• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    High-order rational solutions and resonance solutions for a(3+1)-dimensional Kudryashov–Sinelshchikov equation*

    2021-01-21 02:11:42YunFeiYue岳云飛JinLin林機(jī)andYongChen陳勇
    Chinese Physics B 2021年1期
    關(guān)鍵詞:陳勇

    Yun-Fei Yue(岳云飛), Jin Lin(林機(jī)), and Yong Chen(陳勇),,3,?

    1School of Mathematical Sciences,Shanghai Key Laboratory of PMMP,Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    2Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    3College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China

    Keywords: rational solution,N-wave resonance solution,Hirota bilinear method,Kudryashov–Sinelshchikov equation

    1. Introduction

    It is well known that the research on wave propagation is one of the important problems in bubble liquid. The dynamics of pressure waves in the gas–liquid mixtures are characterized by the Burgers–Korteweg–de Vries(BKdV)equation and the Korteweg–de Vries(KdV)equation.[1]The(3+1)-dimensional Kudryashov–Sinelshchikov (KS) equation with the effects of liquid viscosity and heat transfer on the phase interface is

    Here the long waves propagate along the x axis and allow for horizontal development in the y and z directions. The solution ρ=ρ(t,x,y,z)represents the density in the bubble–liquid mixture, the parameters a, a1, b, and c are constants relying on the radius of bubbles and the pressure of the gas in the unperturbed state,the kinematic viscosity and the surface tension of the liquid,the polytrophic exponent,and the volume of gas in the per unit mass of the bubble–liquid mixture, etc. The parameters d and e denote the perturbations in the y and z directions.

    With the scaling transformation

    the three-dimensional KS equation (1) can be converted into the following form:

    where χ =c/b. It is noted that this equation has very important physical implications, and can be reduced to some classical physical models by choosing suitable parameters in the following cases:

    (i)The two-dimensional BKdV equation[2](δ =0);

    (ii)The KdV equation[3](α =6,β =1,χ =γ =δ =0);

    (iii) The KP equation[4](α = 6, β = 1, χ = δ = 0,γ =±1);

    (iv) The one-dimensional KS[5]or BKdV equation[6](β =1,γ =δ =0);

    (v) The two-dimensional Burgers-KP (BKP) equation[6](α =1,β =δ =0);

    (vi)The three-dimensional KP equation[7](α=6,β =1,χ =0,δ =γ =±3).

    In recent years,several attempts have been made to construct explicit solutions for some nonlinear systems.[9–15]It is a difficult and complicate but very important and meaningful work to find the nonlinear wave solutions and interaction solutions for nonlinear systems. By solving the nonlinear mathematical physics model,many kinds of nonlinear physical phenomena can be effectively described in nature. With the deepening of the nonlinear system research, a series of effective methods have formed for solving nonlinear partial differential equations,such as Hirota method,[16]Darboux transformation method,[17]KP reduction method,[18]nonlocal symmetry method,[19]and so on.

    Consideration here is the issue of rational solutions for the(3+1)-dimensional KS equation only with the highest derivative terms of each variables,namely

    where α, β, γ, and δ are real constants. It can be used to describe the liquid containing gas bubbles without considering its viscosity. To our knowledge, localized wave solutions, periodic wave solutions and interaction solutions of the (3+1)-dimensional KS equation (4) have been obtained in Refs. [20,21] Moreover, bright soliton, resonant multiple wave, lump-stripe, breather and rogue wave solutions have been derived for the(3+1)-dimensional KS equation with the scaling u(t,x,y,z)=u(t-hx,x,y,z).[22–25]Motivated from the work by Clarkson and Dowie in a study of rational solutions to the Boussinesq equation,[26]the aim of the present paper is to construct rogue wave-type rational solution, W-shaped rational solution,multiple basic rogue wave solution,and N-wave resonance solution of the(3+1)-dimensional KS equation(4),which have not been reported before.

    In the present paper, a total of nine district solutions of Eq.(4)will be obtained by the Hirota bilinear method,[16]including bright rogue wave-type rational solution, dark rogue wave-type rational solution,bright W-shaped rational solution,dark W-shaped rational solution,generalized rational solution,bright-fusion resonance solution,dark-fusion resonance solution, bright-fission resonance solution, and dark-fission resonance solution. By introducing two polynomials, the generalized rational solutions splitting from two peaks into three peaks are constructed. The dynamical behavior of these phenomena are demonstrated in detail. With the analysis of the first- to third-order rational solution, it is extremely interesting to find that s-order rational solution has 2s+1 points for rogue wave-type solution or parallel lines for W-shaped solution.More importantly,the bright rational solution must have s peaks above the zero background plane and s+1 valleys below the background plane,while the dark one is just the opposite.

    The remainder of our article is organized as follows. In Section 2, bright and dark cases of rogue-type rational solution, W-type rational solution, high-order rational solutions and generalized rational solutions for the (3+1)-dimensional KS equation are constructed by virtue of the Hirota bilinear method. Section 3 is devoted to deriving four types of bright-fusion,dark-fusion,bright-fission,and dark-fission resonance solutions for the (3+1)-dimensional KS equation. Finally,some conclusions are given in Section 4.

    2. Bright and dark high-order rational solutions

    In this section, rogue wave-type rational solutions, Wshaped rational solutions, high-order rational solutions, and generalized rational solutions are investigated for the (3+1)-dimensional KS equation(4). Let ξ =x+my+nt in Eq.(4).It follows that

    here η =γm2+n. It is then deduced that

    with the transformation

    where Dξand Dzare Hirota operators.[16]

    In order to construct the rational solution(7)of the(3+1)-dimensional KS equation(4),we first introduce a polynomial function Fs= f with the following form:

    Substituting Fsinto Eq.(6)and collecting the coefficients of ξ and z, we can get a set of equations that determine the value of ai,jby setting the coefficients equal to 0. According to the transformation (7), the specific rational solution of Eq. (4) is obtained. Obviously,the power of the denominator for the solution u with respect to the independent variables, is always higher than that of the numerator,which gives rise to u →0 as x2+y2+z2+t2→∞.

    Remark 1 The proposed form of Eq. (8) has some limitations on constructing the nontrivial rational solutions of the nonlinear models in the bilinear form, which means it is not applicable to all the bilinear equations. Only all the bilinear operator in these models are linear combinations of D2pv(p ∈Z+, v denotes independent variable)or they can be transformed into this form could be suitable for this method, otherwise the coefficients ai,jobtained are all trivial. If ai,jis trivial, then the first-order rational solution u = 0, let alone the high-order ones. Many examples can be calculated to verify the above conclusion, such as (2+1)-dimensional Benjamin–Ono equation,[27](2+1)-dimensional Camassa–Holm–Kadomtsev–Petviashvili equation,[28](3+1)-dimensional Hirota equation,[29](3+1)-dimensional KP equation,[30]and so on.

    For s=1,a set of non-trivial coefficients of function F1is obtained,i.e.,a0,2=-η2a0,0/3βδ,a2,0=-ηa0,0/3β. Plugging them into Eq. (7), there appears the expression for the first-order rational solution in the form

    where ξ =x+my+nt and α, β, δ are all non-zero real numbers. Then we can get the following rogue wave-type and Wshaped rational solutions in case 1 and case 2.

    Case 1 Rogue wave-type rational solutions

    Fig. 1. The first-order rational solution of the (3+1)-dimensional KS equation (4) at the plane (y,z) with the parameters (β,γ,δ,m,n) =(1,-1,-1,2,2). (a) Bright rogue wave-type rational solution with α =1,(b)dark rogue wave-type rational solution with α =-1.

    Fig.2. The first-order W-shaped rational solution of the(3+1)-dimensional KS equation (1) at (y,z) plane with the parameters (α,β,γ,δ,m,n) are:(a) (1,1,-1,1,2,2); (b) (1,1,-1,1,-2,2); (c) (-1,1,-1,1,2,2); (d)(-1,1,-1,1,-2,2). (a)and(b)bright W-shaped rational solution; (c)and(d)dark W-shaped rational solution.

    Case 3 High-order rational solutions

    The above discussed are the cases of the first-order rational solutions,high-order rational solution can be derived with the increase of s. Here we take s=2 and s=3 as examples to analyze the dynamic characteristic of the high-order rational solution at (y,z) and (x,y) planes. For s=2, a set of coefficients ai,jof the function F2can be derived,that is

    Taking the coefficients into Eq.(8),It then follows Eq.(7)that the expression of second-order rational solution u2(ξ,z) can be adduced,namely,

    where

    When the parameters selected in u2are the same as those in u1of case 1,it will give rise to the second-order rogue wavetype rational solution, namely, bright and dark rational solution,as shown in Fig.3. According to the analysis process of the first-order rational solution, we can also calculate the coordinates of the red and blue points in the(y,z)plane and their corresponding values of the second-order rational solutions.The y and z coordinates of the red points are approximately localized at (±1.768,0), (0,0), and (±0.821,0). Their corresponding values of u2are approximately -3.2 for the first three points and 19.385 for the last two points. After further calculation,it is not difficult to find that the blue points and the red points have the same coordinates,while the corresponding values of u2are just opposite with each other. Figure 3(a)displays the dynamics of the second-order bright rogue wave-type rational solutions,while figure 3(b)shows the dark one.

    Fig.3. The second-order rogue wave-type rational solution in Eq.(4)at the(y,z)plane with the similar parameters as those given in Fig. 1. (a)Bright rogue wave-type rational solution; (b) dark rogue wave-type rational solution.

    Similarly,when the parameters selected in u2are the same as those in u1of case 2, the second-order bright and dark W-shaped rational solutions can be constructed, as shown in Fig. 4. It is obvious that the tilt angles of the corresponding W-shaped rational solutions in Figs.2 and 4 are the same and the slopes are ±1/2, which are determined by the parameter m.

    Fig.4. The second-order W-shaped rational solution in Eq.(4)at the(x,y)plane with the similar parameters as those given in Fig. 2. (a) Bright Wshaped rational solution;(b)dark W-shaped rational solution.

    Setting s=3 in Eq.(8),the expression for the coefficients ai,jin the function F3is as follows:

    By taking them into Eq.(7)with Eq.(8),it yields the expression of the third-order rational solution u3(ξ,z). Since the expression of u3(ξ,z) is too cumbersome, we only shows its dynamic behavior,as illustrated in Figs.5 and 6.

    Fig. 5. The third-order rational solution at the (y,z) plane with the similar parameters as those given in Fig.1. (a)Bright rogue wave-type rational solution;(b)dark rogue wave-type rational solution.

    Fig. 6. The third-order W-shaped rational solution in Eq. (4) at the (x,y)plane with similar parameters as those given in Fig. 2. (a) and (b) Bright W-shaped rational solution;(c)and(d)dark W-shaped rational solution.

    There are seven critical points for the third-order rational solution on the z=0 axis at the(y,z)plane,and they also have the above symmetry results, see Fig.5. The y and z coordinates of the critical points for the bright and dark thirdorder rogue wave-type rational solution are approximately localized at(±2.54,0),(±1.565,0),(±0.718,0),(0,0),and the corresponding values of u3are ?3.534, ±18.556, ?4.516,±26.182, respectively. Simultaneously, the third-order Wshaped rational solution has the same characteristics as the lower one,and seven critical lines can be seen in Fig.6.

    As s increases,high-order rational solution(rogue wavetype or W-shaped)of the(3+1)-dimensional KS equation can be generated. It is noticeable that the solution meets a rule:s-order rational solution has 2s+1 points or parallel lines on different planes,and the two situations show different dynamic behavior characteristics.

    Case 4 Generalized rational solutions

    Attention is now turned to investigate generalized rational solutions for the (3+1)-dimensional KS equation. To achieve this purpose,we introduce two polynomials

    in the same form as Fs(ξ,z) in Eq. (8), where the two coefficients bs(s+1)-2j,2iand cs(s+1)-2j,2iwill be determined later.Applied the method used in Ref.[26],it is natural to have the following result.

    Theorem 1 The(3+1)-dimensional KS equation(4)has generalized rational solutions in the form

    where M and N are arbitrary constants.

    Obviously,let M,N,and s in Eq.(13)be equal to zero,the one-order rational solution can be obtained, which is consistent with the results obtained at the beginning of this section.Without loss of generality,when s=1,a set of non-trivial coefficients of function L1can be obtained as

    Plugging them into Eq.(7),it gives rise to the first generalized rational solution u2(ξ,z;M,N). Here we only analyze their dynamic behavior.

    When M =N =0, it becomes the obtained rational solution and can bring in similar results as shown in Fig. 3 by selecting appropriate values for the remaining parameters. As|M|and|N|increase, the solution can be split from two peak into three peaks rogue wave solution,which is also known as‘rogue wave triplet’solution.Figure 7 shows its evolution process of the bright case. Let α =-1, the dark case can be obtained. Using Theorem 1, high-order generalized rational solutions can be derived for the case of s ≥2.

    Fig.7. Decomposition process of the generalized rational solution u2(ξ,z;M,N)for the(3+1)-dimensional KS equation with distinct values of the parameters M,N and(α, β, γ, δ, m, n, a4,0, b0,2, c2,0)=(1,1,-1,-1,2,2,2,2,2). (a): M=N=0;(b): M=N=1;(c): M=N=3;(d): M=N=5;(e): M=N=8;(f): M=N=10.

    3. The N-wave resonance solution

    The purpose of this section is to construct N-wave resonance solutions of the (3+1)-dimensional KS equation (4) by reverting it into the following bilinear form:

    where D is the Hirota operator,[16]here use has been made of the transformation

    By choosing appropriate parameters, four different resonance solutions are discussed, including bright-fission, darkfission,bright-fusion,and dark-fusion solutions. Figure 8 displays different dynamical phenomena of the two-wave resonance solution. Fission waves can be split from one wave to multiple waves, while fusion waves are just the opposite.In order to understand the fusion and fission processes of the soliton solutions clearly,the three-wave resonance solution is taken as an example, and the evolution processes of fusion and fission over time are given respectively. Figure 9 shows the bright type of the three-wave resonance solution,dark type of the three-wave resonance solution also has the same phenomena. In the same way,N-wave resonance solution can be constructed.

    Fig.9. The evolution of three-wave resonance solution over time with similar parameters as those given Figs.8(a)and 8(c). Top row: brightfusion solution(k3=-3/2). (d)–(f)bright-fission solution(k3=3/2).

    4. Summary and discussion

    A (3+1)-dimensional Kudryashov–Sinelshchikov equation modelling the liquid containing gas bubbles has been studied in this paper.Rogue wave-type rational solution,W-shaped rational solution, Multiple basic rogue wave solution, and Nwave resonance solution are provided explicitly for this equation based on two kinds of bilinear equations.

    By introducing the polynomial function (8), we obtain bright rogue wave-type rational solution, dark rogue wavetype rational solution, bright W-shaped rational solution, and dark W-shaped rational solution,see Figs.1–6. From the analysis of the first-to third-order rational solutions,it is not difficult to find that s-order rational solution has 2s+1 points for rogue wave-type solution or parallel lines for W-shaped solution. As long as it is a bright rational solution, there must be s peaks above the background plane (zero plane), s+1 valleys below the background plane,and the dark one is just the opposite. Their corresponding properties, such as amplitude,wave width,and tilt angle,are all parametrically controllable.Moreover, generalized rational solutions splitting from two peaks to three peaks are derived by introducing two polynomials (11). The dynamical behavior of the splitting process has been demonstrated in Fig.7.

    In addition,the N-wave resonance solution of the(3+1)-dimensional KS equation is constructed under the dispersion relation and specific constraints. Bright-fission, dark-fission,bright-fusion, and dark-fusion two-wave resonance solutions are constructed, see Fig. 8. Fission waves can be split from one wave to multiple waves, while fusion waves are just the opposite. Figure 9 shows the evolution processes of fusion and fission three-wave resonance solutions, which reveal diverse dynamic behavior.

    猜你喜歡
    陳勇
    信陽(yáng)市審計(jì)局 開(kāi)展“我們的節(jié)日·清明”主題活動(dòng)
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations?
    The impact of spatial autocorrelation on CPUE standardization between two different fi sheries*
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    苗嶺花山謠
    歌海(2017年2期)2017-05-30 22:22:10
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    日韩精品免费视频一区二区三区| 中文字幕精品免费在线观看视频| 熟妇人妻不卡中文字幕| 亚洲av电影在线进入| 中国三级夫妇交换| 久久久精品区二区三区| 高清不卡的av网站| 麻豆av在线久日| 日韩,欧美,国产一区二区三区| 国产精品免费视频内射| 国产男女内射视频| 免费高清在线观看视频在线观看| 热99国产精品久久久久久7| 母亲3免费完整高清在线观看| 狠狠精品人妻久久久久久综合| 久久97久久精品| 久久久久精品久久久久真实原创| 精品一区二区三卡| 国产亚洲一区二区精品| av国产精品久久久久影院| 国产成人精品无人区| 超碰97精品在线观看| 亚洲国产欧美网| 欧美xxⅹ黑人| 99香蕉大伊视频| 午夜福利,免费看| 久久久久久久大尺度免费视频| 日本wwww免费看| 亚洲视频免费观看视频| 免费黄色在线免费观看| 亚洲av福利一区| 在线观看免费视频网站a站| 在线看a的网站| 亚洲五月色婷婷综合| 日日爽夜夜爽网站| 91aial.com中文字幕在线观看| 国产av一区二区精品久久| 国产 精品1| 在线看a的网站| 麻豆乱淫一区二区| 国产精品免费大片| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 交换朋友夫妻互换小说| 女人爽到高潮嗷嗷叫在线视频| 免费日韩欧美在线观看| 99热网站在线观看| 日韩一本色道免费dvd| 精品酒店卫生间| 欧美人与善性xxx| 欧美精品高潮呻吟av久久| 高清欧美精品videossex| 亚洲欧洲日产国产| 女人精品久久久久毛片| 99热国产这里只有精品6| 在线天堂中文资源库| 亚洲一区二区三区欧美精品| 日韩欧美精品免费久久| 又大又爽又粗| 高清视频免费观看一区二区| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲精品一区二区精品久久久 | 欧美最新免费一区二区三区| a 毛片基地| 狠狠婷婷综合久久久久久88av| 另类精品久久| xxx大片免费视频| 考比视频在线观看| 一区二区av电影网| 99国产精品免费福利视频| 亚洲熟女毛片儿| 一区二区三区四区激情视频| 最近中文字幕2019免费版| 我要看黄色一级片免费的| 男女高潮啪啪啪动态图| 丁香六月天网| 最近中文字幕高清免费大全6| 久久久国产欧美日韩av| 久久久国产一区二区| 性色av一级| 亚洲欧美精品综合一区二区三区| 天美传媒精品一区二区| 亚洲欧美日韩另类电影网站| 国产成人系列免费观看| 亚洲国产精品999| 你懂的网址亚洲精品在线观看| 伊人亚洲综合成人网| 国产精品国产三级专区第一集| 亚洲欧美精品综合一区二区三区| 国产日韩欧美亚洲二区| 日日爽夜夜爽网站| 一本色道久久久久久精品综合| 亚洲七黄色美女视频| 考比视频在线观看| 久久av网站| 久久精品人人爽人人爽视色| 国产精品国产三级专区第一集| 免费人妻精品一区二区三区视频| 欧美激情极品国产一区二区三区| 国产成人欧美在线观看 | 成年av动漫网址| 蜜桃在线观看..| 精品国产露脸久久av麻豆| 亚洲精品,欧美精品| 中文字幕最新亚洲高清| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 亚洲中文av在线| 一区在线观看完整版| 伦理电影免费视频| 欧美成人午夜精品| 亚洲欧美一区二区三区久久| 久久人人97超碰香蕉20202| 欧美黑人欧美精品刺激| 亚洲av中文av极速乱| √禁漫天堂资源中文www| 99久国产av精品国产电影| 国产深夜福利视频在线观看| 岛国毛片在线播放| 99精品久久久久人妻精品| 黑人欧美特级aaaaaa片| 亚洲欧美精品综合一区二区三区| 国产精品蜜桃在线观看| 免费看不卡的av| 亚洲精品自拍成人| 国产视频首页在线观看| 久久久久国产精品人妻一区二区| 韩国精品一区二区三区| 国产一区二区三区综合在线观看| 亚洲欧美一区二区三区黑人| 性少妇av在线| 黄片播放在线免费| 久久久久国产精品人妻一区二区| 蜜桃国产av成人99| 两个人免费观看高清视频| 老汉色av国产亚洲站长工具| 欧美黄色片欧美黄色片| 亚洲精品第二区| 日韩一区二区三区影片| 国产精品熟女久久久久浪| 日韩 亚洲 欧美在线| 免费看av在线观看网站| 国产精品久久久久久精品古装| 99久久综合免费| 一区二区三区乱码不卡18| 少妇猛男粗大的猛烈进出视频| av天堂久久9| 中文字幕色久视频| 午夜免费鲁丝| 美女国产高潮福利片在线看| 欧美日韩精品网址| 一边摸一边做爽爽视频免费| 在现免费观看毛片| 曰老女人黄片| 啦啦啦啦在线视频资源| 国产无遮挡羞羞视频在线观看| 两个人免费观看高清视频| 国产成人精品久久二区二区91 | 99国产综合亚洲精品| 美女脱内裤让男人舔精品视频| 色视频在线一区二区三区| 老司机影院成人| 久久久久久久精品精品| 亚洲精品国产av成人精品| 亚洲伊人色综图| 欧美激情极品国产一区二区三区| 国产熟女欧美一区二区| 久久久久久久久久久免费av| 十八禁高潮呻吟视频| 男女免费视频国产| 男女无遮挡免费网站观看| 青春草国产在线视频| 欧美成人精品欧美一级黄| 亚洲国产成人一精品久久久| videos熟女内射| 精品一品国产午夜福利视频| 亚洲欧美一区二区三区黑人| 日日摸夜夜添夜夜爱| 无遮挡黄片免费观看| 亚洲精品自拍成人| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲 | 亚洲国产日韩一区二区| 中文精品一卡2卡3卡4更新| 久热爱精品视频在线9| 在线精品无人区一区二区三| 2018国产大陆天天弄谢| 嫩草影视91久久| 久久久久久久久久久久大奶| 久久97久久精品| 久久国产精品男人的天堂亚洲| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 国产色婷婷99| 亚洲av成人精品一二三区| 中文乱码字字幕精品一区二区三区| avwww免费| 欧美日韩福利视频一区二区| 久久人人爽人人片av| 日韩熟女老妇一区二区性免费视频| 国产成人91sexporn| 亚洲欧美一区二区三区国产| 精品国产一区二区三区久久久樱花| 欧美中文综合在线视频| 精品亚洲成a人片在线观看| 天天添夜夜摸| 亚洲av电影在线观看一区二区三区| 亚洲精品中文字幕在线视频| 1024视频免费在线观看| av不卡在线播放| 巨乳人妻的诱惑在线观看| 免费观看av网站的网址| 如日韩欧美国产精品一区二区三区| 十八禁高潮呻吟视频| av一本久久久久| 狂野欧美激情性xxxx| 黄色毛片三级朝国网站| 婷婷色综合www| 999久久久国产精品视频| 老汉色av国产亚洲站长工具| 少妇人妻久久综合中文| 男女国产视频网站| 亚洲欧美一区二区三区久久| 超碰97精品在线观看| 欧美在线黄色| 亚洲成av片中文字幕在线观看| 在线天堂中文资源库| 欧美日韩成人在线一区二区| 中文字幕色久视频| 国产免费一区二区三区四区乱码| 人人妻,人人澡人人爽秒播 | 日韩人妻精品一区2区三区| 亚洲精品av麻豆狂野| 午夜免费观看性视频| 免费在线观看黄色视频的| 777久久人妻少妇嫩草av网站| 久久鲁丝午夜福利片| 亚洲国产欧美在线一区| 999久久久国产精品视频| 日韩av不卡免费在线播放| 色播在线永久视频| 19禁男女啪啪无遮挡网站| 国产成人啪精品午夜网站| 亚洲专区中文字幕在线 | 在线观看www视频免费| 亚洲欧美精品自产自拍| 黑人欧美特级aaaaaa片| 国产野战对白在线观看| 亚洲熟女精品中文字幕| 黄网站色视频无遮挡免费观看| 捣出白浆h1v1| 一级毛片电影观看| 日韩 欧美 亚洲 中文字幕| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 国产精品久久久久久人妻精品电影 | av福利片在线| 伊人久久大香线蕉亚洲五| 色吧在线观看| 久久99热这里只频精品6学生| 精品久久久久久电影网| 日本av手机在线免费观看| 亚洲欧美激情在线| 80岁老熟妇乱子伦牲交| 久久国产精品大桥未久av| 国产福利在线免费观看视频| 国产亚洲午夜精品一区二区久久| 悠悠久久av| 成人免费观看视频高清| 亚洲伊人久久精品综合| 亚洲精品av麻豆狂野| 成年动漫av网址| 久久精品亚洲av国产电影网| 色视频在线一区二区三区| 一区二区三区激情视频| 99精国产麻豆久久婷婷| 欧美国产精品一级二级三级| 少妇人妻精品综合一区二区| 精品一品国产午夜福利视频| 国产一区二区三区av在线| 久久国产亚洲av麻豆专区| 亚洲国产欧美日韩在线播放| 九九爱精品视频在线观看| 美女大奶头黄色视频| 亚洲精品av麻豆狂野| 丁香六月欧美| 国产精品熟女久久久久浪| 国产精品熟女久久久久浪| 精品国产一区二区三区四区第35| 99久久人妻综合| 美女主播在线视频| 中文字幕av电影在线播放| 久久综合国产亚洲精品| 黑人巨大精品欧美一区二区蜜桃| 亚洲国产日韩一区二区| 视频在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 好男人视频免费观看在线| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 日本av免费视频播放| 丝袜美足系列| 欧美成人精品欧美一级黄| www.av在线官网国产| 又粗又硬又长又爽又黄的视频| 人妻人人澡人人爽人人| 少妇被粗大的猛进出69影院| 80岁老熟妇乱子伦牲交| 亚洲国产成人一精品久久久| 国产女主播在线喷水免费视频网站| av又黄又爽大尺度在线免费看| 亚洲 欧美一区二区三区| 乱人伦中国视频| 欧美xxⅹ黑人| 一区二区日韩欧美中文字幕| 亚洲少妇的诱惑av| 国产成人精品久久二区二区91 | 在线观看免费视频网站a站| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 午夜福利视频精品| 日韩av免费高清视频| 亚洲国产精品一区二区三区在线| 国产免费又黄又爽又色| 久久久久精品性色| 99久国产av精品国产电影| 久久精品国产综合久久久| 少妇猛男粗大的猛烈进出视频| 日韩一卡2卡3卡4卡2021年| 又大又黄又爽视频免费| 国产国语露脸激情在线看| 国产 一区精品| 日韩精品有码人妻一区| 亚洲国产欧美在线一区| 最新在线观看一区二区三区 | 久久99一区二区三区| 国产成人精品在线电影| 久久亚洲国产成人精品v| 久久毛片免费看一区二区三区| 精品一区二区三卡| 精品亚洲乱码少妇综合久久| 黑人巨大精品欧美一区二区蜜桃| 美女国产高潮福利片在线看| 日本av手机在线免费观看| 国产1区2区3区精品| 在线观看国产h片| 日本爱情动作片www.在线观看| 亚洲婷婷狠狠爱综合网| 亚洲,一卡二卡三卡| 久久久久久久久免费视频了| 亚洲av男天堂| 午夜久久久在线观看| av天堂久久9| 久久影院123| 在线观看免费高清a一片| 日本欧美国产在线视频| 亚洲国产欧美日韩在线播放| 亚洲第一av免费看| 午夜福利,免费看| 国产一区二区激情短视频 | 女的被弄到高潮叫床怎么办| 国产精品免费视频内射| 99热全是精品| 乱人伦中国视频| 欧美黑人精品巨大| 大陆偷拍与自拍| 久久国产精品大桥未久av| 久久精品人人爽人人爽视色| 亚洲男人天堂网一区| 精品国产一区二区三区久久久樱花| 国产有黄有色有爽视频| 99热国产这里只有精品6| 国产熟女午夜一区二区三区| 夫妻午夜视频| 青春草亚洲视频在线观看| 男女国产视频网站| svipshipincom国产片| 少妇猛男粗大的猛烈进出视频| 热re99久久国产66热| 亚洲国产精品一区三区| 性少妇av在线| 国产麻豆69| 国产熟女午夜一区二区三区| 性少妇av在线| 高清av免费在线| 亚洲精品国产色婷婷电影| 日韩成人av中文字幕在线观看| 亚洲精品av麻豆狂野| netflix在线观看网站| a 毛片基地| 99九九在线精品视频| 国产在视频线精品| 少妇人妻精品综合一区二区| 亚洲精品国产av蜜桃| 免费在线观看完整版高清| 亚洲人成电影观看| 中文字幕色久视频| 久久久久国产一级毛片高清牌| 少妇的丰满在线观看| 制服人妻中文乱码| 丰满少妇做爰视频| 精品国产国语对白av| 久久精品亚洲熟妇少妇任你| 999精品在线视频| 极品少妇高潮喷水抽搐| 成人午夜精彩视频在线观看| 伦理电影大哥的女人| 欧美亚洲 丝袜 人妻 在线| 亚洲av成人精品一二三区| 欧美亚洲 丝袜 人妻 在线| 多毛熟女@视频| 亚洲婷婷狠狠爱综合网| 水蜜桃什么品种好| 另类亚洲欧美激情| 高清视频免费观看一区二区| 久久鲁丝午夜福利片| 日韩av在线免费看完整版不卡| 肉色欧美久久久久久久蜜桃| 欧美激情高清一区二区三区 | 精品免费久久久久久久清纯 | 国产伦理片在线播放av一区| 天天添夜夜摸| 观看av在线不卡| 中国三级夫妇交换| 欧美久久黑人一区二区| 免费看av在线观看网站| 韩国精品一区二区三区| 久久久久精品人妻al黑| 高清黄色对白视频在线免费看| 大香蕉久久成人网| 午夜激情久久久久久久| 亚洲婷婷狠狠爱综合网| 日本欧美国产在线视频| 又黄又粗又硬又大视频| 天天操日日干夜夜撸| 1024视频免费在线观看| 日韩大片免费观看网站| 大片免费播放器 马上看| 日韩中文字幕欧美一区二区 | 国产精品偷伦视频观看了| 美女扒开内裤让男人捅视频| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 成年美女黄网站色视频大全免费| 最近最新中文字幕大全免费视频 | 国产精品久久久人人做人人爽| av免费观看日本| 欧美在线一区亚洲| 可以免费在线观看a视频的电影网站 | 黄色一级大片看看| 一区二区三区精品91| 精品午夜福利在线看| 女人爽到高潮嗷嗷叫在线视频| 久久久久精品性色| 国产日韩欧美在线精品| 国产伦理片在线播放av一区| 制服丝袜香蕉在线| 亚洲国产av影院在线观看| 欧美日韩视频高清一区二区三区二| 美国免费a级毛片| 精品亚洲成a人片在线观看| 捣出白浆h1v1| 国产黄频视频在线观看| 18禁裸乳无遮挡动漫免费视频| 午夜免费鲁丝| 性色av一级| 捣出白浆h1v1| bbb黄色大片| 久久 成人 亚洲| 日本91视频免费播放| 午夜福利免费观看在线| 亚洲av日韩在线播放| 成人国产麻豆网| 综合色丁香网| 久久人人爽人人片av| 亚洲成av片中文字幕在线观看| 人成视频在线观看免费观看| 精品午夜福利在线看| 午夜91福利影院| 丝袜喷水一区| 女人久久www免费人成看片| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 成年av动漫网址| 欧美激情高清一区二区三区 | 亚洲欧美中文字幕日韩二区| 国产在线一区二区三区精| a级片在线免费高清观看视频| 国产精品久久久久久人妻精品电影 | 欧美成人午夜精品| 亚洲av日韩精品久久久久久密 | 久久久国产欧美日韩av| 亚洲国产精品一区二区三区在线| 一本—道久久a久久精品蜜桃钙片| 啦啦啦视频在线资源免费观看| 亚洲精品第二区| 不卡视频在线观看欧美| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品av麻豆狂野| 一级爰片在线观看| 女人久久www免费人成看片| 在线观看三级黄色| 国产在视频线精品| 精品视频人人做人人爽| 母亲3免费完整高清在线观看| 国产国语露脸激情在线看| 麻豆乱淫一区二区| 在线看a的网站| 2021少妇久久久久久久久久久| 国产成人精品福利久久| 校园人妻丝袜中文字幕| 91精品三级在线观看| 欧美少妇被猛烈插入视频| 国产又色又爽无遮挡免| 大码成人一级视频| 欧美精品高潮呻吟av久久| 日韩不卡一区二区三区视频在线| 一级黄片播放器| 亚洲精品日韩在线中文字幕| 美女国产高潮福利片在线看| 永久免费av网站大全| 我要看黄色一级片免费的| 亚洲第一青青草原| 制服人妻中文乱码| 国产毛片在线视频| 91老司机精品| 国产精品二区激情视频| 大片电影免费在线观看免费| 国产免费又黄又爽又色| 亚洲国产欧美在线一区| videos熟女内射| 各种免费的搞黄视频| 丁香六月天网| av片东京热男人的天堂| 少妇精品久久久久久久| 最新在线观看一区二区三区 | 色婷婷久久久亚洲欧美| 亚洲人成77777在线视频| 好男人视频免费观看在线| 国产精品.久久久| 一二三四中文在线观看免费高清| 欧美黄色片欧美黄色片| 制服人妻中文乱码| 熟女av电影| 两个人看的免费小视频| 熟女av电影| 久久午夜综合久久蜜桃| 少妇被粗大的猛进出69影院| 一级毛片电影观看| 欧美老熟妇乱子伦牲交| 91老司机精品| 啦啦啦 在线观看视频| 我的亚洲天堂| 国产成人精品福利久久| 99久久综合免费| 国产精品一区二区在线观看99| 人人澡人人妻人| 在线精品无人区一区二区三| 日本av手机在线免费观看| 岛国毛片在线播放| 亚洲国产最新在线播放| 亚洲欧美一区二区三区黑人| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 男人爽女人下面视频在线观看| 国产av码专区亚洲av| 最近手机中文字幕大全| 亚洲欧美精品自产自拍| 免费在线观看视频国产中文字幕亚洲 | av免费观看日本| 熟妇人妻不卡中文字幕| 女人精品久久久久毛片| 美女中出高潮动态图| 久久ye,这里只有精品| 中文字幕人妻丝袜一区二区 | 美女午夜性视频免费| 色综合欧美亚洲国产小说| 午夜福利一区二区在线看| 久久综合国产亚洲精品| 久热这里只有精品99| 制服人妻中文乱码| 欧美黑人欧美精品刺激| 国产成人a∨麻豆精品| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 久久精品亚洲av国产电影网| 18禁观看日本| e午夜精品久久久久久久| 午夜免费观看性视频| 综合色丁香网| 国产高清不卡午夜福利| 久久精品久久精品一区二区三区| 国产xxxxx性猛交| 日本猛色少妇xxxxx猛交久久| 男人添女人高潮全过程视频| www.精华液| 精品少妇黑人巨大在线播放| 国产一区二区 视频在线| 亚洲精品久久成人aⅴ小说| 爱豆传媒免费全集在线观看| 国产av一区二区精品久久| 国产精品欧美亚洲77777| 免费少妇av软件| 日韩av免费高清视频| 人妻一区二区av| 久久精品国产综合久久久| 美女大奶头黄色视频| 妹子高潮喷水视频| 午夜老司机福利片| 在线观看一区二区三区激情| 国产精品一区二区在线不卡| 亚洲av日韩精品久久久久久密 | 国产精品欧美亚洲77777| 国产一区二区三区综合在线观看|