events,and the emission energies can be separated to two parts.Particularly,one is lower than 100ω1with the contributions from all the three harmonic emission events,and the other one is higher than 100ω1with the contribution only from the 2nd harmonic emission event,which is the reason behind the two harmonic plateaus shown in Fig.4(a).Moreover,each peak receives two similar contributions from the left(short trajectory)and the right(long trajectory)trajectories,thus,leading to the larger modulations on the harmonic spectra.[71]Figures 6(a)–6(d)depict the time pro fi les of the harmonic generations for the cases of the two-color polarized pulses with θ1=0.1π, θ2=0.1π; θ1=0.1π, θ2=0.3π;θ1=0.3π,θ2=0.1π;θ1=0.3π,θ2=0.3π,respectively.It shows that with the help of the second controlling pulse,three main harmonic emission events can be found during the harmonic emission process,and the intensities of the 2nd and the 3rd harmonic emission events are much higher than that of the 1st one,which is responsible for the observed two-plateau structure on the HHG.Moreover,the maximum recombination energy is extended in comparison with the single color cases,which agrees well with the quantum results shown in Fig.4(b).But each emission events also receives two similar contributions from the short and the long trajectories,which is unbene ficial to isolated attosecond pulse generation.

    3.3 Elliptically Polarized Harmonic and Attosecond Pulse Generations

    Figures 7(a)–7(d)show the above-threshold molecular harmonics and their components in x and y directions for the cases of the single linearly polarized pulses with θ1=0.1π–0.4π,respectively.It shows that for the smaller polarized angles θ1=0.1π,as shown in Fig.7(a),the harmonic intensities from the y component are higher than those from the x component in the lower harmonic orders(H9

    Fig.7 Above-threshold molecular harmonics and their components in x and y directions for the cases of the single linearly polarized pulses with(a) θ1=0.1π;(b) θ1=0.2π;(c) θ1=0.3π;(d) θ1=0.4π.

    In order to understand the harmonic distributions in the x and the y components,in Fig.8,we present the laser pro fi les and the time-frequency analyses of the harmonic spectra in the x and the y components for the cases of the single linearly polarized pulses with θ1=0.2π and 0.3π(here we use this two cases as the example to explain the harmonic distributions in the x and the y components).Firstly,the intensities of laser pro fi les in the x or the y component are higher than that in the y or the x component(see Figs.8(a)and 8(d))for the cases of θ1=0.2π and θ1=0.3π,respectively.Thus,the harmonic emission from the x or the y component should respectively present the main role in harmonic generation,which is in agreement with the calculated harmonic spectra shown in Fig.7.In detail,through analyzing the time-frequency analyses of the harmonic spectra,we see that for the case of θ1=0.2π (see Figs.8(b)and 8(c)),the intensities of the three harmonic emission events from the y component are higher than those from the x component for the lower harmonic orders(dashed white frame 1);while for the higher harmonic orders(dashed white frame 2),the intensities of the three harmonic events from the x component are higher than those from the y component,which is responsible for the asymmetric harmonic distributions in the x and the y components.For the case of θ1=0.3π(see Figs.8(e)and 8(f)),due to the amplitude of the laser field in the y component is enhanced,the intensities of the three harmonic emission events from the y component play the main role in all harmonic orders,thus resulting in the remarkable enhancement of the harmonic intensity in the y component.

    Fig.8 Laser pro fi les in the x and the y components for the cases of(a) θ1=0.2π;(d) θ1=0.3π.Time-frequency analyses of the harmonic generation in the x and the y components for the cases of(b)and(c) θ1=0.2π;(e)and(f)θ1=0.3π.

    Figures 9(a)–9(d)show the above-threshold molecular harmonics and their components in the x and the y directions for the cases of the two-color linearly polarized pulses with θ1=0.1π,θ2=0.1π; θ1=0.1π,θ2=0.3π;θ1=0.3π, θ2=0.1π; θ1=0.3π, θ2=0.3π.Clearly,the fundamental field plays an important role in harmonic yields.For instance,for θ1=0.1π two cases,shown in Figs.9(a)and 9(b),the dominating harmonics still come from the x component.For θ1=0.3π two cases,shown in Figs.9(c)and 9(d),we see that with the increase of the fundamental polarized angles θ1,the contribution of the y component is enhanced(Fig.9(c)),and with the further increase of the controlling polarized angles θ2,the contribution of the y component is higher than that of the x component(Fig.9(d)).The reasons for the harmonic distributions in the two-color field are similar as those from the single-color field.Thus,we do not show in this paper.

    As we know that the ellipticities of the harmonics are determined by the amplitude ratio and the phase di ff erence of the two components,thus,according to Eq.(10),we calculated the ellipticities of the harmonics for the cases of the single-color and two-color polarized pulses as shown in Figs.10 and 11,respectively.Firstly,for the cases of the single linearly polarized pulses with θ1=0.1π,0.2π,and 0.3π,shown in Figs.10(a)–10(c),although the ellipticities of harmonics are complicated,some nearstable elliptically polarized harmonics from 50ω1to 100ω1with ε=0.1 for θ1=0.1π case,from 70ω1to 90ω1with ε=0.2 for θ1=0.2π case,from 20ω1to 50ω1with ε=0.15 for θ1=0.3π case can be found.However,for the case of the single linearly polarized pulse with θ1=0.4π,shown in Fig.10(d),we see that the ellipticities of harmonics are nearly zero,corresponding to the linearly polarized harmonics.For the cases of the two-color polarized pulses with θ1=0.1π,θ2=0.1π and θ1=0.1π,θ2=0.3π,shown in Figs.11(a)and 11(b),the near-stable elliptically polarized harmonics have been broadened,and two elliptically polarized harmonic plateaus from 60ω1to 140ω1with ε=0.1 and from 150ω1to 200ω1with ε=0.15 can be obtained.While for the cases of the two-color polarized pulses with θ1=0.3π,θ2=0.1π and θ1=0.3π,θ2=0.3π,shown in Figs.11(c)and 11(d),there is only one nearstable elliptically polarized harmonic plateau from 150ω1to 200ω1with ε=0.2.

    Fig.9 Above-threshold molecular harmonics and their components in x and y directions for the cases of two-color linearly polarized pulses with(a) θ1=0.1π,θ2=0.1π;(b) θ1=0.1π,θ2=0.3π;(c) θ1=0.3π,θ2=0.1π;(d) θ1=0.3π,θ2=0.3π.

    From the above analyses,we see that although the near-stable elliptically polarized harmonics can be generated by using the present linearly polarized pulses,the larger modulations on the harmonics are unbene ficial to the generation of the isolated elliptically polarized attosecond pulse.Thus,in the following discussion,we try to obtain the near-stable elliptically polarized harmonics with less modulation.

    Figures 12(a)–12(d)show the molecular HHG spectra driven by the above four two-color polarized pulses with different spatial inhomogeneous parameters.Clearly,by properly choosing the spatial inhomogeneous parameters,e.g.c=0.004 for θ1=0.1π,θ2=0.1π case(Fig.12(a));c=0.001 for θ1=0.1π, θ2=0.3π case(Fig.12(b));c=0.002 for θ1=0.3π,θ2=0.1π case(Fig.12(c));and c=0.002 for θ1=0.3π,θ2=0.3π case(Fig.12(d)),not only the harmonic cuto ff s are extended,but also the harmonic modulations are reduced in comparison with the spatial homogeneous field cases.As a result,four supercontinua with the bandwidths of 407 eV,310 eV,389 eV,and 581 eV can be obtained.

    Figures 13(a)–13(d)depict the ellipticities of the harmonics for the cases of the above four spatial inhomogeneous combined fields.Particularly,(i)for the case of θ1=0.1π, θ2=0.1π,c=0.004,shown in Fig.13(a),a near-stable elliptically polarized harmonic bandwidth with ε=0.1 can be found from the 100ω1to the 200ω1.(ii)For the case of θ1=0.1π, θ2=0.3π,c=0.001,shown in Fig.13(b),a near-stable elliptically polarized harmonic bandwidth with ε=0.3 can be found from the 125ω1to the 175ω1.(iii)For the case of θ1=0.3π,θ2=0.1π,c=0.002,shown in Fig.13(c),a near-stable elliptically polarized harmonic bandwidth with ε=0.3 can be found from the 125ω1to the 225ω1.(iv)For the case of θ1=0.3π, θ2=0.3π,c=0.002,shown in Fig.13(d),a near-stable elliptically polarized harmonic bandwidth with ε=0.3 can be found from the 150ω1to the 250ω1.

    Fig.10 Ellipticities of the harmonics for the cases of the single-color polarized pulses with(a)θ1=0.1π;(b)θ1=0.2π;(c) θ1=0.3π;(d) θ1=0.4π.

    Fig.11 Ellipticities of the harmonics for the cases of the two-color linearly polarized pulses with(a) θ1=0.1π,θ2=0.1π;(b) θ1=0.1π,θ2=0.3π;(c) θ1=0.3π,θ2=0.1π;(d) θ1=0.3π,θ2=0.3π.

    Fig.12 Molecular HHG spectra driven by the spatial inhomogeneous two-color polarized pulses with(a) θ1=0.1π,θ2=0.1π,c=0.004;(b) θ1=0.1π,θ2=0.3π,c=0.001;(c) θ1=0.3π,θ2=0.1π,c=0.002;(d) θ1=0.3π,θ2=0.3π,c=0.002.For comparison,the HHG spectra from the corresponding homogeneous fields have also been shown.

    Fig.13 Ellipticities of the harmonics for the cases of the spatial inhomogeneous two-color linearly polarized pulses with(a) θ1=0.1π,θ2=0.1π,c=0.004;(b) θ1=0.1π,θ2=0.3π,c=0.001;(c) θ1=0.3π,θ2=0.1π,c=0.002;(d)θ1=0.3π,θ2=0.3π,c=0.002.

    Fig.14 Time-frequency analyses of the harmonic generation for the cases of the spatial inhomogeneous two-color linearly polarized pulses with(a) θ1=0.1π,θ2=0.1π,c=0.004;(b) θ1=0.1π,θ2=0.3π,c=0.001;(c) θ1=0.3π,θ2=0.1π,c=0.002;(d) θ1=0.3π,θ2=0.3π,c=0.002.

    Fig.15 Temporal pro fi les of attosecond pulses superposing the harmonics of(a)the θ1=0.1π,θ2=0.1π,c=0.004 case from the 100ω1to the 200ω1orders;(b)the θ1=0.1π, θ2=0.3π,c=0.001 case from the 125ω1to the 175ω1 orders;(c)the θ1=0.3π,θ2=0.1π,c=0.002 case from the 125ω1to the 175ω1orders,from the 175ω1to the 225ω1 orders;(d)the θ1=0.3π,θ2=0.3π,c=0.002 case from the 150ω1to the 200ω1orders,from the 200ω1to the 250ω1 orders.

    Figures 14(a)–14(d)show the time-frequency analyses of the harmonic generation driven by the above four spatial inhomogeneous combined fields.We see that with the introduction of the spatial inhomogeneous e ff ect,the maximum recombination energies from the harmonic emission events are enhanced,and the single quantum trajectory is selected to contribute to the harmonic spectra,which is bene ficial to the isolated attosecond production.Particularly,(i)for the case of θ1=0.1π,θ2=0.1π,c=0.004,shown in Fig.14(a),the harmonic energies from the 100ω1to the 250ω1are contributed by the single short quantum trajectory.(ii)For the case of θ1=0.1π, θ2=0.3π,c=0.001,shown in Fig.14(b),the contribution of the short quantum trajectory is higher than that of the long quantum trajectory when the harmonics generated from the 100ω1to the 200ω1.(iii)For the case of θ1=0.3π,θ2=0.1π,c=0.002,shown in Fig.14(c),the maximum harmonic energies from the 100ω1to the 350ω1are contributed by the short quantum trajectory.(iv)For the case of θ1=0.3π, θ2=0.3π,c=0.002,shown in Fig.14(d),the single short quantum trajectory has been well selected to contributed to the maximum harmonic emission event.

    Figure 15 shows the elliptically polarized attosecond pulses generations through the Fourier transformation of the above harmonic spectra.Firstly,through analyzing the ellipticities and the time pro fi les of the harmonics shown in Figs.13 and 14,we see that due to the oscillation of the ellipticities and the interference modulations caused by the two quantum trajectories,the selection of an entire supercontinuum region cannot provides the possible situation for generating the near-stable elliptically polarized isolated attosecond pulse.Therefore,superposing part of the harmonics with the near-stable ellipticities and the single trajectory contribution is much better for the production of the elliptically polarized isolated attosecond pulse.Thus,according to the results in Figs.13 and 14,by superposing the harmonics of(i)the θ1=0.1π,θ2=0.1π,c=0.004 case from the 100ω1to the 200ω1orders;(ii)the θ1=0.1π, θ2=0.3π,c=0.001 case from the 125ω1to the 175ω1orders;(iii)the θ1=0.3π,θ2=0.1π,c=0.002 case from the 125ω1to the 175ω1orders,from the 175ω1to the 225ω1orders;(iv)the θ1=0.3π,θ2=0.3π,c=0.002 case from the 150ω1to the 200ω1orders,from the 200ω1to the 250ω1orders,six elliptically polarized attosecond X-ray pulses with durations and ellipticities of 23as(ε=0.1),25as(ε=0.3),21as(ε =0.3),25as(ε=0.3),18as(ε=0.3),18as(ε=0.3)can be obtained,as shown in Figs.15(a)–15(d).

    4 Conclusion

    In conclusion,we theoretically investigate the molecular harmonic characteristic and the elliptically polarized attosecond pulse generation from H+2driven by the linearly polarized pulses.(i)Below-threshold harmonics show a resonance enhanced peak around the H7 order,which produces a red-shift(even disappearance)as the internuclear distance increased.Further analyses show this red-shift enhanced peak is caused by the laser-induced electron transfer between the ground state and the 1st excited state of H+2.(ii)Above-threshold harmonics exhibit many maxima and minima caused by the two-centre interference.Moreover,a series of anomalous elliptically polarized harmonics can be obtained with the introduction of the polarized angle.(iii)With the introduction of the spatial inhomogeneous e ff ect,not only the harmonic cuto ff s are extended,but also the harmonic modulations are reduced.Most importantly,the ellipticities of the harmonics become stable.As a result,four supercontinua with the bandwidths of 407 eV,310 eV,389 eV,and 581 eV can be obtained.Finally,by Fourier transforming the harmonics,a series of sub-25as elliptically polarized attosecond X-ray pulses with ellipticities of ε=0.1 and ε=0.3 can be obtained.

    Acknowledgments

    The authors thank Prof.Keli Han and Dr.Ruifeng Lu for providing the computational code used in the present work.

    References

    [1]T.Brabec and F.Krausz,Rev.Mod.Phys.72(2000)545.

    [2]F.Krausz and M.Ivanov,Rev.Mod.Phys.81(2009)163.

    [3]E.Goulielmakis,M.Schultze,M.Hofstetter,etal.,Science 320(2008)1614.

    [4]G.Sansone,F.Kelkensberg,J.F.P′erez-Torres,etal.,Nature(London)465(2010)763.

    [5]X.X.Zhou,X.M.Tong,Z.X.Zhao,and C.D.Lin,Phys.Rev.A 71(2005)061801.

    [6]L.Q.Feng and W.L.Li,Commun.Theor.Phys.63(2015)86.

    [7]L.Q.Feng,Phys.Rev.A 92(2015)053832.

    [8]Y.H.Wang,H.P.Wu,Y.Chen,etal.,AIP Advances 2(2012)022102.

    [9]P.B.Corkum,Phys.Rev.Lett.71(1993)1994.

    [10]F.Ferrari,F.Calegari,M.Lucchini,etal.,Nat.Photonics 4(2010)875.

    [11]I.J.Sola,E.M′evel,L.Elouga,etal.,Nat.Phys.2(2006)319.

    [12]F.Calegari,G.Sansone,S.Stagira,etal.,J.Phys.B:At.Mol.Opt.Phys.49(2016)062001.

    [13]G.Sansone,E.Benedetti,F.Calegari,etal.,Science 314(2006)443.

    [14]P.B.Corkum,N.H.Burnett,and M.Y.Ivanov,Opt.Lett.19(1994)1870.

    [15]Z.Chang,Phys.Rev.A 71(2005)023813.

    [16]H.C.Du and B.T.Hu,Opt.Express 18(2010)25958.

    [17]Q.B.Zhang,P.X.Lu,W.Y.Hong,Q.Liao,and S.Y.Wang,Phys.Rev.A 80(2009)033405.

    [18]C.M.Zhang,G.Vampa,D.M.Villeneuve,and P.B.Corkum,J.Phys.B:At.Mol.Opt.Phys.48(2015)061001.

    [19]T.J.Hammond,G.G.Brown,K.T.Kim,D.M.Villeneuve,and P.B.Corkum,Nat.Photonics 10(2016)171.

    [20]M.Louiy,C.L.Arnold,M.Miranda,etal.,Optica 2(2015)563.

    [21]C.M.Heyl,H.Coudert-Alteirac,M.Miranda,etal.,Optica 3(2016)75.

    [22]Z.N.Zeng,Y.Cheng,X.H.Song,R.X.Li,and Z.Z.Xu,Phys.Rev.Lett.98(2007)203901.

    [23]R.F.Lu,H.X.He,Y.H.Guo,and K.L.Han,J.Phys.B:At.Mol.Opt.Phys.42(2009)225601.

    [24]L.Q.Feng and H.Liu,Opt.Laser Technol.81(2016)7.

    [25]P.C.Li,C.Laughlin,and S.I.Chu,Phys.Rev.A 89(2014)023431.

    [26]T.Popmintchev,M.C.Chen,O.Cohen,M.Grisham,J.Rocca,M.Murnane,and H.Kapteyn,Opt.Lett.33(2008)2128.

    [27]L.Q.Feng and H.Liu,Laser Phys.25(2015)105301.

    [28]G.Orlando,P.P.Corso,E.Fiordilino,and F.Persico,J.Mod.Opt.56(2009)1761.

    [29]L.Q.Feng and H.Liu,Laser Phys.25(2015)015302.

    [30]L.Q.Feng and H.Liu,Opt.Commun.348(2015)1.

    [31]L.Q.Feng and T.S.Chu,Phys.Rev.A 84(2011)053853.

    [32]P.C.Li,X.X.Zhou,G.L.Wang,and Z.X.Zhao,Phys.Rev.A 80(2009)053825.

    [33]J.J.Xu,B.Zeng,and Y.L.Yu,Phys.Rev.A 82(2010)053822.

    [34]S.Kim,J.Jin,Y.J.Kim,I.Y.Park,Y.Kim,and S.W.Kim,Nature(London)453(2008)757.

    [35]L.Q.Feng and H.Liu,Phys.Plasmas 22(2015)013107.

    [36]M.F.Ciappina,S.S.Acimovic,T.Shaaran,etal.,Opt.Express 20(2012)26261.

    [37]M.F.Ciappina,J.A.P′erez-Hern′andez,T.Shaaran,L.Roso,and M.Lewenstein,Phys.Rev.A 87(2013)063833.

    [38]T.Shaaran,M.F.Ciappina,R.Guichard,etal.,Phys.Rev.A 87(2013)041402.

    [39]T.Shaaran,M.F.Ciappina,and M.Lewenstein,Phys.Rev.A 86(2012)023408.

    [40]X.Y.Miao and C.P.Zhao,Laser Phys.Lett.11(2014)115301.

    [41]X.B.Bian and A.D.Bandrauk,Phys.Rev.Lett.105(2010)093903.

    [42]K.J.Yuan and A.D.Bandrauk,J.Phys.B:At.Mol.Opt.Phys.45(2012)074001.

    [43]K.J.Yuan and A.D.Bandrauk,Phys.Rev.A 84(2011)023410.

    [44]K.J.Yuan and A.D.Bandrauk,Phys.Rev.A 83(2011)063422.

    [45]K.J.Yuan,H.Z.Lu,and A.D.Bandrauk,Phys.Rev.A 83(2011)043418.

    [46]K.J.Yuan and A.D.Bandrauk,Phys.Rev.A 81(2010)063412.

    [47]K.J.Yuan and A.D.Bandrauk,Phys.Rev.Lett.110(2013)023003.

    [48]D.B.Miloˇsevi′c,W.Becker,and R.Kopold,Phys.Rev.A 61(2000)063403.

    [49]H.C.Du,Y.Z.Wen,X.S.Wang,and B.T.Hu,Chin.Phys.B 23(2014)033202.

    [50]J.Levesque,Y.Mairesse,N.Dudovich,H.P′epin,etal.,Phys.Rev.Lett.99(2007)243001.

    [51]X.Zhou,R.Lock,N.Wagner,W.Li,H.C.Kapteyn,and M.M.Murnane,Phys.Rev.Lett.102(2009)073902.

    [52]O.Smirnova,S.Patchkovskii,Y.Mairesse,etal.,Phys.Rev.Lett.102(2009)063601.

    [53]A.Etches,C.B.Madsen,and L.B.Madsen,Phys.Rev.A 81(2010)013409.

    [54]I.Yavuz,Y.Tikman,and Z.Altun,Phys.Rev.A 92(2015)023413.

    [55]L.Q.Feng,M.H.Yuan,and T.S.Chu,Phys.Plasmas 20(2013)122307.

    [56]R.F.Lu,P.Y.Zhang,and K.L.Han,Phys.Rev.E 77(2008)066701.

    [57]X.Cao,S.C.Jiang,C.Yu,etal.,Opt.Express 22(2014)26153.

    [58]C.Yu,H.X.He,Y.H.Wang,Q.Shi,Y.D.Zhang,and R.F.Lu,J.Phys.B:At.Mol.Opt.Phys.47(2014)055601.

    [59]J.Hu,K.L.Han,and G.Z.He,Phys.Rev.Lett.95(2005)123001.

    [60]K.Burnett,V.C.Reed,J.Cooper,and P.L.Knight,Phys.Rev.A 45(1992)3347.

    [61]S.K.Son,D.Telnov,and S.I.Chu,Phys.Rev.A 82(2010)043829.

    [62]P.Antoine,B.Piraux,and A.Maquet,Phys.Rev.A 51(1995)R1750.

    [63]X.B.Bian and A.D.Bandrauk,Phys.Rev.A 83(2011)041403.

    [64]L.Q.Feng and H.Liu,J.Mol.Model 21(2015)43.

    [65]L.Q.Feng and T.S.Chu,Commun.Comput.Chem.1(2013)52.

    [66]M.Lein,Phys.Rev.Lett.94(2005)053004.

    [67]D.A.Telnov and S.I.Chu,Phys.Rev.A 80(2009)043412.[68]D.A.Telnov and S.I.Chu,Phys.Rev.A 76(2007)043412.[69]M.Lein,N.Hay,R.Velotta,etal.,Phys.Rev.A 66(2002)023805.

    [70]K.N.Avanaki,D.A.Telnov,and S.I.Chu,Phys.Rev.A 90(2014)033425.

    [71]Y.Mairesse,A.D.Bohan,L.J.Frasinski,etal.,Science 302(2003)1540.

    猜你喜歡
    李文亮陳雷水利部
    Preparing highly entangled states of nanodiamond rotation and NV center spin
    Detecting the possibility of a type of photon number splitting attack in decoy-state quantum key distribution
    李文亮醫(yī)生留下的思考
    公民與法治(2020年7期)2020-05-11 02:14:46
    李文亮
    陳雷膠漆
    水利部2017年1月批準(zhǔn)發(fā)布的第一批水利行業(yè)標(biāo)準(zhǔn)
    水利部2017年1月批準(zhǔn)發(fā)布的第二批水利行業(yè)標(biāo)準(zhǔn)
    前駐長崎中國総領(lǐng)事 李文亮氏 中國人墓地の清掃に感動
    時尚“吃播”陳雷:邊吃邊秀邊掙錢
    華人時刊(2016年16期)2016-04-05 05:57:23
    水利部離退休干部參賽作品
    新天地(2014年9期)2014-10-10 13:32:56
    av又黄又爽大尺度在线免费看| 亚洲精品456在线播放app| 精品亚洲成国产av| 国产在线免费精品| 日本色播在线视频| 人人澡人人妻人| 国产成人aa在线观看| 国产一区有黄有色的免费视频| 亚洲精品美女久久av网站| 亚洲激情五月婷婷啪啪| 一级片'在线观看视频| 久久韩国三级中文字幕| 蜜桃久久精品国产亚洲av| 久久久久久久久久成人| 91aial.com中文字幕在线观看| 97在线视频观看| 插阴视频在线观看视频| 午夜福利视频在线观看免费| 欧美最新免费一区二区三区| 精品久久久久久电影网| 中文字幕av电影在线播放| 亚洲精品成人av观看孕妇| 又黄又爽又刺激的免费视频.| 亚洲经典国产精华液单| 视频区图区小说| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 男女无遮挡免费网站观看| 国产av精品麻豆| 精品一区二区免费观看| videossex国产| 久热久热在线精品观看| www.av在线官网国产| 欧美精品一区二区免费开放| 天美传媒精品一区二区| 狠狠精品人妻久久久久久综合| 欧美+日韩+精品| 这个男人来自地球电影免费观看 | 狠狠精品人妻久久久久久综合| 欧美激情国产日韩精品一区| 观看av在线不卡| 美女xxoo啪啪120秒动态图| 久久久久国产精品人妻一区二区| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 男女边吃奶边做爰视频| 久久人人爽人人片av| 精品人妻在线不人妻| 永久免费av网站大全| 亚洲精品色激情综合| 久久国内精品自在自线图片| 免费人成在线观看视频色| 天堂中文最新版在线下载| 九九久久精品国产亚洲av麻豆| 大片免费播放器 马上看| 国产精品久久久久久精品电影小说| a 毛片基地| 夜夜骑夜夜射夜夜干| 久久精品国产亚洲网站| 久久99热6这里只有精品| 人妻系列 视频| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 制服人妻中文乱码| 亚洲国产欧美日韩在线播放| 在线精品无人区一区二区三| 午夜福利网站1000一区二区三区| 亚洲av免费高清在线观看| 大片电影免费在线观看免费| 最黄视频免费看| 22中文网久久字幕| 亚洲精品视频女| 一区二区三区精品91| 精品国产一区二区久久| 中国三级夫妇交换| 桃花免费在线播放| 一级片'在线观看视频| 校园人妻丝袜中文字幕| 能在线免费看毛片的网站| 欧美日韩av久久| 蜜桃国产av成人99| 高清在线视频一区二区三区| 亚洲精品久久成人aⅴ小说 | 成人毛片a级毛片在线播放| 久久久国产一区二区| 男人爽女人下面视频在线观看| 日韩精品免费视频一区二区三区 | 如日韩欧美国产精品一区二区三区 | 卡戴珊不雅视频在线播放| 狂野欧美白嫩少妇大欣赏| 久久毛片免费看一区二区三区| 亚洲精品自拍成人| 黄色怎么调成土黄色| 香蕉精品网在线| 国产欧美亚洲国产| 菩萨蛮人人尽说江南好唐韦庄| 精品国产国语对白av| 97在线人人人人妻| 久久久午夜欧美精品| 国产精品久久久久久久电影| 精品久久久久久久久av| 曰老女人黄片| 欧美激情国产日韩精品一区| 亚洲av成人精品一二三区| 王馨瑶露胸无遮挡在线观看| 亚洲三级黄色毛片| 国产精品偷伦视频观看了| 观看美女的网站| 如何舔出高潮| 99精国产麻豆久久婷婷| 欧美另类一区| 国产乱来视频区| 精品一品国产午夜福利视频| 亚洲av国产av综合av卡| 国产精品久久久久久av不卡| 精品一区二区三卡| 免费高清在线观看视频在线观看| 精品国产国语对白av| 欧美一级a爱片免费观看看| 欧美xxⅹ黑人| 18禁在线播放成人免费| 新久久久久国产一级毛片| 男女免费视频国产| 黄片播放在线免费| 国产日韩欧美亚洲二区| 人妻夜夜爽99麻豆av| 多毛熟女@视频| 麻豆精品久久久久久蜜桃| 午夜福利,免费看| 美女主播在线视频| 下体分泌物呈黄色| 九草在线视频观看| 国产成人精品婷婷| 亚洲av不卡在线观看| 精品国产露脸久久av麻豆| 亚洲一级一片aⅴ在线观看| 亚洲四区av| 亚洲人成网站在线观看播放| 亚洲伊人久久精品综合| 少妇人妻精品综合一区二区| 看十八女毛片水多多多| 18禁裸乳无遮挡动漫免费视频| 亚洲国产精品成人久久小说| 久久鲁丝午夜福利片| 一区二区av电影网| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 桃花免费在线播放| 97精品久久久久久久久久精品| 热99久久久久精品小说推荐| 亚洲国产av新网站| 好男人视频免费观看在线| 国产69精品久久久久777片| 国产欧美亚洲国产| 街头女战士在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品999| 国产欧美日韩综合在线一区二区| 中文字幕精品免费在线观看视频 | 亚洲av欧美aⅴ国产| 久久人人爽av亚洲精品天堂| 乱人伦中国视频| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 午夜影院在线不卡| 日韩中字成人| 国产精品一区www在线观看| 国产毛片在线视频| 精品久久蜜臀av无| 国产日韩欧美视频二区| 亚洲av二区三区四区| 亚洲内射少妇av| 国产精品一二三区在线看| 日韩熟女老妇一区二区性免费视频| 大码成人一级视频| 亚洲av不卡在线观看| 亚洲第一区二区三区不卡| 亚洲av电影在线观看一区二区三区| 亚洲不卡免费看| 成人毛片a级毛片在线播放| xxxhd国产人妻xxx| tube8黄色片| 久久99精品国语久久久| 热re99久久国产66热| 中文字幕久久专区| 亚洲av国产av综合av卡| 国内精品宾馆在线| 看十八女毛片水多多多| 中文字幕最新亚洲高清| 精品亚洲乱码少妇综合久久| 日本与韩国留学比较| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| xxx大片免费视频| 国产乱来视频区| 大陆偷拍与自拍| 欧美国产精品一级二级三级| 三级国产精品片| 亚洲av二区三区四区| 九九久久精品国产亚洲av麻豆| 亚洲国产精品成人久久小说| 黄色一级大片看看| 91久久精品国产一区二区三区| 久久久久久人妻| 亚洲av日韩在线播放| 欧美性感艳星| 久久精品国产亚洲av天美| av有码第一页| 日韩一本色道免费dvd| 亚洲av男天堂| 久久久久久久精品精品| 能在线免费看毛片的网站| 蜜桃久久精品国产亚洲av| 一个人看视频在线观看www免费| 22中文网久久字幕| 成人毛片a级毛片在线播放| 国产熟女午夜一区二区三区 | 中文字幕制服av| 国产伦理片在线播放av一区| 免费人妻精品一区二区三区视频| 黑人猛操日本美女一级片| 国产 精品1| 欧美97在线视频| 人妻夜夜爽99麻豆av| 黑人高潮一二区| 国产精品久久久久成人av| 97在线人人人人妻| 欧美三级亚洲精品| 亚洲美女视频黄频| 最近2019中文字幕mv第一页| 国产av精品麻豆| 亚洲av电影在线观看一区二区三区| 老女人水多毛片| 18在线观看网站| 一本大道久久a久久精品| 尾随美女入室| 亚洲内射少妇av| av线在线观看网站| 亚洲色图 男人天堂 中文字幕 | 国产亚洲一区二区精品| 人妻夜夜爽99麻豆av| 人妻制服诱惑在线中文字幕| 啦啦啦在线观看免费高清www| 亚洲精品456在线播放app| 国产女主播在线喷水免费视频网站| 国产成人免费无遮挡视频| av专区在线播放| 精品国产一区二区久久| 建设人人有责人人尽责人人享有的| 日本免费在线观看一区| 在线观看免费高清a一片| 国产不卡av网站在线观看| 亚洲av男天堂| 丝瓜视频免费看黄片| 亚洲av国产av综合av卡| 欧美日韩av久久| 成人亚洲欧美一区二区av| 久久影院123| av在线app专区| 国产精品一国产av| 免费黄色在线免费观看| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 亚洲国产精品999| 久久久国产一区二区| 国产在线一区二区三区精| 国产午夜精品久久久久久一区二区三区| 在线 av 中文字幕| 国产av码专区亚洲av| 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 亚洲综合色惰| 国产在线一区二区三区精| 亚洲美女黄色视频免费看| 午夜激情av网站| 99精国产麻豆久久婷婷| 王馨瑶露胸无遮挡在线观看| 国产白丝娇喘喷水9色精品| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 日本wwww免费看| 天堂俺去俺来也www色官网| 人成视频在线观看免费观看| 最后的刺客免费高清国语| 看免费成人av毛片| 免费大片18禁| av专区在线播放| 18禁裸乳无遮挡动漫免费视频| 国产欧美日韩一区二区三区在线 | 九九爱精品视频在线观看| 国产精品成人在线| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 中文字幕精品免费在线观看视频 | 久久久久久伊人网av| 国产精品久久久久久精品古装| 亚洲av欧美aⅴ国产| 婷婷色综合www| 国产免费现黄频在线看| 高清不卡的av网站| www.av在线官网国产| 国产精品女同一区二区软件| 国产精品人妻久久久久久| 亚洲内射少妇av| 又黄又爽又刺激的免费视频.| 草草在线视频免费看| 久久精品久久久久久久性| 日韩一本色道免费dvd| 老司机影院成人| 久久国产精品大桥未久av| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 狂野欧美激情性xxxx在线观看| 国产淫语在线视频| 亚洲综合色网址| 十八禁高潮呻吟视频| 免费播放大片免费观看视频在线观看| 国产爽快片一区二区三区| 久久99蜜桃精品久久| 欧美日韩av久久| 在线看a的网站| 一级毛片我不卡| 久久精品人人爽人人爽视色| 少妇猛男粗大的猛烈进出视频| 伊人久久精品亚洲午夜| 一区二区三区四区激情视频| 精品人妻熟女毛片av久久网站| 美女xxoo啪啪120秒动态图| 久久毛片免费看一区二区三区| 2018国产大陆天天弄谢| 欧美97在线视频| 日韩中文字幕视频在线看片| 又黄又爽又刺激的免费视频.| 亚洲国产精品专区欧美| 亚洲精品乱码久久久v下载方式| 日韩中字成人| 亚洲美女搞黄在线观看| 日韩不卡一区二区三区视频在线| 国产爽快片一区二区三区| 婷婷色综合大香蕉| 国产精品蜜桃在线观看| 五月伊人婷婷丁香| 亚洲精品456在线播放app| 中文欧美无线码| 麻豆精品久久久久久蜜桃| 亚洲精品亚洲一区二区| 国产精品一二三区在线看| 日产精品乱码卡一卡2卡三| 国产精品99久久99久久久不卡 | 亚洲av不卡在线观看| 成人黄色视频免费在线看| 建设人人有责人人尽责人人享有的| freevideosex欧美| 国产69精品久久久久777片| 免费高清在线观看视频在线观看| 国产69精品久久久久777片| 一区二区三区精品91| 青春草国产在线视频| 视频在线观看一区二区三区| 亚洲精品成人av观看孕妇| 久久久午夜欧美精品| 在线免费观看不下载黄p国产| 男女边摸边吃奶| 丝袜脚勾引网站| 亚洲av欧美aⅴ国产| a 毛片基地| 欧美精品人与动牲交sv欧美| 黄色视频在线播放观看不卡| 亚洲激情五月婷婷啪啪| 丰满饥渴人妻一区二区三| 18在线观看网站| 建设人人有责人人尽责人人享有的| 免费高清在线观看视频在线观看| 婷婷色av中文字幕| 欧美日韩精品成人综合77777| 久久久久久久大尺度免费视频| 欧美bdsm另类| av线在线观看网站| 亚洲精品乱久久久久久| 亚洲丝袜综合中文字幕| av天堂久久9| 18+在线观看网站| 国产片内射在线| 国产精品国产av在线观看| www.色视频.com| 丝袜在线中文字幕| 国产高清不卡午夜福利| 久久综合国产亚洲精品| 久久久精品免费免费高清| 亚洲国产精品专区欧美| 下体分泌物呈黄色| 在线播放无遮挡| 国产国语露脸激情在线看| av电影中文网址| 久久av网站| 亚洲欧洲精品一区二区精品久久久 | 亚洲av欧美aⅴ国产| 狂野欧美白嫩少妇大欣赏| 18在线观看网站| 日本黄色片子视频| 哪个播放器可以免费观看大片| 在线亚洲精品国产二区图片欧美 | 秋霞伦理黄片| 美女xxoo啪啪120秒动态图| 99re6热这里在线精品视频| 人人妻人人添人人爽欧美一区卜| 国产免费现黄频在线看| 亚洲四区av| 亚洲av欧美aⅴ国产| 午夜激情福利司机影院| 男人操女人黄网站| 九九爱精品视频在线观看| 亚洲av男天堂| 精品一品国产午夜福利视频| 美女xxoo啪啪120秒动态图| 伊人久久精品亚洲午夜| 午夜91福利影院| 国产免费福利视频在线观看| 欧美精品亚洲一区二区| 欧美亚洲 丝袜 人妻 在线| 美女视频免费永久观看网站| 亚洲美女视频黄频| 国产色婷婷99| 制服人妻中文乱码| 国产av精品麻豆| 国产老妇伦熟女老妇高清| 男女边摸边吃奶| 亚洲成人一二三区av| 哪个播放器可以免费观看大片| 蜜桃久久精品国产亚洲av| 99久久中文字幕三级久久日本| 精品亚洲成国产av| 免费av中文字幕在线| 国产成人一区二区在线| 亚洲欧美成人精品一区二区| 亚洲av电影在线观看一区二区三区| 十八禁网站网址无遮挡| 午夜老司机福利剧场| 三级国产精品欧美在线观看| 青春草国产在线视频| 3wmmmm亚洲av在线观看| tube8黄色片| 多毛熟女@视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美精品高潮呻吟av久久| 国产男人的电影天堂91| 日日摸夜夜添夜夜添av毛片| 男男h啪啪无遮挡| 熟女电影av网| 欧美日韩av久久| 日本与韩国留学比较| 三上悠亚av全集在线观看| 亚洲国产av影院在线观看| 丝袜喷水一区| 97在线视频观看| 国产探花极品一区二区| 一本久久精品| 国产永久视频网站| 亚洲av综合色区一区| 国产欧美日韩综合在线一区二区| 一级爰片在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品日韩av片在线观看| videos熟女内射| 国产成人精品婷婷| 亚洲,欧美,日韩| 少妇猛男粗大的猛烈进出视频| 精品熟女少妇av免费看| 国产乱来视频区| 久久久久精品久久久久真实原创| 夜夜爽夜夜爽视频| 天堂8中文在线网| 国产白丝娇喘喷水9色精品| 国内精品宾馆在线| 国产黄频视频在线观看| 亚洲少妇的诱惑av| 精品久久国产蜜桃| 久久鲁丝午夜福利片| 夜夜骑夜夜射夜夜干| 亚洲精品视频女| 午夜精品国产一区二区电影| 一本—道久久a久久精品蜜桃钙片| 亚洲丝袜综合中文字幕| 最近中文字幕高清免费大全6| 国产男女超爽视频在线观看| 国产精品久久久久久精品电影小说| 成人手机av| 亚洲不卡免费看| 少妇的逼好多水| 秋霞伦理黄片| 免费av中文字幕在线| 午夜免费观看性视频| 精品久久蜜臀av无| 亚洲av在线观看美女高潮| 99热国产这里只有精品6| 国产欧美日韩一区二区三区在线 | 免费黄色在线免费观看| 中文天堂在线官网| 亚洲精品日本国产第一区| 国产高清不卡午夜福利| 久久 成人 亚洲| 伦理电影大哥的女人| 一二三四中文在线观看免费高清| 久久av网站| 久久ye,这里只有精品| av视频免费观看在线观看| 夫妻午夜视频| 久热这里只有精品99| 自拍欧美九色日韩亚洲蝌蚪91| 一个人免费看片子| 99久久中文字幕三级久久日本| av黄色大香蕉| 亚洲国产av新网站| 久久精品国产鲁丝片午夜精品| 日韩精品有码人妻一区| 嘟嘟电影网在线观看| 成人黄色视频免费在线看| 999精品在线视频| 免费观看a级毛片全部| 亚洲人成网站在线播| 国产一区亚洲一区在线观看| 久久精品国产亚洲av涩爱| av电影中文网址| 大香蕉久久成人网| 新久久久久国产一级毛片| av天堂久久9| 99国产综合亚洲精品| 久久精品国产亚洲网站| 99久久中文字幕三级久久日本| a级片在线免费高清观看视频| 精品少妇内射三级| 视频在线观看一区二区三区| 亚洲精品一区蜜桃| av一本久久久久| 女性生殖器流出的白浆| 51国产日韩欧美| 亚洲国产av新网站| 97超碰精品成人国产| 最后的刺客免费高清国语| av在线观看视频网站免费| 久久精品国产鲁丝片午夜精品| 狂野欧美激情性xxxx在线观看| 国产高清不卡午夜福利| 国产精品一二三区在线看| 国产精品国产三级国产av玫瑰| 在线播放无遮挡| 国产在视频线精品| 亚洲色图 男人天堂 中文字幕 | 亚洲性久久影院| 欧美 亚洲 国产 日韩一| 男人操女人黄网站| 成年女人在线观看亚洲视频| 美女福利国产在线| 18在线观看网站| 免费黄频网站在线观看国产| 日韩成人av中文字幕在线观看| 免费观看av网站的网址| 欧美丝袜亚洲另类| 久久久久视频综合| 精品少妇黑人巨大在线播放| av女优亚洲男人天堂| 亚洲精品乱码久久久v下载方式| 免费av中文字幕在线| 色网站视频免费| 少妇熟女欧美另类| 爱豆传媒免费全集在线观看| 日韩,欧美,国产一区二区三区| 欧美日韩av久久| 亚洲国产av影院在线观看| a级片在线免费高清观看视频| 中文字幕精品免费在线观看视频 | 国产免费视频播放在线视频| 亚洲精品自拍成人| 午夜福利视频在线观看免费| 国产黄片视频在线免费观看| 国产女主播在线喷水免费视频网站| 久久久久久人妻| 国产高清国产精品国产三级| 熟女电影av网| 飞空精品影院首页| 黑人猛操日本美女一级片| 99精国产麻豆久久婷婷| 蜜桃国产av成人99| 国产亚洲午夜精品一区二区久久| 国产免费现黄频在线看| 国产亚洲一区二区精品| 久久人人爽人人爽人人片va| 国产成人精品在线电影| 人妻系列 视频| 在线观看三级黄色| 成人亚洲精品一区在线观看| 韩国高清视频一区二区三区| 日韩中文字幕视频在线看片| 伦理电影大哥的女人| 国产日韩欧美视频二区| 在线观看三级黄色| 色94色欧美一区二区| 丰满饥渴人妻一区二区三| 高清av免费在线| 色网站视频免费| 欧美亚洲日本最大视频资源| 国国产精品蜜臀av免费| 全区人妻精品视频| 狠狠精品人妻久久久久久综合| 久久久久人妻精品一区果冻| 肉色欧美久久久久久久蜜桃| 如何舔出高潮| 久久ye,这里只有精品| 亚洲欧美一区二区三区黑人 | 性色av一级| 啦啦啦在线观看免费高清www| 欧美最新免费一区二区三区| 蜜桃国产av成人99| 丰满乱子伦码专区| 一级毛片黄色毛片免费观看视频|