• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Higher-Order Rogue Wave Pairs in the Coupled Cubic-Quintic Nonlinear Schr?dinger Equations?

    2018-08-02 07:35:36TaoXu徐濤WaiHongChan陳偉康andYongChen陳勇
    Communications in Theoretical Physics 2018年8期
    關鍵詞:陳勇

    Tao Xu(徐濤),Wai-Hong Chan(陳偉康),and Yong Chen(陳勇),4,?

    1Shanghai Key Laboratory of Trustworthy Computing,East China Normal University,Shanghai 200062,China

    2MOE International Joint Lab of Trustworthy Software,East China Normal University,Shanghai 200062,China

    3Department of Mathematics and Information Technology,The Education University of Hong Kong,Hong Kong,China

    4Department of Physics,Zhejiang Normal University,Jinhua 321004,China

    AbstractWe study some novel patterns of rogue wave in the coupled cubic-quintic nonlinear Schr?dinger equations.Utilizing the generalized Darboux transformation,the higher-order rogue wave pairs of the coupled system are generated.Especially,the first-and second-order rogue wave pairs are discussed in detail.It demonstrates that two classical fundamental rogue waves can be emerged from the first-order case and four or six classical fundamental rogue waves from the second-order case.In the second-order rogue wave solution,the distribution structures can be in triangle,quadrilateral and ring shapes by fixing appropriate values of the free parameters.In contrast to single-component systems,there are always more abundant rogue wave structures in multi-component ones.It is shown that the two higher-order nonlinear coefficients ρ1and ρ2make some skews of the rogue waves.

    Key words:higher-order rogue wave pairs,coupled cubic-quintic nonlinear Schr?dinger equations,generalized Darboux transformation

    1 Introduction

    Rogue waves(RWs)are modeled as a unique phenomenon that seems to appear from nowhere and disappear without a trace,[1]and can appear in a variety of fields,such as atmosphere,[2]super fluidity,[3]Bose-Einstein condensates,[4]nonlinear optics[5]and finance[6]and so on.These kinds of waves are characterized as being localized in both space and time,and are always written as rational form solutions in mathematics.It is well known that the standard nonlinear Schr?dinger(NLS)equation is an ideal model that describes the RW phenomenon.Besides,various types of rogue wave solutions associated with the NLS equation have been widely reported by many authors.[7?9]

    There have been many articles on rogue waves of other single-component systems besides the standard NLS equation,such as the derivative NLS equation,[10?11]the Hirota equation,[12]the Kundu-Eckhaus equation,[13?14]the(3+1)-dimensional Jimbo-Miwa equation[15]and so on.Based on the fact that a variety of complex systems usually involve more than one component,such as nonlinear optical fibers and Bose-Einstein condensates,etc.,recent studies were extended to multi-component systems.[16?18]Cross-phase modulation effects are usually included in the coupled system,and the cross-phase modulation term can vary the instability regime.[19]For single-component systems,the RW solutions can be always correlated by Galileo transformation.Thus,the velocity of the background has no real effect of RWs’structures.For multicomponent coupled models,the relative velocity between different components cannot be annihilated by some special Galileo transformations,and this kind of velocity plays an important role in controlling various structures of RW solutions.[19?21]

    Compared to single-component systems,a variety of novel and interesting results appeared in multi-component systems.[22?23]The four-petaled flower structure RWs were constructed in the three-component NLS equations through the Darboux transformation(DT).[20]The W-shaped soliton complexes and RWs were obtained in AB system.[21]Recently,various types interactional solutions were constructed in many different multi-component systems.[24?25]Bright-dark-rogue solutions were constructed in two-component NLS equations[26]and Hirota equations[27]by DT,respectively. Besides,the hybrid solutions that higher-order RWs interacting with multisoliton(or multi-breather)were constructed in various multi-component systems.[28?30]

    In recent years,there have been several studies on RW pairs in multi-component coupled systems,[19,31?32]in which this kind of first-order RW pair solutions can include two first-order classical RWs.In this paper,we focus on constructing higher-order RW pairs of the following coupled cubic-quintic nonlinear Schr?dinger(CCQNLS)equations,which describe the effects of quintic nonlinearity on the ultrashort optical pulse propagation in non-Kerr media,[33?40]

    Here,q1and q2are the components of the electromagnetic fields along the coordinate x and t is the time.The parameters ρ1and ρ2are all real constants and the asterisk denotes complex conjugation.In the regime of ultrashort pulses,the standard NLS equation is less accurate.To meet this condition,the cubic and quintic nonlinear terms were added on the standard coupled NLS equations and formed the CCQNLS system(1).[34]Additionally,it is very necessary to construct some new RW pattern structures of the coupled system(1).

    When q1=u,q2=0,and ρ1=2β,the CCQNLS system(1)can be reduced to the Kundu-Eckhaus equation.[13?14,41]In Refs.[35]and[42],the multi-soliton and bounded states of the CCQNLS equations(1)were obtained.Bright-bright,bright-dark and dark-dark solitons for the coupled system(1)were generated through Hirota bilinear method.[38?40]Besides,the multi-component generalization of the CCQNLS system(1)were investigated by DT.[43]Recently,the higher-order RWs of Eq.(1)were constructed through the generalized DT[37]and the authors considered the case that there is a double root in the characteristic equation.Motivated by the work in Refs.[19,32–33],we consider that the characteristic equation possesses a triple root,then some novel and interesting RW patterns of the CCQNLS system(1)can be generated through the generalize DT.Here,some dynamics of the RW pairs in the CCQNLS system(1)are exhibited.Besides,it is shown that some skews of RWs can be caused by two higher-order nonlinear coefficients ρ1and ρ2.

    This article is organized as follows.In Sec.2,the generalized DT of the coupled cubic-quintic nonlinear Schr?dinger equations is constructed.In Sec.3,higherorder RW pairs are obtained and some dynamics structures are discussed in detail.The last section contains several conclusions and discussions.

    2 Generalized Darboux Transformation for the CCQNLS System

    The Lax pair of the CCQNLS system(1)can be expressed as[35,37,43]

    where Ψ =(ψ(x,t), ?(x,t), χ(x,t))T,T denotes the transpose of the vector,while U and V are all 3×3 matrices and they can be given as

    where

    here,λ is the spectral parameter.Additionally,the CCQNLS system(1)can be directly derived from the compatibility condition Ut?Vx+[U,V]=0.

    In what follows,based on the DT of the CCQNLS system(1)constructed in Refs.[35,37,43],the generalized DT of Eqs.(1)can be constructed.[9]Letbe a special vector solution of the Lax pair(2)with q1=q1[0],q2=q2[0],λ = λ1+δ and δ being a small parameter.It shows that Ψ1can be expanded as the Taylor series at δ=0

    where

    The N-step generalized DT of the CCQNLS system(1)can be written as follows

    where I is 3×3 identity matrix and j=1,2,3,...,N.

    3 Higher-Order Rogue Wave Pairs

    In the following,we choose a nontrivial seed solution of Eq.(1)

    where

    with di,mi,and li(i=1,2)being arbitrary constants.Besides,we need to convert the variable coefficient differential equations of Eq.(2)into constant coefficient ones by a gauge transformation.Setting ? =Mψ,the transformed Lax pair can be written as[26]

    where

    In Ref.[37],the authors constructed the RW solutions of Eq.(1)in the case that the characteristic equation of U0has a double root.Here,we hope to look for the higherorder RW pairs of Eq.(1)with the assumption that the characteristic equation of U0owns a triple root.In order to obtain the triple root,we choose the relevant free parameters in the seed solution Eq.(12)and the spectral parameter λ to admit the following conditions

    Without loss of generality,the parameter d1can be chosen as d1=1,then the above conditions can be rewritten as

    In order to utilize the limiting process,we set the spectral parameter

    and ? be a small parameter,besides,the seed solution of Eq.(1)can be chosen as q1[0]=eiγ1,q2[0]= ? eiγ2.At this point,the fundamental solution of the Lax pair(2)can be expressed as

    where

    and ξjadmits the following cubic algebraic equation

    In order to construct the higher-order RW pairs of the CCQNLS Eq.(1)withandfor the above triple root case,the following special solution of the Lax pair(2)[19,33]can be given

    where

    and

    Here w=e2πi/3,and fj,gj,hj(j=1,2,3,...,N)are all real constants.Besides,the vector function Ψ1(?)in Eq.(11)can be expanded as the following Taylor series around ?=0

    and

    In order to avoid the complicated integral operation in the expressions ofwe give the following expressions of modules of qj[1]and qj[2](j=1,2)through the first-and second-step generalized DT

    Through the formula(11),we can get the first-order RW pair of the CCQNLS system(1),see Figs.1–3.When f1=g1=h1=0,the first-order fundamental RW can appear in both components q1and q2.Besides,this kind of fundamental RW including more than one peak above the background plane is greatly different from the classical first-order fundamental one,see Fig.1.Whenthe first-order fundamental RW splits into two standard first-order fundamental RW,see Fig.2.Interestingly,a high RW comes before a low one in Fig.2(a);and a low RW comes before a high one in Fig.2(b).In conclusion,we find that the above kind of RW pair can not be derived in single-component systems.[9?10,12?14]For two-component systems,[37,43]we can also conclude that the RW pair cannot be obtained when there is a double root in the characteristic equation of the transformed matrix in the x-part of the Lax pair.

    Fig.1 Evolution plot of the first-order fundamental RW in the CCQNLS equations by choosing ρ1=1/3,ρ2=1/4,f1=g1=0,h1=1:(a)q1;(b)q2.

    Fig.2 Evolution plot of the first-order RW pair in the CCQNLS equations by choosing ρ1=1/3,ρ2=1/4,f1=100,g1=0,h1=1:(a)q1;(b)q2.

    Fig.3 Evolution density plot of the first-order RW pair of the q1component in the CCQNLS equations by choosing f1=100,g1=h1=0:(a) ρ1= ρ2=0;(b) ρ1=1/3,ρ2=1/4;(c)ρ1=1/2,ρ2=1;(d) ρ1= ?1/3,ρ2= ?1/4;(e)ρ1= ?1/2,ρ2= ?1.

    In order to investigate the effects of higher-order nonlinear terms in constructing the dynamics of RW in the CCQNLS equations,the density plots of q1component are given in Fig.3 after choosing different values of higherorder nonlinear coefficients ρ1and ρ2.From Figs.3(a)–3(e),it can be found that the higher-order nonlinear terms make an important skew angle relative to the ridge of the RW in counter-clockwise if ρ1>0,ρ2>0 and in clockwise if ρ1<0,ρ2<0 by increasing the absolute values of ρ1and ρ2.[13]The same dynamic structure can be also demonstrated in q2component and we omit these figures here.

    In a similar way,the second-order RW pairs of the CCQNLS equations(12)can be derived through the related formula(1).Compared to the first-order case,the distributions of second-order one have more different patterns.There are six free parameters in the expressions of the second-order RW solution including fj,gj,and hj(j=1,2),which can be assigned to different values to obtain various patterns.Similarly to the first-order case,the higher-order nonlinear coefficients ρ1and ρ2can also make an important skew angle relative to the ridge of the RWs.Through either choosingor g1=0,[19]we can respectively construct two types of second-order RW pairs including four or six fundamental RWs.

    Fig.4 Evolution plot of the second-order RW pairs of triangular pattern in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=g2=0,h2=100,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.5 Evolution plot of the second-order RW pairs of line pattern in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=g2=0,h2=100,ρ1=1/2,ρ2=1:(a)q1;(b)q2.

    Fig.6 Evolution plot of the second-order RW pais of quadrilateral pattern 1 in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=10000,g2=0,h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.7 Evolution plot of the second-order RW pais of quadrilateral pattern 2 in the CCQNLS equations by choosing f1=0,g1=1,h1=0,f2=10000,g2=0,h2=0,ρ1=1/2,ρ2=1:(a)q1;(b)q2.

    Fig.8 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1=g1=0,h1=1/100,f2=0,g2=1000,h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    Fig.9 Evolution plot of the second-order RW pairs of ring pattern 1 in the CCQNLS equations by choosing f1=g1=0,h1=1/100,f2=10000,g2=h2=0,ρ1=1/3,ρ2=1/4:(a)q1;(b)q2.

    When g1=0,the second-order RW pairs including six fundamental RWs are shown in Figs.8 and 9.These kinds of second-order RW structures are novel and interesting,which are not possible to emerge from the second-order ones in the single-component systems.In Fig.8,four classical first-order fundamental RWs distribute around one classical second-order fundamental RW,which constructs the ring pattern 1.It shows that five standard first-order RWs distribute around one classical first-order fundamental RW in Fig.9.Here,the higher-order nonlinear terms also make some skew angle relative to the ridge of the RWs.Changing the values of higher-order nonlinear coefficients ρ1and ρ2,the different patterns corresponding to ring pattern 1 and pattern 2 will be exhibited,respectively.As some detailed discussion has been made before,we omit these figures after changing ρ1and ρ2.Ulteriorly,a lot of other higher-order RW pairs can be constructed through iterating the generalized DT of the CCQNLS equations.

    4 Conclusion

    In this paper,we devote to investigate some novel patterns of RWs in the CCQNLS system(1).Based on the condition that the characteristic equation of the constant coefficient transformed matrix of U in the Lax pair(2)owing a double root,the authors[37]constructed the classical higher-order RWs of the CCQNLS system(1).Through considering that the characteristic equation of the transformed matrix U0of x-part of the Lax pair(2)owning a triple root,the higher-order RW pairs of the CCQNLS equations are constructed by the generalized DT.Besides,these kinds of RW pairs are greatly different from classical RWs in the CCQNLS system(1),for example,the first-order RW pair can include two classical first-order RWs,see Fig.2.These kinds of RW pairs were also constructed in some other systems,such as the coupled NLS equations,[19]the Sasa-Satsuma equation[31]and the three-wave resonant interaction equations.[32]

    In Ref.[31],the RW pairs can be obtained in singlecomponent Sasa-Satsuma equation,because the Lax pair of the Sasa-Satsuma equation owns 3×3 matrices and the characteristic equation of the corresponding matrice can own a triple root under some special conditions.We can draw a conclusion that these kinds of RW pairs may be obtained through the generalized DT in the nonlinear systems whose Lax pair including the matrices larger than 2×2.

    Especially,the first-and second-order RW pairs are discussed in detail.It demonstrates that two classical fundamental RWs can be emerged from the first-order RW.Besides,four or six classical fundamental RWs can exist in the second-order case,respectively.For the secondorder RW pairs,the distribution shape can be triangle,quadrilateral and ring structures.Besides,the higherorder nonlinear terms in the CCQNLS system(1)can affect the dynamic of the RWs.Increasing the absolute values of ρ1and ρ2,an important skew angle relative to the ridge of the RW can be shown in Figs.3,5,and 7.If ρ1>0,ρ2>0,with these two parameters getting larger,a larger movement for the humps in the counter-clockwise direction on the x-t plane is produced by the higher-order nonlinear terms;on the other hand if ρ1>0,ρ2>0,a larger movement for the humps in clockwise on the x-t plane is shown with the absolute values of the two parameters being larger.Our results further reveal the dynamic structures of RWs in a coupled system,and we hope these kinds of higher-order RW pairs presented in this paper could be verified in physical experiments in the future.

    Acknowledgment

    We would like to express our sincere thanks to other members of our discussion group for their valuable comments.

    猜你喜歡
    陳勇
    信陽市審計局 開展“我們的節(jié)日·清明”主題活動
    Soliton,breather,and rogue wave solutions for solving the nonlinear Schr¨odinger equation using a deep learning method with physical constraints?
    A physics-constrained deep residual network for solving the sine-Gordon equation
    High-order rational solutions and resonance solutions for a(3+1)-dimensional Kudryashov–Sinelshchikov equation*
    The impact of spatial autocorrelation on CPUE standardization between two different fi sheries*
    A Direct Algorithm Maple Package of One-Dimensional Optimal System for Group Invariant Solutions?
    Lump Solutions and Interaction Phenomenon for(2+1)-Dimensional Sawada–Kotera Equation?
    苗嶺花山謠
    歌海(2017年2期)2017-05-30 22:22:10
    Symmetry Analysis and Exact Solutions of the 2D Unsteady Incompressible Boundary-Layer Equations?
    In fluence of Cell-Cell Interactions on the Population Growth Rate in a Tumor?
    一区二区三区激情视频| 国产又黄又爽又无遮挡在线| 小说图片视频综合网站| 桃色一区二区三区在线观看| 综合色av麻豆| 亚洲中文日韩欧美视频| 免费看美女性在线毛片视频| 亚洲,欧美,日韩| 麻豆国产av国片精品| 欧美性感艳星| 成年女人看的毛片在线观看| 欧美高清性xxxxhd video| 桃色一区二区三区在线观看| 真人一进一出gif抽搐免费| 99国产精品一区二区蜜桃av| 热99在线观看视频| 亚洲精品一区av在线观看| 亚洲中文字幕一区二区三区有码在线看| 国产av一区在线观看免费| 在线看三级毛片| 亚洲欧美日韩高清专用| 一边摸一边抽搐一进一小说| 在线免费观看的www视频| 午夜a级毛片| 亚洲欧美日韩无卡精品| 91午夜精品亚洲一区二区三区 | 丁香六月欧美| 老女人水多毛片| 中文字幕免费在线视频6| 成人鲁丝片一二三区免费| 好男人在线观看高清免费视频| 精品久久久久久久末码| 搡老妇女老女人老熟妇| 国产一区二区亚洲精品在线观看| 深夜精品福利| 色吧在线观看| 久久人人爽人人爽人人片va | 男插女下体视频免费在线播放| 禁无遮挡网站| 禁无遮挡网站| 国产精品女同一区二区软件 | 少妇人妻一区二区三区视频| 99视频精品全部免费 在线| 91狼人影院| 国产综合懂色| 一级av片app| 久久久国产成人免费| 欧美性感艳星| 欧美精品国产亚洲| 少妇被粗大猛烈的视频| 人妻夜夜爽99麻豆av| 免费一级毛片在线播放高清视频| 99久久精品国产亚洲精品| a在线观看视频网站| 黄色视频,在线免费观看| 美女高潮喷水抽搐中文字幕| 18禁黄网站禁片免费观看直播| 亚洲无线观看免费| xxxwww97欧美| 精品欧美国产一区二区三| 欧美黑人巨大hd| 在线观看美女被高潮喷水网站 | 桃红色精品国产亚洲av| 一区二区三区四区激情视频 | 一个人免费在线观看的高清视频| 国产成年人精品一区二区| 男人舔女人下体高潮全视频| 亚洲欧美日韩无卡精品| 男人舔奶头视频| 久久精品91蜜桃| 亚洲色图av天堂| 中文资源天堂在线| 亚洲欧美日韩高清在线视频| 老司机福利观看| 97超级碰碰碰精品色视频在线观看| 欧美色视频一区免费| 亚洲精品影视一区二区三区av| 国产精品精品国产色婷婷| АⅤ资源中文在线天堂| 免费av毛片视频| 五月伊人婷婷丁香| 日韩欧美国产一区二区入口| 成人特级黄色片久久久久久久| 两个人的视频大全免费| 12—13女人毛片做爰片一| 99久久九九国产精品国产免费| 内射极品少妇av片p| 国产午夜精品论理片| 精品久久久久久久人妻蜜臀av| 欧美一级a爱片免费观看看| 亚洲人成网站高清观看| 中文字幕人妻熟人妻熟丝袜美| 精品日产1卡2卡| 国产单亲对白刺激| 女人被狂操c到高潮| 免费在线观看亚洲国产| 热99re8久久精品国产| 麻豆国产av国片精品| 给我免费播放毛片高清在线观看| 久久性视频一级片| 一级毛片久久久久久久久女| 国产精品一及| 亚洲欧美日韩无卡精品| 国内精品美女久久久久久| 国产亚洲精品综合一区在线观看| 99热这里只有精品一区| 国产人妻一区二区三区在| 女人十人毛片免费观看3o分钟| АⅤ资源中文在线天堂| 精品人妻视频免费看| 12—13女人毛片做爰片一| 亚洲色图av天堂| 91狼人影院| 国内精品久久久久精免费| 又爽又黄无遮挡网站| 一级作爱视频免费观看| 一个人观看的视频www高清免费观看| www.999成人在线观看| 国产男靠女视频免费网站| 国产一区二区三区视频了| 嫩草影视91久久| 日韩人妻高清精品专区| 久久国产乱子伦精品免费另类| 国产一区二区在线观看日韩| 国产精品av视频在线免费观看| 免费电影在线观看免费观看| 国产高清视频在线观看网站| 成年女人永久免费观看视频| 综合色av麻豆| 欧美日韩乱码在线| 亚洲精品影视一区二区三区av| 高清毛片免费观看视频网站| 国产淫片久久久久久久久 | 性欧美人与动物交配| 极品教师在线视频| 99久久成人亚洲精品观看| 国产精品一区二区免费欧美| 国产欧美日韩精品一区二区| 少妇的逼水好多| 99久久99久久久精品蜜桃| 国产免费男女视频| 在线a可以看的网站| 国内精品美女久久久久久| 国产精品久久久久久亚洲av鲁大| 成人三级黄色视频| www.色视频.com| 天堂√8在线中文| 欧美性感艳星| 久久亚洲真实| 亚洲成av人片免费观看| 国产欧美日韩一区二区精品| 国内精品久久久久久久电影| 国产精品久久久久久久久免 | 日日夜夜操网爽| 国产伦一二天堂av在线观看| 99国产精品一区二区三区| 国产精品国产高清国产av| 亚洲第一区二区三区不卡| 日本黄大片高清| 日本与韩国留学比较| 久久亚洲精品不卡| 久久精品夜夜夜夜夜久久蜜豆| 国产精品一及| 国产av不卡久久| 噜噜噜噜噜久久久久久91| 免费看美女性在线毛片视频| av视频在线观看入口| 中亚洲国语对白在线视频| 午夜老司机福利剧场| a在线观看视频网站| 别揉我奶头~嗯~啊~动态视频| 国产精品美女特级片免费视频播放器| xxxwww97欧美| 久久精品国产亚洲av天美| 级片在线观看| 国产在视频线在精品| 国产成人a区在线观看| 成人美女网站在线观看视频| 成人欧美大片| 久久久久久久久久成人| 精品福利观看| 成年女人看的毛片在线观看| 国内揄拍国产精品人妻在线| 欧美性猛交╳xxx乱大交人| 国产伦人伦偷精品视频| 嫩草影院入口| 99在线视频只有这里精品首页| 很黄的视频免费| 成人亚洲精品av一区二区| 久久人妻av系列| 国产av麻豆久久久久久久| 久久精品国产亚洲av涩爱 | 久久国产精品影院| 国产爱豆传媒在线观看| 欧美在线黄色| 日本精品一区二区三区蜜桃| 黄色视频,在线免费观看| 久久亚洲真实| 精品一区二区三区视频在线| 欧美丝袜亚洲另类 | 熟女人妻精品中文字幕| 夜夜夜夜夜久久久久| 欧美国产日韩亚洲一区| 美女被艹到高潮喷水动态| 免费看光身美女| 国内精品美女久久久久久| 亚洲成人精品中文字幕电影| 黄色女人牲交| 女生性感内裤真人,穿戴方法视频| 免费看美女性在线毛片视频| 色精品久久人妻99蜜桃| 国产人妻一区二区三区在| 成人鲁丝片一二三区免费| 中文字幕人妻熟人妻熟丝袜美| 波多野结衣巨乳人妻| h日本视频在线播放| 国产精品综合久久久久久久免费| 国产午夜精品久久久久久一区二区三区 | 欧美高清成人免费视频www| 亚洲avbb在线观看| 男女那种视频在线观看| 亚洲成av人片在线播放无| 又紧又爽又黄一区二区| 久久久久亚洲av毛片大全| 丰满的人妻完整版| 国产精品爽爽va在线观看网站| 色精品久久人妻99蜜桃| 午夜激情福利司机影院| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 亚洲欧美日韩东京热| 1000部很黄的大片| 欧美bdsm另类| 国产国拍精品亚洲av在线观看| 狠狠狠狠99中文字幕| 欧美色视频一区免费| 亚洲欧美精品综合久久99| 日日夜夜操网爽| 亚洲欧美日韩东京热| 国产免费一级a男人的天堂| 国产真实伦视频高清在线观看 | 中文字幕人成人乱码亚洲影| 哪里可以看免费的av片| 欧美zozozo另类| 成人性生交大片免费视频hd| 午夜福利成人在线免费观看| av专区在线播放| 国内精品一区二区在线观看| 亚洲专区中文字幕在线| 一进一出好大好爽视频| 国产精品女同一区二区软件 | 日本 欧美在线| 最近中文字幕高清免费大全6 | 欧美又色又爽又黄视频| 宅男免费午夜| 最近中文字幕高清免费大全6 | 国产欧美日韩精品亚洲av| 69av精品久久久久久| 热99re8久久精品国产| 丰满人妻熟妇乱又伦精品不卡| 国产av麻豆久久久久久久| 亚洲精品一卡2卡三卡4卡5卡| 91午夜精品亚洲一区二区三区 | 少妇被粗大猛烈的视频| 欧美在线一区亚洲| 国产亚洲精品久久久com| 亚洲成a人片在线一区二区| 日本在线视频免费播放| 美女被艹到高潮喷水动态| 成人高潮视频无遮挡免费网站| 亚洲精品在线美女| 91午夜精品亚洲一区二区三区 | 麻豆久久精品国产亚洲av| 精品人妻偷拍中文字幕| 久久精品久久久久久噜噜老黄 | 国产欧美日韩一区二区精品| 亚洲人成电影免费在线| 亚洲精品456在线播放app | 中文字幕久久专区| 亚洲成av人片在线播放无| 日本熟妇午夜| 国产一级毛片七仙女欲春2| 日韩成人在线观看一区二区三区| 免费av毛片视频| av在线观看视频网站免费| 日韩中字成人| 欧美又色又爽又黄视频| 欧美bdsm另类| 天堂√8在线中文| 69人妻影院| 毛片女人毛片| 日本撒尿小便嘘嘘汇集6| 国产成人啪精品午夜网站| 九色国产91popny在线| 好看av亚洲va欧美ⅴa在| 女同久久另类99精品国产91| 欧美又色又爽又黄视频| 亚洲片人在线观看| 亚洲五月天丁香| 中文字幕人妻熟人妻熟丝袜美| 亚洲av二区三区四区| 国产av在哪里看| 精品久久国产蜜桃| 国产真实乱freesex| 国产色爽女视频免费观看| 久久香蕉精品热| 久久99热这里只有精品18| 99久久无色码亚洲精品果冻| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 久久久久亚洲av毛片大全| 国产精品日韩av在线免费观看| 真人一进一出gif抽搐免费| 国产在线精品亚洲第一网站| 国产老妇女一区| 欧美午夜高清在线| 久久久久国内视频| 级片在线观看| 熟女电影av网| 免费电影在线观看免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲男人的天堂狠狠| 在线十欧美十亚洲十日本专区| 深夜a级毛片| 搡老妇女老女人老熟妇| 国产成人欧美在线观看| 亚洲,欧美,日韩| 久久国产乱子免费精品| 90打野战视频偷拍视频| 国产麻豆成人av免费视频| 国产精品野战在线观看| 国内少妇人妻偷人精品xxx网站| 国产成人福利小说| 麻豆国产av国片精品| 日日夜夜操网爽| 国产乱人视频| 亚洲狠狠婷婷综合久久图片| 老司机午夜十八禁免费视频| 伊人久久精品亚洲午夜| 精品人妻视频免费看| 亚洲精品影视一区二区三区av| 精品人妻一区二区三区麻豆 | 精品人妻偷拍中文字幕| 男女床上黄色一级片免费看| 美女cb高潮喷水在线观看| 99久久成人亚洲精品观看| 国产精品98久久久久久宅男小说| 精品国产三级普通话版| 成人午夜高清在线视频| 美女高潮的动态| 成人永久免费在线观看视频| 亚洲乱码一区二区免费版| 听说在线观看完整版免费高清| 很黄的视频免费| 91九色精品人成在线观看| av在线观看视频网站免费| 国产精品自产拍在线观看55亚洲| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 大型黄色视频在线免费观看| 长腿黑丝高跟| 麻豆成人午夜福利视频| 国产精品野战在线观看| 日韩精品青青久久久久久| 一个人看视频在线观看www免费| 男人舔奶头视频| 偷拍熟女少妇极品色| 久久草成人影院| 国内精品一区二区在线观看| 国内揄拍国产精品人妻在线| 最近最新免费中文字幕在线| 午夜久久久久精精品| 在线天堂最新版资源| 十八禁网站免费在线| 成人性生交大片免费视频hd| 波多野结衣巨乳人妻| 免费看a级黄色片| 国内毛片毛片毛片毛片毛片| 亚洲第一欧美日韩一区二区三区| 激情在线观看视频在线高清| 免费av毛片视频| 国产精品嫩草影院av在线观看 | 欧美色视频一区免费| 窝窝影院91人妻| 精品人妻偷拍中文字幕| 听说在线观看完整版免费高清| 成人鲁丝片一二三区免费| 国产免费男女视频| 热99在线观看视频| www.www免费av| 国产精品电影一区二区三区| 神马国产精品三级电影在线观看| 在线观看美女被高潮喷水网站 | 欧美日本视频| 搡老岳熟女国产| 99国产精品一区二区蜜桃av| 亚洲天堂国产精品一区在线| 身体一侧抽搐| 噜噜噜噜噜久久久久久91| 亚洲一区高清亚洲精品| 成人高潮视频无遮挡免费网站| 久久99热这里只有精品18| 久久久久九九精品影院| 搞女人的毛片| 亚洲自偷自拍三级| 免费看日本二区| h日本视频在线播放| 亚洲国产欧洲综合997久久,| 国产中年淑女户外野战色| 伊人久久精品亚洲午夜| 99久久精品热视频| 久久久色成人| 91九色精品人成在线观看| 久久精品久久久久久噜噜老黄 | 国内精品美女久久久久久| 国产三级黄色录像| 国产成人欧美在线观看| 亚洲专区国产一区二区| 天堂动漫精品| 最新在线观看一区二区三区| av天堂中文字幕网| 国产三级黄色录像| 国产精品久久久久久久久免 | 国产一区二区在线观看日韩| 久久久久国内视频| 波多野结衣巨乳人妻| 国产91精品成人一区二区三区| 午夜免费激情av| 欧美一级a爱片免费观看看| 91字幕亚洲| 18禁在线播放成人免费| 男人狂女人下面高潮的视频| 99久久九九国产精品国产免费| 免费av毛片视频| 久久午夜亚洲精品久久| 成人一区二区视频在线观看| 国产av在哪里看| 性色av乱码一区二区三区2| 欧美极品一区二区三区四区| 日韩精品中文字幕看吧| 国产欧美日韩一区二区三| 亚洲欧美清纯卡通| 国产激情偷乱视频一区二区| 午夜影院日韩av| 欧美成人a在线观看| 最近最新中文字幕大全电影3| 成人毛片a级毛片在线播放| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美国产一区二区三| 成熟少妇高潮喷水视频| 12—13女人毛片做爰片一| 亚洲av第一区精品v没综合| 又黄又爽又刺激的免费视频.| 嫩草影视91久久| 日韩av在线大香蕉| 看片在线看免费视频| 午夜a级毛片| 无人区码免费观看不卡| 成年版毛片免费区| 久久久久久国产a免费观看| 欧洲精品卡2卡3卡4卡5卡区| 大型黄色视频在线免费观看| 天天躁日日操中文字幕| a级一级毛片免费在线观看| 精品国产三级普通话版| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av涩爱 | 国产免费av片在线观看野外av| 午夜激情福利司机影院| 国产精品一区二区三区四区免费观看 | 久久久久久久精品吃奶| 亚洲三级黄色毛片| 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| 一个人看的www免费观看视频| 淫秽高清视频在线观看| 高清在线国产一区| 亚洲精品在线观看二区| 性插视频无遮挡在线免费观看| 国产精品不卡视频一区二区 | 又黄又爽又免费观看的视频| 乱人视频在线观看| 99精品在免费线老司机午夜| 久久这里只有精品中国| 国产人妻一区二区三区在| 亚洲av二区三区四区| 亚洲性夜色夜夜综合| 99热这里只有是精品50| 欧美在线黄色| 亚洲人与动物交配视频| 在线观看免费视频日本深夜| 国产精品女同一区二区软件 | 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品在线观看二区| 亚洲成av人片免费观看| 成年版毛片免费区| 美女xxoo啪啪120秒动态图 | 久久99热这里只有精品18| 性欧美人与动物交配| 国产精品综合久久久久久久免费| 色精品久久人妻99蜜桃| 一本综合久久免费| 精品久久久久久久久av| 中文字幕人妻熟人妻熟丝袜美| 色在线成人网| 亚洲成人久久爱视频| 亚洲成人免费电影在线观看| 91在线精品国自产拍蜜月| 中文字幕av在线有码专区| 88av欧美| 色尼玛亚洲综合影院| 美女大奶头视频| 少妇人妻精品综合一区二区 | 丁香六月欧美| 99热只有精品国产| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 一级作爱视频免费观看| 午夜两性在线视频| 床上黄色一级片| 成人鲁丝片一二三区免费| 91字幕亚洲| а√天堂www在线а√下载| 久久精品国产亚洲av天美| 国产真实伦视频高清在线观看 | 国产真实乱freesex| 亚洲电影在线观看av| 搡老妇女老女人老熟妇| 美女被艹到高潮喷水动态| 国产蜜桃级精品一区二区三区| 免费在线观看亚洲国产| 精品一区二区三区视频在线观看免费| 狠狠狠狠99中文字幕| 小蜜桃在线观看免费完整版高清| 亚洲激情在线av| 精品日产1卡2卡| 亚洲精品在线观看二区| 精品欧美国产一区二区三| 国语自产精品视频在线第100页| 99国产综合亚洲精品| 成人一区二区视频在线观看| 九九久久精品国产亚洲av麻豆| 亚洲第一欧美日韩一区二区三区| 村上凉子中文字幕在线| 久久99热6这里只有精品| 嫩草影视91久久| 热99re8久久精品国产| 免费在线观看影片大全网站| 日本一二三区视频观看| 又紧又爽又黄一区二区| 欧美zozozo另类| 日韩国内少妇激情av| 欧美性感艳星| 免费av观看视频| 色综合站精品国产| 成人欧美大片| 久久人人爽人人爽人人片va | 国产精品乱码一区二三区的特点| 黄色视频,在线免费观看| 小蜜桃在线观看免费完整版高清| 国产一区二区在线av高清观看| 天堂网av新在线| 亚洲精品色激情综合| 男女那种视频在线观看| 91麻豆精品激情在线观看国产| 久久精品国产亚洲av天美| 色噜噜av男人的天堂激情| 国产精品伦人一区二区| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 男人舔奶头视频| 日韩 亚洲 欧美在线| 国产爱豆传媒在线观看| 欧美日韩福利视频一区二区| 成人av一区二区三区在线看| 亚洲最大成人手机在线| 亚洲 欧美 日韩 在线 免费| 俺也久久电影网| 午夜两性在线视频| 久久久久九九精品影院| 99视频精品全部免费 在线| 成人无遮挡网站| 午夜两性在线视频| 日本一二三区视频观看| 亚洲第一区二区三区不卡| 免费观看的影片在线观看| 一区二区三区激情视频| 免费观看的影片在线观看| 日本黄色视频三级网站网址| 亚洲欧美清纯卡通| 999久久久精品免费观看国产| 亚洲av免费高清在线观看| 亚洲一区二区三区色噜噜| 久久午夜亚洲精品久久| 色哟哟哟哟哟哟| 精品一区二区三区视频在线| 一区二区三区高清视频在线| 成人性生交大片免费视频hd| 国产乱人视频| 国产中年淑女户外野战色| 婷婷精品国产亚洲av在线| 欧美丝袜亚洲另类 | 欧美bdsm另类| 直男gayav资源| 亚州av有码| 成人一区二区视频在线观看| 九九热线精品视视频播放| 18+在线观看网站| 亚洲性夜色夜夜综合| 久久精品国产亚洲av涩爱 | 亚洲精品影视一区二区三区av| 麻豆成人av在线观看| 成年人黄色毛片网站| 在线观看av片永久免费下载| 亚洲欧美激情综合另类|